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ON LIE IDEALS AND JORDAN LEFT DERIVATIONS
OF PRIME RINGS

MOHAMMAD ASHRAF AND NADEEM-UR-REHMAN

Abstract. Let R be a 2-torsion free prime ring and let U be a Lie ideal of

R such that u2 ∈ U for all u ∈ U . In the present paper it is shown that if d is
an additive mappings of R into itself satisfying d(u 2) = 2ud(u) for all u ∈ U ,

then d(uv) = ud(v) + vd(u) for all u, v ∈ U .

1. Introduction

Throughout the present paper R will denote an associative ring with centre Z.
Recall that R is prime if aRb = 0 implies that a = 0 or b = 0. As usual [x, y] will
denote the commutator xy − yx. An additive subgroup U of R is said to be a Lie
ideal of R if [u, r] ∈ U for all u ∈ U , r ∈ R. An additive mapping d : R −→ R
is called a derivation (resp. Jordan derivation) if d(xy) = d(x)y + xd(y), (resp.
d(x2) = d(x)x + xd(x)) holds for all x, y ∈ R. Obviously every derivation is
a Jordan derivation. The converse need not be true in general. A famous result
due to Herstein [8] states that every Jordan derivation on a 2-torsion free prime
ring is a derivation. A brief proof of this result is presented in [4]. Further, Awtar
[1] generalized this result on Lie ideals.

An additive mapping d : R −→ R is called a left derivation (resp. Jordan
left derivation) if d(xy) = xd(y) + yd(x) (resp. d(x2) = 2xd(x)) holds for all
x, y ∈ R. Clearly, every left derivation is a Jordan left derivation. Thus, it
is natural to question that : Whether every Jordan left derivation on a ring
is a left derivation? In the present paper we have shown that the answer
to the above question is affirmative in the case when the underlying ring R
is 2-torsion free and prime. In fact we have obtained rather a more general
result which establish that under appropriate restriction on a Lie ideal U of a
2-torsion free prime ring, every Jordan left derivation on U is a left derivation on U .

2000 Mathematics Subject Classification: 16W25, 16N60.
Key words and phrases: Lie ideals, prime rings, Jordan left derivations, left derivations, tor-

sion free rings.
Received August 23, 1999.



202 M. ASHRAF, NADEEM-UR-REHMAN

2. Preliminary results

We begin with the following results which will be used extensively to prove our
theorem. Lemma 2.1 can be found in [2].

Lemma 2.1. If U 6⊂ Z is a Lie ideal of a 2-torsion free prime ring R and a, b ∈ R
such that aUb = 0, then a = 0 or b = 0.

Lemma 2.2. Let R be a 2-torsion free ring and let U be a Lie ideal of R such
that u2 ∈ U for all u ∈ U . If d : R −→ R is an additive mapping satisfying
d(u2) = 2ud(u) for all u ∈ U , then

(i) d(uv + vu) = 2ud(v) + 2vd(u), for all u, v ∈ U .
(ii) d(uvu) = u2d(v) + 3uvd(u)− vud(u), for all u, v ∈ U .

(iii) d(uvw+wvu) = (uw+wu)d(v) + 3uvd(w) + 3wvd(u)− vud(w)− vwd(u),
for all u, v, w ∈ U .

(iv) [u, v]ud(u) = u[u, v]d(u), for all u, v ∈ U .
(v) [u, v] (d(uv)− ud(v)− vd(u)) = 0, for all u, v ∈ U .

Proof. (i) Since uv + vu = (u + v)2 − u2 − v2, we find that uv + vu ∈ U for all
u, v ∈ U . Hence our hypothesis yields the required result.

(ii) Since uv + vu ∈ U , replacing v by uv + vu in (i), we get

(2.1) d (u(uv + vu) + (uv + vu)u) = 4u2d(v) + 6uvd(u) + 2vud(u)

On the other hand

d (u(uv + vu) + (uv + vu)u) = d(u2v + vu2) + 2d(uvu)

= 2u2d(v) + 4vud(u) + 2d(uvu)

Combining the above equation with (2.1) we get (ii)

(iii) By linearizing (ii) on u, we get

d ((u+ w)v(u+ w)) = u2d(v) + w2d(v) + (uw + wu)d(v)

+ 3uvd(u) + 3uvd(w) + 3wvd(u)

+ 3wvd(w) − vud(u)− vud(w)(2.2)

− vwd(u) − vwd(w)

On the other hand

d ((u+ w)v(u + w)) = d(uvu) + d(wvw) + d(uvw + wvu)

= u2d(v) + 3uvd(u)− vud(u) +w2d(v)(2.3)

+ 3wvd(w)− vwd(w) + d(uvw + wvu)

Combining (2.2) and (2.3), we get the result.

(iv) Since uv + vu and uv − vu both belong to U , we find that 2uv ∈ U for all
u, v ∈ U . Hence, by our hypothesis we find that d(uv)2 = 2uvd(uv). Replace w



ON LIE IDEALS AND JORDAN LEFT DERIVATIONS OF PRIME RINGS 203

by 2uv in (iii), and use the fact that char R 6= 2, to get

d (uv(uv) + (uv)vu) = (u2v + uvu)d(v) + 3uvd(uv)

+ 3uv2d(u)− vud(uv)− vuvd(u)(2.4)

On the other hand

d ((uv)uv + (uv)vu) = d((uv)2 + uv2u)

= 2uvd(uv) + 2u2vd(v) + 3uv2d(u)− v2ud(u)(2.5)

Combining (2.4) and (2.5), we get

(2.6) [u, v]d(uv) = u[u, v]d(v) + v[u, v]d(u) , for all u, v ∈ U .
Replacing u+ v for v in (2.6), we have

2[u, v]ud(u) + [u, v]d(uv) = 2u[u, v]d(u) + u[u, v]d(v) + v[u, v]d(u) .

Now application of (2.6) yields the required result.

(v) Linearize (iv) on u, to get

[u, v]ud(u) + [u, v]vd(v) + [u, v]ud(v) + [u, v]vd(u)

= u[u, v]d(u) + u[u, v]d(v) + v[u, v]d(u) + v[u, v]d(v) , for all u, v ∈ U .

Application of (iv) and (2.6) yield that [u, v]ud(v) + [u, v]vd(u) = [u, v]d(uv)
and hence [u, v]{d(uv)− ud(v) − vd(u)} = 0, for all u, v ∈ U . 2

Lemma 2.3. Let R be a 2-torsion free ring and let U be a Lie ideal of R such
that u2 ∈ U for all u ∈ U . If d : R −→ R is an additive mapping satisfying
d(u2) = 2ud(u) for all u ∈ U , then

(i) [u, v]d([u, v]) = 0, for all u, v ∈ U .
(ii) (u2v − 2uvu+ vu2)d(v) = 0, for all u, v ∈ U .

Proof. (i) From Lemma 2.2 (i) and (v), we have

d(uv + vu) = 2{ud(v) + vd(u)} and [u, v] (d(uv) − ud(v) − vd(u)) = 0

respectively. Combining these two results we find that

(2.7) [u, v] (d(vu) − ud(v) − vd(u)) = 0 , for all u, v ∈ U .
Further, combining of (2.7) and Lemma 2.2 (v) yields that [u, v]d([u, v]) = 0 .

(ii) For any v, u ∈ U , we have d
(
[u, v]2

)
= 2[u, v]d ([u, v]). Now application of

Lemma 2.3 (i), gives that

(2.8) d
(
[u, v]2

)
= 0 , for all u, v ∈ U .

Since 2uv ∈ U , replacing u by 2vu in uv+ vu ∈ U and uv− vu ∈ U and adding
the results so obtained we find that 4vuv ∈ U for all u, v ∈ U . Thus in view of
Lemma 2.2 (i), we have

4d (u(uvu) + (vuv)u) = 8{ud(vuv) + vuvd(u)}
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This implies that d (u(vuv) + (vuv)u) = 2{ud(vuv) + vuvd(u)}. Now application
of (2.8) yields that

0 = d([u, v]2)

= d(u(vuv) + (vuv)u) − d(uv2u)− d(vu2v)

= 2{ud(vuv) + vuvd(u)} − u2d(v2) − 3uv2d(u)

+ v2ud(u)− v2d(u2)− 3vu2d(v) + u2vd(v)

= − 3(u2v − 2uvu+ vu2)d(v) − (uv2 − 2vuv + v2u)d(u)

and hence,

(2.9) (uv2 − 2vuv + v2u)d(u) + 3(u2v − 2uvu+ vu2)d(v) = 0 , for all u, v ∈ U .
In view of Lemma 2.2 (iv), we have

(2.10) (u2v − 2uvu+ vu2)d(u) = 0 , for all u, v ∈ U .
Replacing u by u+ v in (2.10), we find that

{(u2v − 2uvu+ vu2)− (v2u− 2vuv + uv2)}(d(u) + d(v)) = 0 , for all u, v ∈ U .
Now, using (2.10) in the above expression, we have

(2.11) (u2v − 2uvu+ vu2)d(v)− (v2u− 2vuv + uv2)d(u) = 0 , for all u, v ∈ U .
Combining (2.9) and (2.11), and using the fact that R is 2-torsion free, we

obtain (u2v − 2uvu + vu2)d(v) = 0. Thus in view of (2.11), we get the required
result. 2

3. Main Result

The main result of the present paper states as follows:
Theorem. Let R be a 2-torsion free prime ring and let U be a Lie ideal of R such
that u2 ∈ U . If d : R −→ R is an additive mapping such that d(u2) = 2ud(u) for
all u ∈ U , then d(uv) = ud(v) + vd(u) for all u, v ∈ U .

Proof. If U is a commutative Lie ideal of R, then by using the same arguments
as used in the proof of Lemma 1.3 of [8], U ⊂ Z. Hence using Lemma 2.2 (i),
we find that 2d(uv) = 2{ud(v) + vd(u)}. But since char R 6= 2, we find that
d(uv) = ud(v) + vd(u) for all u, v ∈ U . Hence onward we shall assume that U is a
noncomutative Lie ideal of R - i.e. U 6⊂ Z. 2

Now, by Lemma 2.2 (iv), we have

(3.1) (u2v − 2uvu+ vu2)d(u) = 0 , for all u, v ∈ U .
Replacing u by [u1, w] in (3.1), we get

([u1, w]2v)d([u1, w])− 2([u1, w]v[u1, w]) d([u1, w]) + (v[u1, w]2d([u1, w]) = 0 ,

for all u, v, u1, w ∈ U .
Now, application of Lemma 2.3 (i), yields that [u1, w]2Ud([u1, w]) = 0. Hence by

Lemma 2.1 either [u1, w]2 = 0 or d([u1, w]) = 0. If for some u1, w ∈ U, d([u1, w]) =
0 - i.e. d(u1w) = d(wu1), then by using Lemma 2.2 (i) and the fact that
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char R 6= 2, we get d(u1w) = u1d(w)+wd(u1). On the other hand let [u1, w]2 = 0,
for some u1, w ∈ U . By Lemma 2.3 (ii), we get

(3.2) (u2v − 2uvu+ vu2)d(v) = 0 , for all u, v ∈ U .
Replacing v by [u1, w] in (3.2), we get

(u2[u1, w])d([u1, w])− 2(u[u1, w]u)d([u1, w]) + ([u1, w]u2)d([u1, w]) = 0 ,

for all u ∈ U .
Again apply Lemma 2.3 (i), to get

(3.3) ([u1, w]u2)d([u1, w])− 2(u[u1, w]u)d([u1, w]) = 0 , for all u ∈ U .
Linearizing (3.3) on u and using (3.2), we have

([u1, w]uv)d([u1, w]) + ([u1, w]vu)d([u1, w])− 2{(u[u1, w]v)

+ (v[u1, w]u)}d([u1, w]) = 0 , for all u, v ∈ U .(3.4)

Replace u by 2uv1 in (3.4) and use the fact that R is 2-torsion free, to get

([u1, w]uv1v) d([u1, w]) + ([u1, w]vuv1) d([u1, w])− 2{(uv1[u1, w]v)

+ (v[u1, w]uv1)}d([u1, w]) = 0 , for all u, v, v1 ∈ U .

Further, replacing v1 by [u1, w] in the above expression and applying
Lemma 2.3 (i) together with the fact that [u1, w]2 = 0, we find that
([u1, w]u[u1, w]) v d([u1, w]) = 0 - i.e. ([u1, w]u[u1, w])Ud([u1, w]) = 0, for all
u ∈ U . Thus by Lemma 2.1 either d([u1, w]) = 0 or [u1, w]u[u1, w] = 0. If
d([u1, w]) = 0, then using the similar arguments as above we get the required
result. On the other hand if [u1, w]u[u1, w] = 0 for all u ∈ U , then again by
Lemma 2.1 we have [u1, w] = 0. Further, application of Lemma 2.2 (i) yields that
2d(u1w) = 2{u1d(w) + wd(u1)} and hence d(u1w) = u1d(w) + wd(u1). Hence in
both the cases we find that d(uv) = ud(v)+vd(u), for all u, v ∈ U . This completes
the proof of the above theorem.

Corollary. Let R be a 2-torsion free prime ring and d : R −→ R be a Jordan left
derivation. Then d is a left derivation.
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