
Archivum Mathematicum

Naseer Shahzad; Salma Sahar
Some common fixed point theorems for biased mappings

Archivum Mathematicum, Vol. 36 (2000), No. 3, 183--194

Persistent URL: http://dml.cz/dmlcz/107730

Terms of use:
© Masaryk University, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107730
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)

Tomus 36 (2000), 183 – 194

SOME COMMON FIXED POINT

THEOREMS FOR BIASED MAPPINGS

NASEER SHAHZAD AND SALMA SAHAR

Some common fixed point theorems in normed spaces are proved using
the concept of biased mappings- a generalization of compatible mappings.

1. Introduction and preliminaries

Jungck [2] generalized the concept of commuting mappings by introducing com-
patible mappings. Several authors proved common fixed point theorems using
this concept (see, for example, the work of Pathak and Fisher [6], Jungck [3], and
Kaneko and Sessa [1]). Jungck, Murthy and Cho [4] gave the notion of compatible
mappings of type (A) which is equivalent to the concept of compatible mappings
under some conditions. Afterwards, Pathak and Khan [8] introduced the concept
of compatible mappings of type (B) and compared these mappings with compati-
ble mappings and compatible mappings of type (A) in normed spaces. A related
but different concept was also given by Pathak, Kang and Cho [7]. Recently,
Jungck and Pathak [5] introduced a generalization of compatible mappings called
“biased mappings”. The purpose of this paper is to prove some common fixed
point theorem using this concept. We also generalize a recent result of Pathak
and Fisher [6]. It is worth mentioning that the class of biased maps includes the
class of compatible maps and commuting maps as well.

Let (X, d) be a metric space. The self-mappings A and B : X → X are said to
be compatible if

lim
n
d(ABxn, BAxn) = 0

whenever {xn} is a sequence in X such that lim
n
Axn = lim

n
Bxn = t, for some

t ∈ X. The pair {A,B} is B-biased iff whenever {xn} is a sequence in X and
Axn, Bxn → t ∈ X, then

αd(BAxn, Bxn) ≤ αd(ABxn, Axn)

if α = lim inf and if α = lim sup.
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If the pair {A,B} is compatible, then it is both A- and B-biased [5]. However,
the converse is not true in general.

Example [5]. Let X = [0, 1] with the usual metric d. Define the mappings
A,B : X → X by

Ax =
{

1− 2x if x ∈ [0, 1/2]

0 if x ∈ (1/2, 1]

and

Bx =

{
2x if x ∈ [0, 1/2]

1 if x ∈ (1/2, 1] .

Then the pair {A,B} is both A- and B-biased but not compatible.

The pair {A,B} is weakly B-biased iff Ap = Bp implies d(BAp,Bp)
≤ d(ABp,Ap). For more details, we refer to Jungck and Pathak [5].

2. Main Results

Theorem 2.1. Let A and B be two self-mappings of a normed space X and let
C be a closed, convex and bounded subset of X satisfying the following condition.

‖Ax− Ay‖p ≤ a‖Bx− By‖p + (1− a)

×max
{
‖Ax−By‖p

2
,
‖Ay −Bx‖p

2

}
,(1)

B(C) ⊇ (1− k)B(C) + kA(C)(2)

for all x, y ∈ C, where 0 < a < 1, p > 0, and for some fixed k such that 0 < k < 1.
Suppose, for some x0 ∈ C, the sequence {xn} ⊂ X defined inductively for n =
0, 1, 2, . . . by

(3) Bxn+1 = (1− k)Bxn + kAxn

converges to a point z of C and the pair {A,B} is a B-biased. If B is continuous
at z, then A and B have a unique common fixed point. Further, if B is continuous
at Az, then A and B have a unique common fixed point at which A is continuous.

Proof. First, we are going to prove that Az = Bz.
We have

‖Bz − Az‖p = ‖Bz −Bxn+1 + Bxn+1 − Az‖p

≤ (‖Bz −Bxn+1‖+ ‖Bxn+1 −Az‖)p .(4)

Now, from (3), we obtain

‖Bxn+1 −Az‖p = ‖(1− k)Bxn + kAxn − Az‖p

= ‖(1− k)(Bxn − Az) + k(Axn −Az)‖p

≤ ((1− k)‖Bxn − Az‖+ k‖Axn −Az‖)p
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and so

‖Bxn+1 −Az‖p ≤
[
(1− k)‖Bxn − Az‖

+ k(‖Axn − Az‖p)1/p]p .(5)

It follows, from (1), that

‖Axn −Az‖p ≤ a‖Bxn −Bz‖p + (1 − a)

×max

{
‖Axn −Bx‖p

2
,
‖Az − Bxn‖p

2

}
.

Now, since B is continuous at z, it follows that Bxn → Bz as n→∞. Also, from
(3), we have

‖Axn −Bz‖ → 0 as n→∞ .

Therefore, for every ε > 0 and sufficiently large n,

(6) ‖Axn − Az‖p ≤
(1− a)‖Az − Bz‖p

2
+ ε .

Hence, from (4), (5) and (6), it follows that

‖Bz − Az‖p <
[
(1− k) + k

(1− a)1/p

2

]p
‖Bz −Az‖p ,

which is a contradiction. Therefore, Bz = Az.
Let w = Az = Bz. Since {A,B} is B-biased, it is weakly B-biased. It implies

that
‖BAz −Bz‖ ≤ ‖ABz −Az‖ ,

that is

(7) ‖Bw − w‖ ≤ ‖Aw − w‖ .

We assert that Aw = w. If not, then

‖Aw −Axn+1‖p ≤ a‖Bw −Bxn+1‖p + (1− a)

×max

{
‖Axn+1 − Bw‖p

2
,
‖Aw −Bxn+1‖p

2

}
.

Letting n→∞, we get

‖Aw − w‖p ≤ a‖Bw − w‖p + (1− a)

×max

{
‖w −Bw‖p

2
,
‖Aw − w‖p

2

}
≤ (1 + a)

2
‖Aw − w‖p ,
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which is a contradiction, since 0 < a < 1. Thus, Aw = w. It follows from (7) that
Bw = w. Hence w = Aw = Bw, that is, w = Az is a common fixed point of A
and B.

Now, let {yn} be a sequence in C with the limit Az = w. Then using the
condition (1), we obtain

‖Ayn − Aw‖p ≤ a‖Byn − Bw‖p + (1− a)

×max

{
‖Ayn −Bw‖p

2
,
‖Aw −Byn‖p

2

}
.

Since B is continuous at Az = w, we have for sufficiently large n and ε > 0

‖Ayn −Aw‖p ≤
(1− a)

2
‖Ayn − Bw‖p + ε .

Again, since
w = Bw = Aw

we have, for sufficiently large n and ε > 0

‖Ayn −Aw‖p ≤
(1− a)

2
‖Ayn − Aw‖p + ε ,

that is
lim
n
‖Ayn − Aw‖ = 0 ,

which means that A is continuous at Az.
Let w and w1 be two common fixed point of A and B. Then

(8) w = Aw = Bw

and

(9) w1 = Aw1 = Bw1 .

It follows, from (1), that

‖Aw −Aw1‖p ≤ a‖Bw −Bw1‖p + (1− a)

×max

{
‖Aw −Bw1‖p

2
,
‖Aw1 − Bw‖p

2

}
.(10)

From (8), (9) and (10), it follows that

‖Bw − Bw1‖p ≤
(a+ 1)

2
‖Bw −Bw1‖p ,

which is a contradiction. Therefore,

w = Bw = Bw1 = Aw = Aw1 = w1 .

This completes the proof. �
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Corollary 2.2. Let A be a mapping of a normed space X into itself and let C be
a closed, convex and bounded subset of X satisfying the following condition:

‖Ax−Ay‖p ≤ a‖x− y‖p + (1− a)

×max
{
‖Ax− y‖p

2
,
‖Ay − x‖p

2

}
,

and C ⊇ (1 − k)C + kA(C) for all x, y in C, where 0 < a < 1 and p > 0, and
for a fixed k such that 0 < k < 1. If, for some x0 ∈ C, the sequence {xn} in X
inductively defined for n = 0, 1, 2, . . . by

xn+1 = (1− k)xn + kAxn

converges to a point z of C, then A has a unique fixed point at which A is contin-
uous.

Example 2.3. Let X = [0,∞) with the Euclidean norm and C = [0, 1]. Let A
and B be self-mappings of X defined by

Ax =
{

1 if x ∈ [0, 1] ,

1 + x2 if x ∈ (1,∞)

and

Bx =

{
1 + x2 if x ∈ [0, 1) ,

1 if x ∈ [1,∞) .

For a fixed k such that 0 < k < 1 we have

[1, 2) = B(C) ⊇ (1− k)B(C) + kA(C) = [1, 2− k)

and

‖Ax− Ay‖p = 0

for all x, y ∈ C and p > 0.
Consider a sequence {xn} in X. If Bxn, Axn → t(= 1) ∈ X, then xn → 0. It

follows that ‖BAxn−Bxn‖ → 0 and so {A,B} is B-biased. Also, for any x0 ∈ C,
the sequence {xn} such that Bxn+1 = (1− k)Bxn + kAxn for n ≥ 0 converges to
the point z = 1. Clearly, A(1) = 1 is a common fixed point of A and B.

Example 2.4. Let X = [0,∞) with the Euclidean norm and C = [0, 1]. Let A
and B be self-mappings of X defined by

Ax = 1

and

Bx =
{

1 + x if x ∈ [0, 1] ,

1 if x ∈ (1,∞) .
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Then
‖Ax− Ay‖p = 0

for all x, y in C and for all a, 0 < a < 1 and p > 0. Also

B(C) = [1, 2] ⊃ [1, 2− k]

= (1− k)B(C) + kA(C) .

Consider a sequence {xn} in X converging to 0. Then Bxn, Axn → t ∈ X, but
‖BAxn − Bxn‖ → 1 and ‖ABxn − Axn‖ → 0, as xn → 0. Consequently, {A,B}
is not B-biased. On the other hand, A and B do not have common fixed points.

Lemma 2.5. Let A, B, S and T be self-mappings of a metric space (X, d). Sup-
pose that

dp(Sx, Ty) ≤ φ

(
ad2p(Ax,By) + (1− a) max{d2p(Sx,By), d2p(Ty,Ax)}

max{dp(Sx,By), dp(Ty,Ax)}

)
for all x, y ∈ X for which max{dp(Sx,By), dp(Ty,Ax)} 6= 0, where 0 < a < 1,
p > 0 and φ is a function which is upper semicontinuous from R+ into itself such
that φ(t) < t for each t > 0. If there exists u, v, w ∈ X such that

w = Su = Au = Tv = Bv ,

and {A,S} is weakly A-biased and {B, T} is weakly B-biased, then

w = Sw = Aw = Tw = Bw .

Proof. Since {A,S} is weakly A-biased,

d(ASu,Au) ≤ d(SAu, Su) ,

that is

d(Aw,w) ≤ d(Sw,w) .

We assert that Sw = w, and hence Aw = w. If not, then Sw 6= Bw, and therefore

max{dp(Sw,Bv), dp(Tv,Aw)} 6= 0

and so

dp(Sw,w) = dp(Sw, Tv)

≤ φ
(
ad2p(Aw,Bv) + (1 − a) max{d2p(Sw,Bv), d2p(Tv,Aw)}

max{dp(Sw,Bv), dp(Tv,Aw)}

)
= φ

(
ad2p(Aw,w) + (1− a) max{d2p(Sw,w), d2p(w,Aw)}

max{dp(Sw,w), dp(w,Aw)}

)
≤ φ

(
ad2p(Sw,w) + (1− a)d2p(Sw,w)

dp(Sw,w)

)
< dp(Sw,w) ,
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a contradiction. Hence Sw = w and so Aw = w. Similarly, we can prove that
Tw = Bw = w. �

Theorem 2.6. Let A, B, S and T be self-mappings of a normed space X. Let C
be a closed convex subset of X such that

(1− k)A(C) + kS(C) ⊆ A(C) ,(11)

(1− k′)B(C) + k′T (C) ⊆ B(C) ,(12)

where 0 < k, k′ < 1 and suppose that

(13) ‖Sx − Ty‖p

≤ φ

(
a‖Ax−By‖2p + (1− a) max{‖Sx− By‖2p, ‖Ty −Ax‖2p}

max{‖Sx −By‖p , ‖Ty −Ax‖p}

)
for all x, y ∈ C for which

max{‖Sx −By‖p, ‖Ty −Ax‖p} 6= 0 ,

where 0 < a < 1, p > 0 and φ is a function which is upper semicontinuous from
R+ into itself such that φ(t) < t for each t > 0. If for some x0 ∈ C, the sequence
{xn} in X defined inductively for n = 0, 1, 2, 3, . . . by

Ax2n+1 = (1− k)Ax2n + kSx2n ,

Bx2n+2 = (1− k′)Bx2n+1 + k′Tx2n+1(14)

converges to a point z ∈ C, if A and B are continuous at z, and if {A,S} is
A-biased, {B, T} is B-biased, then A, B, S and T have a unique common fixed
point w = Tz in C. Further, if A and B are continuous at w, then S and T are
continuous at w.

Proof. First, we prove that

Az = Bz = Sz = Tz .(15)

It follows, form (14), that

kSx2n = Ax2n+1 − (1 − k)Ax2n ,

and since A is continuous at z,

lim
n
Axn = lim

n
Sx2n = Az .



190 N. SHAHZAD, S. SAHAR

Similarly,

lim
n
Bxn = lim

n
Tx2n+1 = Bz .

Suppose that Az 6= Bz such that for large enough n, Sx2n 6= Bx2n+1. Then, using
(13) we obtain

‖Sx2n − Tx2n+1‖p ≤

φ

(
a‖Ax2n−Bx2n+1‖2p + (1 − a) max{‖Sx2n−Bx2n+1‖2p, ‖Tx2n+1−Ax2n‖2p}

max{‖Sx2n −Bx2n+1‖p, ‖Tx2n+1 −Ax2n‖p}

)
.

Letting n→∞, it follows that

‖Az−Bz‖p

≤ φ
(
a‖Az −Bz‖2p + (1− a) max{‖Az − Bz‖2p, ‖Bz − Az‖2p}

max{‖Az −Bz‖p, ‖Bz −Az‖p}

)
= φ(‖Az −Bz‖p) < ‖Az − Bz‖p ,

a contradiction. Therefore, Az = Bz.
Now suppose that Tz 6= Az such that for large enough n, Tz 6= Ax2n. Then,

using (13) again, we obtain

‖Sx2n − Tz‖p

≤ φ

(
a‖Ax2n −Bz‖2p + (1− a) max{‖Sx2n −Bz‖2p, ‖Tz −Ax2n‖2p

max{‖Sx2n −Bz‖p, ‖Tz −Ax2n‖p}

)
.

Letting n→∞, we get

‖Az−Tz‖p

≤ φ

(
a‖Az −Bz‖2p + (1− a) max{‖Az −Bz‖2p, ‖Tz − Az‖2p}

max{‖Az − Bz‖p, ‖Tz − Az‖p}

)
= φ((1− a)‖Az − Tz‖p) < (1− a)‖Az − Tz‖p ,

a contradiction. Therefore, Az = Tz. Similarly Sz = Bz. Hence

Az = Bz = Sz = Tz .

Let

w = Az = Bz = Sz = Tz .

Then, by Lemma 2.5, we get

w = Aw = Bw = Sw = Tw .
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Let {yn} be an arbitrary sequence in C converging to w and suppose that the
sequence {Syn} does not converge to Sw. Then, for large enough n, and using
(13), we obtain

‖Syn − Sw‖p = ‖Syn − Tw‖p

≤ φ

(
a‖Bw − Ayn‖2p + (1− a) max{‖Syn − Bw‖2p, ‖Tw− Ayn‖2p}

max{‖Syn − Bw‖p, ‖Tw− Ayn‖p}

)
.

Since A and B are continuous at w, it implies that, for arbitrary ε > 0 and
sufficiently large n

‖Syn − Sw‖p ≤ φ((1− a)‖Syn − Sw‖p + ε)

< (1 − a)‖Syn − Sw‖p + ε ,

a contradiction since a < 1. Thus the sequence {Syn} converges to Sw. Similarly,
we can prove that T is also continuous at w. The uniqueness of the common fixed
point follows from inequality (13). If w, w ′ are two common fixed points of A, B,
S and T . Then

w = Aw = Bw = Sw = Tw

and

w′ = Aw′ = Bw′ = Sw′ = Tw′ .

Now

‖w−w′‖p = ‖Sw − Tw′‖p

≤ φ

(
a‖Aw −Bw′‖2p + (1 − a) max{‖Sw −Bw′‖2p, ‖Tw′ −Aw‖2p}

max{‖Sw −Bw′‖p, ‖Bw′ −Aw‖p}

)
= φ

(
a‖w − w′‖2p + (1− a) max{‖w− w′‖2p, ‖w′ − w‖2p}

max{‖w− w′‖p, ‖w′ − w‖p}

)
= φ(‖w− w′‖p) < ‖w − w′‖p .

This completes the proof. �
When S = T and A = B, we have the following corollary:

Corollary 2.7. Let A and S be self-mappings of a normed space X. Let C be a
closed convex subset of X such that

(1− k)A(C) + kS(C) ⊆ A(C) ,

where 0 < k < 1 and suppose that

‖Sx − Sy‖p ≤ φ

(
a‖Ax− Ay‖2p + (1− a) max{‖Sx− Ay‖2p, ‖Sy − Ax‖2p}

max{‖Sx− Ay‖p, ‖Sy −Ax‖p}

)
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for all x, y ∈ C for which max{‖Sx −Ay‖p, ‖Sy − Ax‖p 6= 0}, where 0 < a < 1,
p > 0 and φ is a function which is upper semicontinuous from R+ into itself such
that φ(t) < t for each t > 0. If, for some x0 ∈ C, the sequence {xn} in X defined
inductively for n = 0, 1, 2, 3, . . . by

Axn+1 = (1− k)Axn + kSxn

converges to a point z ∈ C, if A is continuous at z, and {A,S} is A-biased, then A
and S have a unique common fixed point Sz = w in C. Further, if A is continuous
at w, then S is continuous at w.

When A = B = I, the identity mapping on X, we have the following corollary:

Corollary 2.8. Let S and T be self-mappings of a normed space X. Let C be a
closed convex subset of X such that

(1− k)C + kS(C) ⊆ C ,

(1− k)C + kT (C) ⊆ C ,(16)

where 0 < k, k′ < 1 and suppose that

‖Sx − Ty‖p ≤ φ
(
a‖x− y‖2p + (1− a) max{‖Sx− y‖2p, ‖Ty − x‖2p}

max{‖Sx− y‖p, ‖Ty − x‖p}

)
for all x, y ∈ C for which

max{‖Sx− y‖p, ‖Ty − x‖p} 6= 0 ,

where 0 < a < 1, p > 0 and φ is a function which is upper semicontinuous from
R+ into itself such that φ(t) < t for each t > 0. If, for some x0 ∈ C, the sequence
{xn} in X defined inductively for n = 0, 1, 2, 3, . . . by

x2n+1 = (1− k)x2n + kSx2n ,

x2n+2 = (1− k′)x2n+1 + k′Tx2n+1(17)

converges to a point z ∈ C, then T and S have a unique common fixed point
w = Tz in C. Further, T and S are continuous at w.

When A = B = I, the identity mapping and φ(t) = αt for all t > 0 and
0 < α < 1, we have the following corollary:

Corollary 2.9. Let S and T be self-mappings of a normed space X. Let C be a
closed convex subset of X satisfying (16) and suppose that

‖Sx− Ty‖p ≤ α

(
a‖x− y‖2p + (1− a) max{‖Sx− y‖2p, ‖Ty − x‖2p

max{‖Sx− y‖p, ‖Ty − x‖p}

)
for all x, y ∈ C for which

max{‖Sx− y‖p, ‖Ty − x‖p} 6= 0 ,

where 0 < α, a < 1 and p > 0. If, for some x0 ∈ C, the sequence {xn} in X
defined by (17) converges to a point z ∈ C, then S and T have a unique common
fixed point w = Tz in C. Further, S and T are continuous at Tz.
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Example 2.10. Let X = [0,∞) with the Euclidean norm and let C = [0, 1].
Define the mappings A, B, S and T of X into itself by

Ax =

{
1 if x ∈ [0, 1/2) ,

x if x ∈ [1/2,∞) ,

Sx =

{
1 if x ∈ [0, 1] ,

1 + x2 if x ∈ (1,∞) ,

Bx =
{

1 if x ∈ [0, 1/2) ,

x2 if x ∈ [1/2,∞)

and

Tx =
{

1 ifx ∈ [0, 1] ,

1 + x3 if x ∈ (1,∞) .

Then A and B are not continuous at 1/2 and S and T are not continuous at 1.
Consider a sequence {xn} such that

lim
n
Axn = lim

n
Sxn = t .

Then lim
n
‖ASxn − SAxn‖ = 0. Thus {S,A} is compatible, and hence is both S

and A-biased. Similarly, {B, T} is both B and T -biased.
For fixed k, k′ ∈ (0, 1), we have

(1− k)A(C) + kS(C) = [1/2 + 1/2k, 1]⊆ A(C) = [1/2, 1] ,

(1− k′)B(C) + k′T (C) = [1/4 + 3/4k′, 1] ⊆ B(C) = [1/4, 1]

and

‖Sx − Ty‖p = 0

for all x, y ∈ C and p > 0. Also, for any x0 ∈ C, the sequence {xn} in C such that

Ax2n+1 = (1− k)Ax2n + kSx2n ,

Bx2n+2 = (1− k′)Bx2n+1 + k′Tx2n+1

for n = 0, 1, 2, 3, . . . converges to the point z = 1. Clearly, w = T1 is a common
fixed point of A, B, S and T . For details, we refer to [6].
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Example 2.11. Let X = [0,∞) with the Euclidean norm and let C = [0, 1].
Define the mappings B and T of X into itself by

Bx =

{
1 + (1/2)x if x ∈ [0, 1] ,

1 if x ∈ (1,∞) ,

Tx = 1

Then we see that ‖Tx− Ty‖p = 0 for all x, y ∈ C with p > 0.
For some k ∈ (0, 1), we have

(1− k)B(C) + kT (C) = [1, 3/2− 1/2k] ⊂ B(C) = [1, 3/2] .

Also, if {xn} is a sequence in X converging to 0, then

limnBxn = limn Txn = 1 ,
but

limn ‖BTxn −Bxn‖ = 1/2
and

limn ‖TBxn − Txn‖ = 0 .

Consequently, {B, T} is not B-biased. Clearly, B and T have no common fixed
point in C. For details, see [6].
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