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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 36 (2000), 287 – 295

SOME PROPERTIES OF LORENZEN IDEAL SYSTEMS

A. KALAPODI, A. KONTOLATOU AND J. MǑCKOŘ

Let G be a partially ordered abelian group (po-group). The construc-
tion of the Lorenzen ideal r a-system in G is investigated and the functorial prop-
erties of this construction with respect to the semigroup (R(G),⊕,≤) of all r-ideal
systems defined on G are derived, where for r, s ∈ R(G) and a lower bounded subset
X ⊆ G, Xr⊕s = Xr ∩ Xs. It is proved that Lorenzen construction is the natural
transformation between two functors from the category of po-groups with special
morphisms into the category of abelian ordered semigroups.

1. Introduction

The investigation of arithmetical properties of partly ordered groups (po-groups)
has its origin in the study of arithmetics of integral domains. An important exam-
ple of such arithmetical property is the notion of the Kronecker function ring in
the theory of divisibility of integral domains. This notion was introduced by W.
Krull in order to study the arithmetics of integral domains. The principal advan-
tage of the extension process which leads from an integrally closed domain A to
its Kronecker function ring K(A) is the fact that K(A) is the Bezout domain, i.e.
any finitely generated ideal is principal. This problem of embedding of an integral
domain into a greatest common divisor integral domain (GCD-domain) is in the
centre of many arithmetical problems and in the course of time it has become
more and more clear that all these arithmetical notions in integral domains have
their purely multiplicative analogues in (commutative) semigroups with cancella-
tion law, or equivalently, in po-groups. It seems that the principal tool for the
investigation of these properties in po-groups is the notion of an r-ideal which has
its origin in a paper of Lorenzen [7]. We recall that by an r-system of ideals in
a directed po-group G we mean a map X 7→ Xr (Xr is called an r-ideal) from
the set B(G) of all lower bounded subsets X of G into the power set of G which
satisfies the following conditions:

(1) X ⊆ Xr
(2) X ⊆ Yr ⇒ Xr ⊆ Yr
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(3) {a}r = a ·G+ = (a) for all a ∈ G
(4) a ·Xr = (a ·X)r for all a ∈ G.

The theory of r-ideals of po-groups seems to be a tool which enables us to establish
relationships between arithmetical properties of integral domains and the theory
of po-groups.

For any r-system r on G by Ir(G) we denote the set of all r-ideals on G. This
set is a commutative monoid with respect the operation ×r, where Xr ×r Yr =
(X · Y )r = (Xr · Yr)r for all Xr , Yr ∈ Ir(G).

The principal problem of embedding of an integral domain into a GCD-domain
can be translated into the problem of embedding of a po-group into a lattice-
ordered group (l-group). And it is well known that from r-ideal systems point of
view this problem is connected with Lorenzen ideal systems. Recall that for any
r-closed po-group G with an r-system (i.e. Xr : Xr ⊆ G+ for any finite X ⊆ G),
we can associate to the r-system r another r-system denoted by ra such that

(∀X ∈ B(G) finite ), Xra = {g ∈ G : g ·Kr ⊆ Xr ×r Kr, for some finite K ⊆ G} ,

(∀X ∈ B(G)), Xra =
⋃
K⊆X
K finite

Kra .

The principal property of this r-system ra is that the monoid of finitely generated
ra-ideals (under ra-multiplication ×ra ) satisfies the cancellation law and hence
possesses the quotient group Λr(G) which is called the Lorenzen r-group of G.
This group is a lattice ordered group if we set Λr(G)+ = {Ara/Bra : Ara ⊆ Bra}
and, moreover, Λr(G) contains G as an ordered subgroup. Hence the Lorenzen
r-system admits the principal role in investigation of the arithmetical properties.

In this note we investigate some properties of this Lorenzen r-system ra. We
are interested mostly in functorial properties of the Lorenzen map a : r 7→ ra.
For a po-group G by R(G) we denote the set of all r-systems defined on G and,
moreover, we set:

(1) Rα(G) = {r ∈ R(G) : (∀X ∈ B(G))Xr = (a) for some a ∈ G}.
(2) Rβ(G) = {r ∈ R(G) : (∀X ∈ B(G))(∃Y ∈ B(G))Xr ×r Yr = (1G)},
(3) Rγ(G) = {r ∈ R(G) : (∀X,Y, Z ∈ B(G))Xr×rYr = Xr×rZr ⇒ Yr = Zr},
(4) Rδ(G) = {r ∈ R(G) : (∀X ∈ B(G), X finite )Xr : Xr ⊆ G+},

where for every A,B ⊆ G, we set A : B = {x ∈ G : x · B ⊆ A} and G+ is
the positive cone of G. Ideal systems from these sets have special importance for
investigation of arithmetical properties of po-groups. By Rfin(G) we denote the set
of r-systems on G which are of finite character, i.e. for any X ∈ B(G) and x ∈ Xr ,
there exists a finite set K ⊆ X such that x ∈ Kr, that is, Xr =

⋃
K⊆X
K finite

Kr.On

the set R(G) an ordering can be defined such that r ≤ s ⇔ Xs ⊆ Xr , for each
X ∈ B(G). If r ≤ s, we say that s is finer than r or that r is coarser than s.
Among all r-systems in R(G), there exists one, called the v-system, which is the
coarsest one and it is defined by Xv =

⋂
X⊆(x)(x), for each X ∈ B(G).

In this paper we show that a = a(G) : Rδ(G) → Rγ(G) is a homomorphism of
ordered semigroups with respect to the semigroup operation ⊕ defined on R(G)
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such that Xr⊕s = Xr ∩Xs for r, s ∈ Rδ(G) and X ∈ B(G). Moreover, we prove
that this homomorphism is a (v, v)-homomorphism, i.e. for any W ⊆ R δ(G) we
have a(Wv) ⊆ (a(W ))v, where Wv is the v-ideal generated by W in the semigroup
(Rδ(G),⊕). Another functorial character of Lorenzen map is connected with the
map −H : Rfin(G) → Rfin(G/H), where H is a directed convex subgroup of
a po-group G. This map was introduced in [9] and it seems to be useful for
investigation of arithmetical properties of quotient integral domainsDS , where S is
a multiplicative system in D. In this paper we prove that Lorenzen map commutes
with this map−H , i.e. we prove that −H ·a(G) = a(G/H)·−H . From this it follows
that Lorenzen map a can be considered as a special natural transformation between
two functors. Namely, if G is the category of directed po-groups with morphisms
G → G/H such that H is an o-ideal of G and if S is the category of abelian
ordered semigroups with corresponding homomorphisms as morphisms then we
can find two functors Rδ,Rγ : G → S such that Rδ(G) = (Rδ(G),⊕,≤) and
Rγ(G) = (Rγ(G),⊕,≤). Then Lorenzen map defines the natural transformation
a : Rδ → Rγ .

2. Lorenzen ra-systems

We start this section with the following simple propositions which extend results
of Halter-Koch [4].

Proposition 2.1. Let G be a directed po-group. For r, s ∈ R(G) and X ∈ B(G)
we set Xr⊕s = Xr ∩Xs. Then r⊕ s ∈ R(G) and (R(G),⊕,≤) becomes a partially
ordered semigroup, which is a semilattice.

The proof can be done analogously as for r-systems in semigroups and it will
be omitted (see [4]).

Proposition 2.2. Let G,H be two directed groups and let u : G→ H be an or-
der isomorphism. Then the semigroups (R(G),⊕,≤) and (R(H),⊕,≤) are order-
isomorphic.

Proof. Let be X ∈ B(H). We set

ū : R(G)→ R(H), r 7→ ū(r),

Xū(r) = u
((
u−1(X)

)
r

)
.

The map ū is well defined (see [4], p.48). Let be r, s ∈ R(G). Since

Xū(r⊕s) = u
((
u−1(X)

)
r
∩
(
u−1(X)

)
s

)
= Xū(r)⊕ū(s) ,

there holds ū (r ⊕ s) = ū(r)⊕ ū(s). Now let w ∈ R(H). We put

r : B(G)→ 2G, Zr = u−1 ((u(Z))w) .

Obviously, r belongs to R(G) and

Xū(r) = u
(
u−1 ((u (u−1(X)

))
w

))
= u

(
u−1 (Xw)

)
= Xw ,

which means that ū(r) = w. The rest of statements can be proved simply. Thus,
the map ū is an order semigroup isomorphism. �
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Proposition 2.3. Let G be a directed po-group.

(1) The structure (Rα(G),⊕,≤) is a partially ordered semigroup, if and only
if, G is an l-group.

(2) The structure (Rβ(G),⊕,≤) is a partially ordered semigroup.
(3) The structure (Rγ(G),⊕,≤) is a partially ordered semigroup.
(4) The structure (Rδ(G),⊕,≤) is a partially ordered semigroup.

Proof. (1) Let G be an l-group. The set Rα(G) is non-empty, since, for X ⊆ G
finite, we can set Xr = (∧X). Let r, s ∈ Rα(G). Then, for any finite X ∈ B(G),
there holds

Xr⊕s = Xr ∩Xs = {a}r ∩ {b}s = {a∨ b}r⊕s ,

that is, r ⊕ s ∈ Rα(G) and Rα(G) is a subsemigroup of R(G). Conversely, if
(Rα(G),⊕) is a semigroup, then for any a, b ∈ G and any r ∈ Rα(G), we have
{a, b}r = {c}r for some c ∈ G and it is clear that, in this case, c = a ∧ b. Thus, G
is an l-group.

(2) It is well known that Rβ(G) = {v} (see [5]). But in this case we have
v ⊕ v = v.

(3) Let r, s ∈ Rγ(G) and let X,Y ∈ B(G) be finite subsets, such that Yr⊕s ⊆
Xr⊕s×r⊕sYr⊕s. Then, Y ⊆ (X · Y )r and Y ⊆ (X · Y )s and we have Yr ⊆ (X · Y )r
and Ys ⊆ (X · Y )s. Thus, according to [5], 1 ∈ Xr ∩ Xs = Xr⊕s, which means
that r ⊕ s ∈ Rγ(G).

(4) It follows directly from [5],p.25. �
As we mentioned in the introduction for any r-system r ∈ Rδ(G) we can con-

struct another r-system ra which belongs to Rγ(G), in the following way: for every
finite X ∈ B(G), the element x belongs to Xra , if and only if, there exists a finite
r-ideal Kr, such that x ·Kr ⊆ Xr ×rKr. It is clear that ra ≤ r and that for every
r, s ∈ Rδ(G), with r ≤ s, it follows ra ≤ sa. Moreover, r = ra, if and only if,
r ∈ Rγ(G). There also holds (ra)a = ra (see [4]).

We are interested in functorial properties of this map a = a(G) : Rδ(G) →
Rγ(G). The following proposition describes such property.

Proposition 2.4. Let G be a directed po-group. Then the map a = a(G) :
(Rδ(G),⊕,≤) → (Rγ(G),⊕,≤) ,a(r) = ra, is a homomorphism of ordered semi-
groups.

Proof. Let be r, s ∈ Rδ(G). Since r ⊕ s ∈ Rδ(G), the ideal system (r ⊕ s)a is
well defined. We have to prove that (r ⊕ s)a = ra ⊕ sa. There holds ra ≤ r, so
ra ⊕ sa ≤ r ⊕ s and it follows that

ra ⊕ sa ≤ (r ⊕ s)a .

Conversely, let us consider a finite X ∈ B(G) and x ∈ Xra⊕sa . Then, there exist
finite Y, Z ∈ B(G), such that x ·Yr ⊆ (X ·Y )r and x ·Zs ⊆ (X ·Z)s. Put K = Y ·Z.
Then,

x ·Kr = x · (Y ·Z)r = (x · Y )r ×r Zr ⊆ (X · Y )r ×r Zr = (X ·K)r
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and similarly x ·Ks ⊆ (X ·K)s. Thus,

x ·Kr⊕s = x ·Kr ∩ x ·Ks ⊆ (X ·K)r ∩ (X ·K)s = (X ·K)r⊕s ,

which means that x ∈ X(r⊕s)a . Hence,

(r ⊕ s)a ≤ ra ⊕ sa . �

According to [4], we can also define an ideal system on a semigroup. A very
natural one is the v-system. Recall that for a semigroup (S, ∗) and A ⊆ S such
that A ⊆ b ∗ S for some b ∈ S (A is then called lower bounded), the v-ideal
generated by A in S is the subset

Av =
⋂
b∈S

A⊆b∗S

b ∗ S .

In a classical way we can then introduce the notion of the (v, v)-morphism be-
tween semigroups with v-systems defined on them. Hence if (S, s) and (T, t) are
semigroups with r-systems defined then a homomorphism f : S → T is called a
(s, t)-morphism if for any lower bounded X ⊆ S we have f(Xs) ⊆ (f(X))t .

Proposition 2.5. The semigroup homomorphism a : (R δ(G),⊕) → (Rγ(G),⊕)
is a (v, v)-morphism, that is, for any lower bounded W ⊆ Rδ(G), we have a(Wv) ⊆
(a(W ))v.

Proof. Let W ⊆ Rδ(G) be lower bounded and let s ∈ Wv. We prove that

sa ∈ (a(W ))v =
⋂

r∈Rγ (G)
a(W )⊆r⊕Rγ (G)

r ⊕Rγ(G) .

Let r ∈ Rγ(G) be such that a(W ) ⊆ r⊕Rγ(G). Then, for any w ∈W there exists
w̄ ∈ Rγ(G), such that wa = r ⊕ w̄. Since wa ≤ w, it follows that

w = w ⊕ wa = r ⊕ (w̄ ⊕ w) ,

where w̄ ⊕ w ∈ Rδ(G). Hence, W ⊆ r ⊕ Rδ(G). Since

s ∈Wv =
⋂

u∈Rδ(G)
W⊆u⊕Rδ(G)

u⊕ Rδ(G) ,

it holds s = r ⊕ t for some t ∈ Rδ(G). Then,

sa = (r ⊕ t)a = ra ⊕ ta = r ⊕ ta ,
thus, sa ∈ r ⊕ Rγ(G). Therefore, sa ∈ (a(W ))v. �

Given two systems r1 ∈ R(G1) and r2 ∈ R(G2) we can define an ideal system
on the cartesian product G = G1 × G2, symbolized by r1 ⊗ r2, as follows: For
every X ∈ B(G), put Xr1⊗r2 = (p1(X))r1 × (p2(X))r2 , where pi, i = 1, 2, are the
usual projection maps.

In [6] it is proved that ri ∈ Rj(Gi), for i = 1, 2 and j = γ, δ respectively, implies
r1 ⊗ r2 ∈ Rj(G1 × G2), j = γ, δ respectively. Thus, for j = γ, δ respectively, we
obtain a map

−⊗ − : Rj(G1)× Rj(G2)→ Rj(G1 × G2) .
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Proposition 2.6. Let G1, G2 be two directed po-groups and G = G1×G2. Then
the following diagram commutes

Rδ(G1)× Rδ(G2) −⊗−−−−−→ Rδ(G)

a

y ya(G)

Rγ(G1)× Rγ(G2)
−⊗−−−−−→ Rγ(G)

where a(r, s) = (ra, sa).

Proof. Let us consider a finite X ∈ B(G) and x = (x1, x2) ∈ G. Let be x ∈
Xra⊗sa = (p1(X))ra × (p2(X))sa . Then, there exist finite Y1 ∈ B (G1) , Y2 ∈
B (G2), such that

x1 · (Y1)r ⊆ (p1(X))r ×r (Y1)r and x2 · (Y2)s ⊆ (p2(X))s ×s (Y2)s .

Put Y = Y1 × Y2. Then,

x · Yr⊗s = x1 · (Y1)r × x2 · (Y2)s ⊆ (X · Y )r⊗s .

and it follows that (r ⊗ s)a ≤ ra ⊗ sa.
Conversely, let x ∈ X(r⊗s)a . Then, there exists a finite Y ⊆ G1×G2, such that

x · Yr⊗s ⊆ (X · Y )r⊗s. Then, x1 · (p1(Y ))r ⊆ (p1(X) · p1(Y ))r and x2 · (p2(Y ))s ⊆
(p2(X) · p2(Y ))s and it follows that x ∈ (p1(X))ra × (p2(X))sa = Xra⊗sa . Hence,
(r ⊗ s)a = ra ⊗ sa. �

Recall that an r-system r on G is called of finite character if, for any X ∈ B(G)
we have Xr =

⋃
K⊆X
K finite

Kr. By Rfin(G) we denote the subset of R(G) consisting of

all r-systems of finite character.

Lemma 2.7. The structure (Rfin(G),⊕,≤) is a partially ordered semigroup.

Proof. Let be r, s ∈ Rfin(G) and x ∈ Xr⊕s, X ∈ B(G). Then, there exist finite
subsets K,L ⊆ X such that x ∈ Kr ∩ Ls. Put M = K ∪ L. Hence, M is a finite
subset of X and x ∈Mr ∩Ms = Mr⊕s. Therefore, r ⊕ s is of finite character. �

Let H be a directed convex subgroup of a directed po-group G with an r-system
r (i.e. H is an o-ideal of G) and let f : G −→ G/H, f(a) = aH for a ∈ G, be the
canonical homomorphism. Then for any lower bounded subset A ⊆ G/H we may
find a lower bounded subset A ⊆ G such that {aH : a ∈ A} = A. In fact, see [9],
if A is any subset of G representing A, then for a lower bound aH = α of A , for
any β ∈ A there exist hβ ∈ H and bβ ∈ A such that a ≤ bβ · hβ,bβH = β. Hence,
{bβ · hβ : β ∈ A} is a lower bounded set representing A. Then we set

ArH = Ar/H .
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Lemma 2.8 rm (See [9]). rH is an r-system of finite character on G/H.

Proof. It is clear that we have to prove only that this definition is correct. Hence,
let B be another lower bounded set of representants of A and let σ : A −→ B
be such that aH = σ(a)H for all a ∈ A. Let a ∈ Ar. Since r is of finite
character, there exists a finite subset K ⊆ A such that a ∈ Kr . Then for all k ∈ K
there exists hk ∈ H such that k = σ(k) · hk. Since H is an o-ideal, there exists
h ∈ H such that h ≤ hk for all k ∈ K. Hence, k ≥ σ(k)h and it follows that
k ∈ {σ(k)h : k ∈ K}r = h · {σ(k) : k ∈ K}r. Thus, Kr ⊆ h · {σ(k) : k ∈ K}r and
aH ∈ Br/H. The rest of the proof may be done simply. �

In this way, for any directed po-group G and any o-ideal H of G, we obtain a
map

−H : Rfin(G)→ Rfin(G/H) , r 7→ rH .

Proposition 2.9. Let G be a directed po-group and let H be an o-ideal of G.
Then the map

−H : (Rfin(G),⊕,≤)→ (Rfin(G/H),⊕,≤)

is a homomorphism of ordered semigroups.

Proof. Let be r, s ∈ Rfin(G). It is enough to prove that (r⊕s)H = rH⊕sH , since
it is clear that from r ≤ s it follows that rH ≤ sH . Let us consider A ∈ B(G/H)
and A ∈ B(G), such that A = A/H. Then,

A(r⊕s)H = Ar⊕s/H = (Ar ∩As) /H ,

ArH⊕sH = ArH ∩AsH = Ar/H ∩As/H .

Obviously, (Ar ∩As) /H ⊆ Ar/H ∩As/H, which means that rH ⊕ sH ≤ (r⊕ s)H .
Conversely, let be gH ∈ Ar/H∩As/H. Then, there exist x1 ∈ Ar , x2 ∈ As, such

that gH = x1H = x2H and there are h1, h2 ∈ H, such that x1 = g ·h1, x2 = g ·h2.
Since H is directed, there exists h ∈ H, such that h ≥ h1, h2 and therefore
g · h ≥ x1, x2. Thus,

g · h ∈ {x1}r ∩ {x2}s ⊆ Ar ∩As ,

hence, gH = (g · h)H ∈ (Ar ∩As) /H, that is (r ⊕ s)H ≤ rH ⊕ sH . �
We set Rδ,fin(G) = Rδ(G) ∩ Rfin(G) and Rγ,fin(G) = Rγ(G) ∩ Rfin(G). It

follows from the previous results that these sets are semigroups with respect to
the operation ⊕.

Theorem 2.10. Let G be a directed po-group and let H be an o-ideal of G. Then
the following diagram commutes

Rδ,fin(G)
a(G)−−−−→ Rγ,fin(G)

−H
y y−H

Rδ,fin(G/H)
a(G/H)−−−−−→ Rγ,fin(G/H)



294 A. KALAPODI, A. KONTOLATOU AND J. MǑCKOŘ

Proof. We show at first that this diagram is correct, i.e. that for any r ∈
Rδ,fin(G), we have rH ∈ Rδ,fin(G/H) and analogously for r ∈ Rγ,fin(G). Let
A ⊆ G/H be a finite set and let α ∈ G/H be such that α · ArH ⊆ ArH . Let
A be a finite set such that ArH = Ar/H, Ar = {a1, . . . , an}r, α = aH. Since
a · aiH ∈ Ar/H, for any i there exist gi ∈ Ar and hi ∈ H such that a · ai = gi ·hi.
Since H is directed, there exists h ∈ H such that h ≤ hi for all i. Then we have

{a · a1, . . . , a · an}r = {g1 · h1, . . . , gn · hn}r ⊆ {g1 · h, . . . , gn · h}r
= h · {g1, . . . , gn}r ⊆ h · {a1, . . . , an}r ,

and it follows that ah−1 ≥ 1. Hence, α ≥ 1G/H and rH ∈ Rδ,fin(G/H).
Now, let r ∈ Rγ,fin(G). According to [5]; Lemma, par.2, Chapt.2, we have

only to prove that for any finitely generated rH-ideals ArH ,BrH in G/H from
ArH ⊆ BrH × ArH it follows that 1G/H ∈ BrH . Let ArH = Ar/H, BrH = Br/H.
If ArH ⊆ (A · B)rH , then for any a ∈ A we have aH ∈ (A · B)r/H and for any
ai ∈ A = {a1, . . . , an} there exist ci ∈ (A ·B)r and hi ∈ H such that ai = ci · hi.
Since H is directed there exists h ∈ H such that h ≤ hi for all i. Then

Ar = {c1 · h1, . . . , cn · hn}r ⊆ {c1, . . . , cn}r · h ⊆ (A ·B)r · h
= Ar ×r (B · h)r .

Since r ∈ Rγ(G) , we have 1 ∈ (B · h)r and it follows that 1G/H ∈ Br/H. Finally,
we show that the diagramm commutes. Let r ∈ Rδ,fin(G). Then we have to prove
that (ra)H = (rH)a. Let A ⊆ G/H be a finite subset and let A ⊆ G be a finite
subset such that A = A/H. Then we have

A(rH)a = {gH ∈ G/H : ∃K ⊆ G/H finite , gH · KrH ⊆ ArH ×rH KrH} ,
A(ra)H = {gH ∈ G/H : ∃K ⊆ G finite , g ·Kr ⊆ Ar ×r Kr} .

Let gH ∈ A(ra)H and let g ·Kr ⊆ Ar ×r Kr for some K ⊆ G finite. Then we have
gH · (Kr/H) ⊆ (A ·K)r/H = Ar/H ×rH Kr/H and it follows that gH ∈ A(rH)a .

Conversely, let gH ∈ A(ra)H and let gH ·KrH ⊆ ArH×rHKrH for someK ⊆ G/H
finite. Let KrH = Kr/H for some K ⊆ G finite. Then we have (g · K)r/H =
gH · Kr/H ⊆ (A · K)r/H. Hence, for any b ∈ K there exists hb ∈ H and
yb ∈ (A ·K)r such that hb · g · b = yb. Since H is directed, there exists h ∈ H such
that h ≥ hb for all b ∈ K and it follows that g ·h · b ≥ yb for all b ∈ K. Therefore,
we have g · h · b ∈ {yb}r ⊆ (A ·K)r and for a = g · h we have a ·K ⊆ (A ·K)r .
Therefore, a ·Kr ⊆ Ar ×r Kr , aH = gH and gH ∈ A(ra)H . �

Let G be the category of directed po-groups with morphisms G → G/H such
that H is an o-ideal of G and let S be the category of abelian ordered semigroups
with corresponding homomorphisms as morphisms. It is clear that the definition
of G is correct since the composition of two morphisms in G is again a morphism
in G. The following corollary then follows from Theorem 2.10
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Corollary. There exist two functors Rδ,Rγ : G → S such that Rδ(G) = (Rδ(G),
⊕, ≤) and Rγ(G) = (Rγ(G),⊕,≤). Moreover, Lorenzen map a : r 7→ ra defines
the natural transformation a : Rδ → Rγ .

Proof. Let f : G → G/H be a morphism in G. Then we put Rα(u)(r) = rH for
r ∈ Rα(G) and α = δ, γ. �
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