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1. Introduction

In 1923, H. Kneser proved that the Peano existence theorem can be formulated
in this way that the set of all solutions is not only nonempty but also compact
connected (comp. also [139], [140]). Later, in 1942 N. Aronszajn improved the
Kneser theorem by showing that the set of all solutions is even Rδ-set. Evidently
the characterization of the set of fixed points for some operators implies the re-
spective result for solution sets. This paper is an attempt to give a systematic
presentation of results and methods which concern the topological structure of
fixed point sets and solution sets. In this subject there are three methods so called
Browder–Gupta method, Banach method and inverse limit method. We survey
most important results concerning the above three methods. Our considerations
concentrate on simplest cases and main ideas. We included rich literature in which
the reader can find further results.

Our paper is devoted for mathematicians and students interested in the topo-
logical fixed point theory or in the qualitative theory of differential equations and
differential inclusions.

In what follows we shall assume that all topological spaces considered in our
paper are metric.

2. Browder–Gupta type results

The famous Schauder Fixed Point Theorem or more generally the Lefschetz Fixed
Point Theorem says that there exists a fixed point theorem for some classes of
mappings. So, a natural question is to characterize the set of fixed points. The
first result, which is still a main one, was proved in 1969 by F. Browder and C.
Gupta (comp [21]). Below we shall present a slight generalization of the above
mentioned result.

To do this we need some topological notions (for details see: [69]).

Definition 2.1. A space X is called contractible provided there exists a (contin-
uous) homotopy h : X × [0, 1] → X such that:

h(x, 0) = x for every x ∈ X

and
h(x, 1) = x0 for every x ∈ X and some fixed x0 ∈ X .

Definition 2.2. A space X is called an absolute retract (written X ∈ AR) pro-
vided that for every space Y , its closed subset B ⊂ Y and continuous map
f : B → X there exists a continuous extension f̃ : Y → X of f over Y , i.e.
f̃(x) = f(x) for every x ∈ B.

Definition 2.3. A space X is called an Rδ-set provided that there exists a se-
quence of compact nonempty contractible spaces {Xn} such that:

Xn+1 ⊂ Xn for every n;(2.1)
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X =
∞⋂

n=1

Xn.(2.2)

Let us remark (comp. [69]) that a space X ∈ AR if and only if X is a convex
subset W of a normed space E orX is homeomorphic to a retract1 of a convex sub-
set W ⊂ E. So any absolute retract is contractible. If we restrict our considerations
to compact spaces then we have:

AR ⊂ CONTRACTIBLE ⊂ Rδ

Note that any Rδ-set is a compact nonempty connected space which is acyclic
with respect to the Čech homology functor (comp. again [69]), i.e. it has the same
homology as the one point space {x0}.

Definition 2.4. Let f : X → Y be a continuous function and let y ∈ Y . We shall
say that f is proper at the point y provided that there exists ε > 0 such that for
any compact set K ⊂ B(y, ε) the set f−1(K) is compact, where B(y, ε) is the open
ball in Y with the center at y ∈ Y and radius ε.

Recall that f : X → Y is called proper provided that for any compact K ⊂ Y
the set f−1(K) is compact. Of course any proper map f : X → Y is proper at
every point y ∈ Y .

Now we are able to formulate our reformulation of the Browder–Gupta theorem:

Theorem 2.1. Let E be a Banach space and f : X → E be a continuous map
such that the following conditions are satisfied:

(2.1.1) f is proper at 0 ∈ E,
(2.1.2) for every ε > 0 there exists a continuous map fε : X → E for which we

have:
(i) ‖f(x) − fε(x)‖ < ε for every x ∈ X,

(ii) the map f̃ε : f−1
ε (B(0, ε)) → B(0, ε), f̃ε(x) = fε(x) for every x ∈

f−1
ε (B(0, ε)), is a homeomorphism.

Then the set f−1({0}) is an Rδ-set.

Sketch of proof. First, we have to prove that f−1({0}) is nonempty. We take for
every ε = 1/n, n = 1, 2 . . . a map fn : X → E which satisfies (2.1.2). In view of
(2.1.2)(ii) for every n we can find a point xn ∈ X such that fn(x) = 0. It follows
that:

‖f(xn)‖ = ‖f(xn) − fn(xn)‖ <
1

n
.

So the sequence {f(xn)} is convergent to the point 0 ∈ E. Since f is proper
at 0 ∈ E, we can assume without loss of generality that the sequence {xn} is

1 A space A is a retract of W if there exists a continuous function r : W → A such that
r(x) = x for every x ∈ A (we have assumed that A ⊂ W ).
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convergent to a point x ∈ E. Now from the continuity of f it follows that f(x) = 0
and consequently f−1({0}) 6= ∅.

Now let us denote by S the set f−1({0}). It follows from (2.1.1) that S is
compact. Moreover, we have proved that S 6= ∅. For every ε = 1/n, n = 1, 2 . . .
let An = fn(S) where fn are chosen according to (2.1.2). Then from (2.1.2)(i) we
deduce that An ⊂ B(0, 1/n). Note that {An} is a sequence of compact sets. We
let:

Cn = conv(An).

It follows from the Mazur’s Lemma (comp. [69] or [90]) that Cn is a compact convex
subset of B(0, 1/n). Now by using (2.1.2)(ii) we deduce that set Dn = f−1

n (Cn) is
an absolute retract (because it is homeomorphic to the convex set Cn). Therefore
we can proceed in the same way as in the proof of Theorem 7 ([21]) and our
theorem follows from Lemma 5 in [21].

Note that assumptions in 2.1 are analogous to Theorem 7 ([21]).
Let us remark also that Theorem 2.1 has exactly the same proof if we replace

the Banach space E by an arbitrary Fréchet space and open balls by convex sym-
metric open neighbourhoods of the zero point 0 ∈ E. We shall show it in the
multivalued case.

Now, we are going to explain the scope of fixed point interpretation of Theorem
2.1.

Assume that X ⊂ E and F : X → E is a given mapping. We let f : X → E,
f(x) = x− F (x). Then f is called the field associated with F . We have:

f−1({0}) = Fix(F ) = {x ∈ X | F (x) = x}.

Observe that if Fε : X → E is an ε-approximation of F then fε (fε(x) = x−Fε(x))
is an ε-approximation of f (f(x) = x− F (x)).

It is well known that if F is a compact map or k-set contraction or condensing
map which has ε-approximation of the same type then all assumptions of Theorem
5.2 are satisfied for the field f f(x) = x− F (x)) associated with F .

We would like to conclude that Theorem 5.2 contains as a special case many
results, the called generalizations of the Browder–Gupta theorem (com. [21], [38],
[39], [54], [55], [56], [101], [102], [141], [147], [158], [175], [176]).

There is a natural and essential problem to formulate an appropriate multival-
ued version of the Browder–Gupta Theorem. In this order see: [6], [12], [19], [34],
[35], [61], [62], [60], [75], [84], [88], [101], [123], [124], [54]. The most general result
was obtained in 1999 by G. Gabor (see [60]). We shall present below the Gabor
result.

To do this recall some notation. In what follows the symbol ϕ : X ( Y is
reserved for multivalued mappings. In this Section we shall assume that for every
x ∈ X the set ϕ(x) is compact nonempty.

A map ϕ : X ( Y is called upper semicontinuous (u.s.c.) provided that for
every open U ⊂ Y the set {x ∈ X | ϕ(x) ⊂ U} is open; ϕ is called lower semicon-
tinuous (l.s.c.) provided that for every open U ⊂ Y the set:

{x ∈ X | ϕ(x) ∩ U 6= ∅}
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is open; ϕ is continuous, if ϕ is both u.s.c. and l.s.c.
A map ϕ : X ( Y is proper provided that for every compact K ⊂ Y the set

{x ∈ X | ϕ(x) ∩K 6= ∅}

is compact. In what follows for given ϕ : X ( Y and A ⊂ Y we let:

ϕ−1(A) = {x ∈ X | ϕ(x) ⊂ A},

ϕ−1
+ (A) = {x ∈ X | ϕ(x) ∩A 6= ∅}.

Assume that X ⊂ Y and ϕ : X ( Y is a given multivalued map. We let

Fix(ϕ) = {x ∈ X | x ∈ ϕ(x)}.

Now we are able to formulate the multivalued version of the Browder–Gupta
Theorem (see: [60]).

Theorem 2.2. Let X be a metric space, E a Fréchet space, {Uk} a base of open
convex symmetric neighbourhoods of the origin in E, and let ϕ : X ( E be an
u.s.c. proper map with compact values. Assume that there is a sequence of compact
convex valued u.s.c. proper maps ϕk : X → E such that

(i) ϕk(x) ⊂ ϕ(N1/k(x)) + Uk, for every x ∈ X,

(ii) if 0 ∈ ϕ(x), then ϕk(x) ∩ Uk 6= 0,
(iii) for every k ≥ 1 and every u ∈ E with u ∈ Uk the inclusion u ∈ ϕk(x) has an

acyclic set of solutions.

Then the set S = ϕ−1(0) is compact and acyclic2.

Proof. We show that S is nonempty. To this end, notice that for every k ≥ 1 we
can find xk ∈ X such that 0 ∈ ϕk(xk). Assumption (i) implies that there are zk ∈
N1/k(xk), yk ∈ ϕk(zk) and uk ∈ Uk such that 0 = yk +uk. Thus yk → 0. Consider

the compact set K = {yk} ∪ {0}. Since ϕ is proper, the set ϕ−1
+ (K) is compact.

Moreover, {zk} ⊂ ϕ−1
+ (K). Thus we can assume, without loss of generality, that

{zk} converges to some point x ∈ X . By the upper semicontinuity of ϕ, we have
0 ∈ ϕ(x) and, what follows, S 6= ∅.

Since ϕ is proper, the set S is compact. We show that it is acyclic. By assump-
tion (ii), the set Ak = ϕ−1

k+(Uk) is nonempty. Consider the map ψ : Ak ( Uk,

ψk(x) = ϕk(x) ∩ Uk. Since Uk is contractible and ψk is u.s.c. convex valued sur-
jection (see (iii)), we can apply Corollary 3.12 in [60] to obtain that Ak is acyclic.

Now we show that for every open neighbourhood U of S in X there exists
k ≥ 1 such that Ak ⊂ U . Indeed, assume on the contrary that there is an open
neighbourhood U of S in X such that Ak 6⊂ U or every k ≥ 1. It means that
there are xk ∈ Ak with xk 6∈ U and, consequently, there are yk ∈ ϕk(xk) such that

2 i.e. the Čech homology of S are the same as a singleton {x0}.



348 LECH GÓRNIEWICZ

yk ∈ Uk. Assumption (i) implies that there are zk ∈ B(xk, 1/k), vk ∈ ϕ(zk) and
uk ∈ Uk such that yk = vk + uk. Therefore, vk = yk − uk ∈ 2Uk which implies
that vk → 0. Consider the compact set K0 = {vk}∪{0}. Since ϕ is proper, we can
assume that {zk} and, consequently, {xk} converges to some point x ∈ X . Thus
x ∈ S. On the other hand, x 6∈ U , a contradiction and our theorem follows from
Lemma 3.10 in [60].

Remark 2.1. It is easy to see that in the above result we can assume that X is a
subset of a Fréchet space. Then, instead of neighbourhoods, we can consider sets
x+ Vk, where {Vk} is the base of open convex symmetric neighbourhoods of the
origin.

As a consequence of Theorem 3.6 and properties of a topological degree of u.s.c.
compact convex valued maps (see e.g. [69] or [104]) one can obtain the following
theorem generalizing the result of Czarnowski in [39].

Theorem 2.3. Let Ω be an open subset of a Fréchet space E, {Uk} the base
of open convex symmetric neighbourhoods of the origin in E, and Φ : Ω ( E
a compact u.s.c. map with compact convex values. Suppose that x 6∈ Φ(x) for
every x ∈ ∂Ω, and the topological degree deg(j − Φ,Ω, 0) of (j − Φ) is different
from zero, where j : Ω → E is an inclusion. Assume that there exists a sequence
{Φk : Ω( E} of compact u.s.c. maps with compact convex values such that

(i) Φk(x) ⊂ Φ(x+ Uk) + Uk, for every x ∈ Ω,
(ii) if x ∈ Φ(x), then x ∈ Φk(x) + Uk,
(iii) for every u ∈ Uk the set Sk

u of all solutions to the inclusion x−Φk(x) ∋ u is
acyclic or empty, for every n > 0.

Then the fixed point set Fix(Φ) of Φ is compact and acyclic.

Proof. Define the maps ϕ, ϕk : Ω ( E, ϕ = j − Φ, ϕk = j − Φk. One can check
that ϕ, ϕk are proper maps. To apply Theorem 2.2 it is sufficient to show that,
for sufficiently big k and for every u ∈ Uk the set Sk

u is nonempty.
For each k ≥ 1 define the map Ψ : Ω ( E, Ψ(x) = Φk(x) +u, for every x ∈ Ω.

We prove that, for sufficiently big k, deg(j − Ψk, Ω, 0) 6= 0 which implies, by the
existence property of a degree, a nonemptiness of Sk

u .
Since ϕ is a closed3 map (see e.g. [69]), we can find, for sufficiently big k, a

neighbourhood Uk of the origin such that ϕ(∂Ω) ∩ Uk = ∅.
Consider the following homotopy Hk : Ω × [0, 1]( E, H(x, t) = (1− t)Φ(x) +

tΨk(x). We show that

Zk = {x ∈ ∂Ω | x ∈ Hk(x, t) for some t ∈ [0, 1]} = ∅

for sufficiently big k. Suppose, on the contrary, that there are a subsequence of
{Hk} (we denote it also by {Hk}), points xk ∈ ∂Ω, and numbers tk ∈ [0, 1]

3 ϕ is closed provided for every closed K ⊂ Ω the set Φ(K) =
S

x∈K Φ(x) is a closed
subset of E.
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such that xk ∈ Hk(xk, tk), that is xk = (1 − tk)yk + tksk + tku, for some yk ∈
Φ(xk) and sk ∈ Φ(xk). Assumption (i) implies that there are zk ∈ xk + Uk and
vk ∈ Φ(zk) such that sk ∈ vk + Uk. By the compactness of Φ, we can assume
that yk → y and vk → v. Therefore, sk → v. Moreover, we can assume that
tk → t ∈ [0, 1]. This implies that xk → x0 = (1 − t)y + tv + tu or, equivalently,
that 0 = (1 − t)(x0 − y) + t(x0 − v) − tu. But by the upper semicontinuity of
ϕ, we obtain that x0 − y ∈ ϕ(x0) and x0 − v ∈ ϕ(x0). Since ϕ is convex valued,
0 ∈ (1 − t)ϕ(x0) + tϕ(x0) − tu ⊂ ϕ(x0) − tu. This implies that ϕ(x0) ∩ Uk 6= ∅, a
contradiction.

Now, by the homotopy property of a topological degree, one obtains

deg(Ψk, Ω, 0) = deg(Φ,Ω, 0) 6= 0

which ends the proof of the theorem.

3. Aronszajn type results

In 1890 Peano [140] showed that the Cauchy problem

ẋ(t) = g(t, x(t)) for t ∈ [0, a],
x(0) = x0,

}
(3.1)

where g : [0, a]× Rn → Rn is continuous, has local solutions although the unique-
ness property does not hold in general.

This observation became a motivation for studying the structure of the set S
of solutions to (3.1). Peano himself showed that, in the case n = 1, all sections
S(t) = {x(t) | x ∈ S} are nonempty, compact and connected (that is, a continuum)
in the standard topology of the real line, for t in some neighbourhood of t0. Kneser
generalized this result in 1923 [89] into the case of arbitrary n. In 1928 Hukuhara
[80] proved that S is a continuum in the Banach space of continuous functions
with the sup norm.

A more precise characterization of S was found in 1942 by Aronszajn [10],
who showed that S is an Rδ-set, i.e. it is homeomorphic to the intersection of a
decreasing sequence of compact contractible spaces (or compact absolute retracts).
This implies that S is acyclic which means that, without a lipschitzianity of the
right hand side f of (3.1), the set S of solutions (3.1) may not be a singleton but,
from the point of view of algebraic topology, it is equivalent to a point, in the sense
that it has the same homology groups as one point space {x0}.

Aronszajn’s result was improved by several authors (see: [1], [3], [4]–[6], [9],
[14], [15], [16], [17], [19], [23], [24], [32], [34], [13], [38]–[39], [40], [42]–[44], [46]–[47],
[48]–[49], [53], [54], [60], [66], [68], [73], [75], [77]–[78], [97]–[98], [101], [121]–[138],
[156]–[168], [171]–[173], [174]–[178]) but always a main tool to do it is a version of
the Browder–Gupta theorem. We shall sketch it in the case of problem (3.1) first
for the singlevalued case and later for the multivalued case.

The singlevalued case follows immediately from the Browder–Gupta Theorem
and the Szufla’s type lemma (see [164] or [68]) which we shall present below.

The following result is a slight reformulation of Lemma 1 in [164].
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Theorem 3.1. Let E = C([0, a],Rm ) be the Banach space of continuous maps
with the usual max-norm and let X = K(0, r) = {u ∈ E | ‖u‖ ≤ r} be the closed
ball in E.

If F : X → E is a compact map and f : X → E is a compact vector field
associated with F , i.e. f(u) = u − F (u), such that the following conditions are
satisfied:

(3.1.1) there exists an x0 ∈ Rm such that F (u)(0) = x0, for every u ∈ K(0, r);
(3.1.2) for every ε ∈]0, a] and for every u, v ∈ X, if u(t) = v(t) for each t ∈ [0, ε],

then F (u)(t) = F (v)(t) for each t ∈ [0, ε];

then there exists a sequence fn : X → E of continuous proper mappings satisfying
conditions (2.1.1)–(2.1.2) with respect to f .

Sketch of proof. For the proof it is sufficient to define a sequence Fn : X → E of
compact maps such that:

F (x) = lim
n→∞

Fn(x), uniformly in x ∈ X ,(i)

and

fn : X → E, fn(x) = x− Fn(x), is a one-to-one map.(ii)

To do this we additionally define the mappings rn : [0, a] → [0, a] by putting:

rn(t) =





0, t ∈

[
0,
a

n

]
,

t−
a

n
, t ∈

(
a

n
, a

]
.

Now we are able to define the sequence {Fn} as follows:

Fn(x)(t) = F (x)(rn(t)), for x ∈ X, n = 1, 2, . . . .(iii)

It is easily seen that Fn is a continuous and compact mapping, n = 1, 2, . . . . Since
|rn(t) − t| ≤ a/n we deduce from compactness of F and (iii) that

lim
n→∞

Fn(x) = F (x), uniformly in x ∈ X.

Now we shall prove that fn is a one-to-one map. Assume that for some x, y ∈ X
we have

fn(x) = fn(y).

This implies that
x− y = Fn(x) − Fn(y).

If t ∈ [0, a/n] then we have

x(t) − y(t) = F (x)(rn(t)) − F (y)(rn(t)) = F (x)(0) − F (y)(0).
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Thus, in view of (3.1.1), we obtain

x(t) = y(t), for every t ∈ [0, a/n].

Finally, by successively repeating the above procedure n times we infer that

x(t) = y(t), for every t ∈ [0, a].

Therefore fn is a one-to-one map and the proof is complete.

Now from Theorems 2.1 and 3.1 we get:

Corollary 3.1. Assume that f and F are as in Theorem (3.1). Then f−1(0) =
Fix(F ) is an Rδ-set.

Now we come back to problem (3.1). We shall denote by S(g, 0, x0) the set of
all solutions of the Cauchy problem (3.1).

Theorem 3.2 (Aronszjan). 4 Let g : [0, a]× Rn → Rn be a mapping such that:

(3.2.1) g( · , x) is a measurable function for every x ∈ Rn ,
(3.2.2) g(t, · ) is a continuous function for every t ∈ [0, a],
(3.2.3) there exists a Lebesgue integrable function α : [0, a] → [0,+∞) such that:

‖g(t, x)‖ ≤ α(t) for every (t, x) ∈ [0, a] × Rn .

Then S(g, 0, x0) is an Rσ-set.

Sketch of proof. We define the integral operator:

F : C([0, a],Rn ) → C([0, a],Rn )

by putting

F (u)(t) = x0 +

∫ t

0

g(τ, u(τ)) dτ for every u and t.(3.2)

Then Fix(F ) = S(g, 0, x0). It is easy to see that F satisfies all the assumptions
of Theorem 2.1. Consequently we deduce Theorem 3.2 from 3.1 and the proof is
complete.

Now, let g be a Carathéodory map with linear growth. Assume further that
u ∈ S(g, 0, x0). Then we have (cf. (3.2.1))

u(t) = F (u)(t) = x0 +

∫ t

0

g(τ, u(τ)) dτ,

4 A mapping g : [0, a] × Rn → Rn satisfying conditions (3.2.1) and (3.2.2) will be called
a Carathéodory function; if g satisfies (3.2.3) then it is called integrably bounded.
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and consequently

‖u(t)‖ ≤ ‖x0‖ +

∫ a

0

µ(τ) dτ +

∫ t

0

µ(τ)‖u(τ)‖ dτ.

Therefore from the well-known Gronwall inequality we get

‖u(t)‖ ≤ (‖x0‖|γ) exp(γ) for every t,

where γ =
∫ a

0 µ(τ) dτ . We let

g0 : [0, a] × Rn → Rn

by putting

g0(t, x) =

{
g(t, x), if ‖x‖ ≤M and t ∈ [0, a],
g(t,Mx/‖x‖), if ‖x‖ ≥M and t ∈ [0, a],

where M = (‖x0‖ + γ) exp(γ).

Proposition 3.1. If g is a Carathéodory map with linear growth, then

(3.1.a) g0 is Carathéodory and integrably bounded; and
(3.1.b) S(g0, 0, x0) = S(g, 0, x0).

The proof of Proposition 3.1 is straightforward (cf. [68], [69], [91]).
Now from Theorem 3.2 and Proposition 3.1 we obtain immediately:

Corollary 3.2. If g : [0, a] × Rn → Rn is a Carathéodory map and has linear
growth, then S(g, 0, x0) is an Rσ-set.

We recall the following classical result:

Theorem 3.3. If g : [0, a] × Rn → Rn is a mapping which is integrably bounded
and satisfies condition (3.41) and it is locally Lipschitz with respect to the second
variable5, then S(g, 0, x0) is an Rδ-set.

In 1986 F. S. De Blasi and J. Myjak (see [47]) generalized Aronszajn’s result
for differential inclusions with u.s.c. convex valued right hand sides. Below we shall
show the method presented in [68] (comp. also [101], [102]). For the simplicity we
shall consider the following Cauchy problem:

x′(t) ∈ ϕ(t, x(t)),
x(0) = x0,

}
(3.3)

where ϕ : [0, a]×Rn ( Rn is an u.s.c. bounded map with compact convex values.
We shall denote by S(ϕ; 0, x0) the set of all solutions of (3.3). In what follows

we keep all assumptions on ϕ contained in (3.3).
First we have:

5 Such a mapping g is called integrably bounded measurable-locally Lipschitz.
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Proposition 3.2. If ϕ possesses a measurable-locally Lipschitz selector f : [0, a]×Rn → Rn , (written f ⊂ ϕ ), i.e. f(t, x) ∈ ϕ(t, x) for every (t, x) ∈ [0, a]×Rn , then
S(ϕ; 0, x0) is contractible.

Sketch of proof. Let f ⊂ ϕ be measurable-locally Lipschitz selector. By Theorem
3.3 the following Cauchy problem:

x′(t) = f(t, x(t)),
x(t0) = u0,

}
(3.4)

has exactly one solution for every t0 ∈ [0, a] and u0 ∈ Rn . For the proof it is
sufficient to define a homotopy h : S(ϕ, 0, x0) × [0, 1] → S(ϕ, 0, x0) such that

h(x, s) =

{
x for s = 1 and x ∈ S(ϕ, 0, x0),
x for s = 0,

where x = S(ϕ, 0, x0) is exactly one solution given for the Cauchy problem (3.4).
We put

h(x, s)(t) =

{
x(t), 0 ≤ t ≤ sa,
S(f, sa, x(sa))(t), sa ≤ t ≤ a.

Then h is a continuous homotopy contracting S(ϕ, 0, x0) to the point S(ϕ, 0, x0).

Observe that if ϕ : [0, a]×Rn ( Rn is an intersection of the decreasing sequence
ϕk : [0, a] × Rn ( Rn i.e. ϕ(t, x) =

⋂
∞

k=1 ϕk(t, x) and ϕk+1(t, x) ⊂ ϕk(t, x) for
almost all t ∈ [0, a] and for all x ∈ Rn , then

S(ϕ, 0, x0) =
∞⋂

k=1

S(ϕk, 0, x0).

We have (see: [102] or [69]):

Theorem 3.4. Assume that ϕ is as in (3.3). Then there exists a decreasing se-
quence ϕk : [0, a]×Rn ( Rn of compact convex valued and bounded u.s.c. mappings
such that:

(3.4.1) ϕ(t, x) =
⋂
∞

k=1 ϕk(t, x) for every t, x) ∈ [0, a] × Rn ,
(3.4.2) every ϕk possesses a measurable locally Lipschitz selector fk ⊂ ϕk.

Now we are in the position to prove the following Aronszajn-type result:

Theorem 3.5. Under assumptions of (3.3) the set S(ϕ; 0, x0) is Rδ.

Sketch of proof. Consider the sequence {ϕk} according to (3.4). Then:

S(ϕ; 0, x0) =
∞⋂

k=1

S(ϕk, 0, x0).

In view of Proposition 3.2 the set S(ϕk; 0, x0) is contractible. Since ϕk is u.s.c.
bounded with convex compact values if follows that S(ϕk; 0, x0) is compact non-
empty (see for example [69]). Therefore S(ϕ; 0, x0) is an intersection of compact
nonempty and contractible spaces and hence S(ϕ; 0, x0) is Rδ.
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Remark 3.1. Theorem (3.5) remains true for ϕ a Carathéodory map with sublinear
growth (see: [69] or [47]).

Above we have showed only an application of Browder-Gupta Theorem to the
Cauchy problem for the first order ordinary differential equations (inclusions) in
the Euclidean space Rn . We would like to point out that another applications are
possible, namely:

(A) to the Cauchy problem in Banach spaces on compact or noncompact intervals
(see: [2], [4], [9], [18], [32], [34], [35], [38], [39], [40], [49], [50], [53], [55], [56],
[59], [61], [62], [66]–[68], [77], [78], [88], [97], [98], [94]–[96], [121]–[138], [152],
[174], [175], [171]–[173]);

(B) to higher order differential equations or inclusions (see: [14], [15], [22], [16],
[29], [34], [47], [48], [107], [108], [156]–[168], [169], [170]);

(C) to more general boundary value problems both ordinary differential equations
and inclusions (see: [5], [6], [12], [17], [72], [13], [93], [149]–[151], [110]–[117]);

(D) to integral equations and inclusions (see: [1], [23]–[25], [87], [171], [172]).

We shall end this section by showing you another possibility. We mean differen-
tial equations (inclusions) on compact subsets of Rn or more generally of Banach
spaces. There are only few papers devoted this problem (see: [17], [13], [54], [72],
[66], [121]–[123] [143]). For simplicity we shall restrict our considerations to subsets
of Rn (for the Banach case see: [13], [72] and [54]).

Let K be a compact subset of Rn . For a point x ∈ K by TxK we shall denote
the Bouligand tangent cone to K at x.

We have (see: [66] or [69]):

TxK =

{
y ∈ Rn

∣∣∣∣ lim inf
t→0+

dist(x+ ty,K)

t
= 0

}
.

A compact subset K ⊂ Rn is called a proximate retract provided there exists
an open neighbourhood U of K in Rn and a retraction r : U → K such that:

‖x− r(x)‖ = dist(x,K), for every x ∈ U.

It is well known that the class of all proximate retracts is quite rich, in particular
it contains convex sets and C2-manifolds.

Now, let ϕ : [0, a] ×K ( Rn be an u.s.c. map which is bounded and compact
convex valued. We shall assume also the following:

ϕ(t, x) ∩ TxK 6= ∅, for every (t, x) ∈ [0, a] ×K.(3.5)

For such a map ϕ we consider the following Cauchy problem:

x′(t) ∈ ϕ(t, x(t)),
x(0) = x0, x0 ∈ K,

}
(3.6)

where solutions are considered as absolutely continuous functions x : [0, a] → Rn

such that x(t) ∈ K for every t ∈ [0, a].
Let SK(ϕ; 0, x0) denote the set of all solutions of (3.6).
In 1992 S. Plaskacz proved (see: [143])
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Theorem 3.6. Under all of the above assumptions the set SK(ϕ; 0, x0) is Rδ.

For the proof of Theorem 3.6 we recommend [143] or [66] or [69].

Remark 3.2. There exists a recent result of R. Bader and W. Kryszewski ([13])
where Theorem 3.6 is taken up for regular sets in Hilbert spaces and Carathéodory-
type mappings.

4. Fixed points of multivalued contractions and applications

The Banach contraction principle is one of few fixed point theorems, where, besides
the existence, some further information is included, namely how the unique fixed
point can be successively approximated with arbitrary accuracy. In the case of a
multivalued contraction we have the set of fixed points. So a natural question of its
topological characterization arises. In this section we shall review most important
results of this type. For more details we recommend: [20], [7], [37], [54], [61], [70],
[71], [105], [144], [145].

For a metric space (X, d), by C(X) we shall denote the family of all closed
nonempty subsets of X For A ∈ C(X) and ε > 0, we let

0ε(A) = {x ∈ X | ∃y ∈ A, d(x, y) < ε}.

Let A,B ∈ C(X). We define the Hausdorff distance dH(A,B) between A and B
as follows:

dH(A,B) = inf{ε > 0 | A ⊂ Oε(B) and B ⊂ Oε(A)}.

It is well known that dH(A,B) can be equal to infinity. If we restrict our consid-
erations to the family BC(X) of all bounded closed and nonempty subsets of X ,
then dH is a metric BC(X), the so called Hausdorff metric.

Let E be a Banach space and A, B, C, D ∈ BC(E). It is easy to see that:

dH(A+B,C +D) ≤ dH(A,C) + dH(B,D), (i)
dH({x+A}, {y}) = dH({x}, {y −A}), (ii)

dH(tA, tB) ≤ dH(A,B), for t ∈ [0, 1], (iii)

where A + B = {x+ y | x ∈ A and y ∈ B} is the algebraic sum of A and B and
tA = {tx | x ∈ A}.

Recall that a mapping F : Y → BC(X) is called Hausdorff-continuous if it is
continuous w.r.t. the metric d in Y and dH in BC(X).

F is called measurable if, for every closed U ⊂ X , the set F−1
+ (U) is measurable.

Proposition 4.1 ([69]). A map F : Y → BC(X) is Hausdorff-continuous with
compact values if and only if F is both u.s.c. and l.s.c.

Note that, for F : Y → BC(X), the Hausdorff continuity implies only l.s.c.
(see again [69]). It is easy to see that the following proposition is true.
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Proposition 4.2. If F : Y → BC(X) is l.s.c. with connected values and F (Y ) =⋃
y∈Y F (y) = X, then X is connected, provided Y is connected.

If what follows we need some additional topological notions. A metric space
(X, d) is Cn (i.e. n-connected) if, for every k ≤ n, every continuous map from the
k-sphere Sk into X is null homotopic (i.e. homotopic to a constant map). Namely,

it means that every continuous map f : Sk → X has a continuous extension
over the closed ball Kn+1, where Sn and Kn+1 stand for the unit sphere and the
unit closed ball in the Euclidean (n+ 1)-space Rn , respectively.

A space X is C∞ (i.e. infinitely connected), if it is Cn, for every n. A collection
ε ⊂ 2X is equi-LCn if, for every y ∈

⋃
{B | B ∈ ε}, every neighbourhood V of y

in X contains a neighbourhood W of y in X such that, for all B ∈ ε and k ≤ n,
every map from Sk into W ∩ B is null-homotopic over V ∩ E (i.e. a homotopy
taking values in V ∩E). We shall also make use of the following (comp. [69]).

Theorem 4.1 (Michael’s Selection Theorem). Let X be a metric space and
Y be a complete metric space. Let F : X → BC(Y ) be a l.s.c. map such that the
topological dimension dimX ≤ n + 1 and F (x) is Cn and for all x ∈ X with the
collection {F (x) | x ∈ X} equi-LCn. Then F has a continuous selection.

A mapping F : X → C(X) is called a multivalued contraction if there exists
α < 1 such that:

dH(F (x), F (y)) < αd(x, y), for every x, y ∈ X .

In 1970, H. Covitz and S. B. Nadler proved:

Theorem 4.2 ([37]). If X is a complete metric space and F : X → C(X) is a
contraction, then Fix(F ) = {x ∈ X | x ∈ F (x)} 6= ∅.

Let F : X → C(X) be a contraction. Obviously, the set Fix(F ) is not a
singleton, in general. For example, let F (x) = A, for every x ∈ A, be a constant
map. Evidently, F is a contraction and Fix(F ) = A.

The following theorem is due to B. Ricceri ([145]).

Theorem 4.3. Let E be a Banach space and let F : E → C(E) be a contraction
such that F (x) is convex, for every x ∈ E. Then Fix(F ) is a retract of E.

In 1991, A. Bressan, A. Cellina and A. Fryszkowski proved:

Theorem 4.4 ([20]). If E = L1(T ) is the space of integrable functions on a
measure space T and F : E → BC(E) is a contraction with decomposable6 values,
then Fix(F ) is a compact AR-space.

6 A ⊂ L1(T ) is decomposable if, for every γ, µ ∈ A and a measurable subset J ⊂ T , we
have:

(γ · χJ + µχT\J ) ∈ A,

where χS is the characteristic function of the subset S ⊂ T .
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In view of [70] and [71], we would like to generalize both 4.4 and 4.5.
A simple argument shows that the following proposition [71], Proposition 1.1

is true.

Proposition 4.3. Let X be a separable metric space and let X0 be a nonempty
closed subset of X. If X ∈ AR and, for any separable space Y and any nonempty
closed set Y0 ⊂ Y , every continuous function f0 : Y0 → X0 admits a continuous
extension over Y , then X0 ∈ AR.

Let (T, F, µ) be a finite, positive, nonatomic measure space and let (E, ‖ · ‖)
be a Banach space. We denote by L1(T,E) the Banach space of all (equivalent
classes of) µ-measurable functions u : T → E such that the function t→ ‖u(t)‖ is
µ-integrable, equipped with the norm

‖u‖L1(T,E) =

∫

T

‖u(t)‖ dµ.

We always assume that the space L1(T,E) is separable. The multifunction F :
X → C(X) is called Lipschitzean if there exists a real number L ≥ 0 such that
dH(F (x′), F (x′′)) ≤ Ld(x′, x′′), for all x′, x′′ ∈ X . If L < 1, we say that F is a mul-
tivalued contraction. It can be easily checked that any Lipschitzean multifunction
is l.s.c. The following property of Lipschitz multifunctions will play an important
role in proving the main result of this section.

Proposition 4.4. Let (X, d) be a metric space and let F : X → C(X) be a
Lipschitzean multifunction. Set, for every x ∈ X, ϕ(x) = d(x, F (x)). Then the
function ϕ : X → [0,+∞) is Lipschitzean.

Proof. Let L ≤ 0 be such that dH(F (x′), F (x′′)) ≤ Ld(x′, x′′), for all x′, x′′ ∈ X .
Pick x′, x′′ ∈ X and choose ε > 0. Owing to the definition of ϕ, there exists
z′ ∈ F (x′) fulfilling

−ϕ < −d(x′, z′) + ε.

Using the inequality d(z′, F (x′′)) ≤ Ld(x′, x′′), we can find z′′ ∈ F (x′′) such that,

d(z′, z′′) < Ld(x′, x′′) + ε.

Therefore,

e(x′′) − e(x′) < d(x′′, F (x′′)) − d(x′, z′) + ε
≤ d(x′′, z′′) − d(x′, z′) + ε < (L+ 1)d(x′, x′′) + 2ε.

Since ε is arbitrary, we actually have

ϕ(x′′) − ϕ(x′) ≤ (L+ 1)d(x′, x′′)

and, interchanging x′ with x′′,

ϕ(x′) − ϕ(x′′) ≤ (L+ 1)d(x′, x′′).

This completes the proof.
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We now recall the notion of the Michael family of subsets of a metric space
[71], Definition 1.4.

Definition 4.1. Let X be a metric space and let M(X) be a family of a closed
subsets of X , satisfying the following conditions:

(4.1.1) X ∈ M(X), {x} ∈ M(X), for all x ∈ X , and, if {Ai}i∈I is any sub-class
of M(X), then

⋂
i∈I Ai ∈M(X);

(4.1.2) for every k ∈ N and every x1, x2, . . . , xk ∈ X , the set

A(x1, x2, . . . , xk) =
⋂

{A | A ∈M(X), x1, x2, . . . , xk ∈ A}

is infinitely connected;
(4.1.3) to each ε > 0, there corresponds δ > 0 such that, for any A ∈M(X), any
k ∈ N, and any x1, x2, . . . , xk ∈ Oδ(A), one has A(x1, x2, . . . , xk) ⊆ Oε(A);

(4.1.4) A ∩B(x, r) ∈M(X), for all A ∈M(X), x ∈ X , and r > 0;

then we say that M(X) is the Michael family of subsets of X .

This concept is closely related to the existence of continuous selections. Indeed,
we have the following (see [69] or GMS):

Proposition 4.5. Let X,Y be two metric spaces and let F : X → C(Y ) be a l.s.c.
multifunction. If Y is complete and there exists a Michael family M(Y ) of subsets
of Y such that F (x) ∈ M(Y ), for each x ∈ X, then, for any nonempty closed set
X0 ⊆ X, every continuous selection f0 from F |X0 admits a continuous extension
f over X such that f(x) ∈ F (x), for all x ∈ X.

The proceeding result gains interest if we realize that significant classes of sets
are the examples of the Michael families.

Example 4.1. Let X be a convex subset of a normed space and let M(X) be the
class of all sets A ⊆ X such that A = ∅ or A is convex and closed in X . Then
M(X) is a Michael family of subsets of X .

Example 4.2 (comp. [70]). Let X be a metric space and let M(X) be a simplicial
convexity on X , whose elements are closed in X . Then M(X) is a Michael family
of subsets of X .

Definition 4.2. Let X be a metric space, let F : X → C(X) be l.s.c., and let D
be a family of metric spaces. We say that F has the selection property w.r.t. D if,
for any Y ∈ D, any pair of continuous functions f : Y → X and h : Y → (0,+∞)
such that

G(y) = F ((y)) ∩B(f(y), h(y)) 6= ∅, y ∈ Y,

and any nonempty closed set Y0 ⊆ Y , every continuous selection g0 from G|Y0

admits a continuous extension g over Y fulfilling g(y) ∈ G(y), for all y ∈ Y . If
D is a family of all metric spaces, then we say that F has selection property (in
symbols, F ∈ SP (X)).
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Such notion has some meaningful features, as the remarks below point out.

Remark 4.1. Let X be a metric space and let F : X → C(X) be a l.s.c. m ulti-
function. If X is complete and there exists a Michael family M(X) of subsets of
X such that F (x) ∈M(X), for all x ∈ X , then F ∈ SP (X). This is an immediate
consequence of Proposition 3.6.

Remark 4.2. Let X be a nonempty closed subset of L1(T,E) and F : X → C(X)
be a l.s.c. multifunction with decomposable values. Then, arguing as in [71], it is
possible to see that F has the selection property w.r.t. the family of all separable
metric spaces.

We are now in a position to prove the main result of this section (see: [70] or
[71]).

Theorem 4.5. Let X be a complete absolute retract and let F : X → C(X) be a
multivalued contraction. Suppose F ∈ SP (X). Then the set Fix(F ) is a complete
absolute retract.

Proof. Since Fix(F ) is nonempty and closed in X , we only have to show that if Y
is a metric space, Y ⋆ is a nonempty closed subset of Y , and f⋆ : Y ⋆ → Fix(F ) is a
continuous function, then there exists a continuous extension f : Y → Fix(F ) of f⋆

over Y . Let d be the metric of Y , let L ∈ (0, 1) be such that dH(F (x′), F (x′′)) ≤
Ld(x′, x′′), for all x′, x′′ ∈ X , and let M ∈ (1, L−1). The assumption X ∈ AR
yields a continuous function f0 : Y → X fulfilling f0(y) = f⋆(y) in Y . We claim
that there is a sequence {fn} of continuous functions from Y into X with the
following properties:

(i) fn|Y ⋆ = f⋆, for every n ∈ N,
(ii) fn(y) ∈ F (fn−1(y)), for all y ∈ Y , n ∈ N,
(iii) d(fn(y), fn−1(y)) ≤ Ln−1d(f1(y), f0(y) +M1−n, for every y ∈ Y , n ∈ N.

To see this, we proceed by induction on n. It follows from Proposition 3.4 that the
function h0 : Y → (0,+∞), defined by

h0(y) = d(f0(y), F (f0(y))) + 1, y ∈ Y,

is continuous; moreover, one clearly has F (f0(y))∩B(f0(y), h0(y)) 6= ∅, for all y ∈
Y . Having in mind that F ∈ SP (X), we obtain a continuous function f1 : Y → X
satisfying f1(y) = f⋆(y) in Y ⋆ and f1(y) ∈ F (f0(y)) in Y . Hence, conditions (i),
(ii), and (iii) are true for f1. Now, suppose that we have constructed p continuous
functions f1, f2, . . . , fp from Y into X in such way that (i), (ii), and (iii) hold,
whenever n = 1, 2, . . . , p. Since F is Lipschitzean with the constant L, (ii) and
(iii) apply for n = p, and LM < 1, for every y ∈ Y , we achieve

d(fp(y), F (fp(y))) ≤ dH(F (fp−1(y)), F (fp(y))) ≤ Ld(fp−1(y), fp(y))
≤ Lpd(f1(y), f0(y)) + LM1−p
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≤ Lpd(f1(y), f0(y)) +M−p,

and subsequently

F (fp(y)) ∩B(fp(y), L
pd(f1(y), f0(y)) +M−p) 6= ∅.

Because of the assumption F ∈ SP (X), this produces a continuous function fp+1 :
Y → X with the properties:

fp+1|Y ⋆ = f⋆; fp+1(y) ∈ F (fp(y)), for every y ∈ Y ;
d(fp+1(y), fp(y)) ≤ Lpd(f1(y), f0(y)) +M−p, for all y ∈ Y .

Thus, the existence of the sequence {fn} is established. We next define, for any
a > 0, Ya = {y ∈ Y | d(f1(y), f0(y)) < a}. Obviously, the family of sets {Ya |
a > 0} is an open convering of Y . Moreover, due to (iii) and the completeness
of X , the sequence {fn} converges uniformly on each Ya. Let f : Y → X be the
point-wise limit of {fn}. It can be easily seen that the function f is continuous.
Furthermore, owing to (i), one has f |Y ⋆ = f⋆. Finally, the range of f is a subset of
Fix(F ), because, by (ii), f(y) ∈ F (f(y)), for all y ∈ Y . This completes the proof.

The same arguments as in the proof of Theorem 4.5 actually lead to the fol-
lowing more general result.

Theorem 4.6. Let D be a family of metric spaces, let X be a complete absolute
retract, and let F : X → C(X) be a multivalued contraction having the selection
property w.r.t. D. Then, for any Y ∈ D and any nonempty closed set Y0 ⊆ Y ,
every continuous function f0 : Y0 → Fix(F ) admits a continuous extension over
Y .

Theorem 4.6 has a variety of special cases of a particular interest. As an ex-
ample, Remark 4.10 combined with Theorem 4.6 lead to

Theorem 4.7. Let X be a complete absolute retract and let F : X → C(X) be
a multivalued contraction. If there exists a Michael family M(X) of subsets of X
such that F (x) ∈M(X), for all x ∈ X, then the set Fix(F ) is an absolute retract.

Evidently, Theorem 4.6 generalizes earlier results formulated in (4.5) and (4.6).
For details concerning 4.6 see: [70] and [71]. Now, we would like to study the
topological dimension of the set Fix(F ) for some multivalued contractions. Note
that the above mentioned problem was initiated by J. Saint Raymond [144]. At
first, we recall the following result (see: [144] or [7]).

Proposition 4.6. If F : X → BC(X) is a contraction with compact values, then
Fix(F ) is compact.

The following result due to Z. Dzedzej and B. Gelman ([58]) is a generalization
of the result obtained by J. Saint Raymond ([144]).
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Theorem 4.8. Let E be a Banach space and F : E → BC(E) be a contraction
with convex values and a constant α < 1/2. Assume, furthermore, that the topo-
logical dimension dimF (x) of F (x) is greater or equal to n, for some n and every
x ∈ E. If Fix(F ) is compact, then dimFix(F ) > n.

Problem 1. Is it possible to prove 4.8, for E = X , to be a complete AR-space and
F : X → CB(X) with values belonging to a Michael family M(X)?

Following D. Miklaszewski, we would like to discuss some generalizations of
4.8.

Theorem 4.9. Let X be a retract of a Banach space E, and F : X → BC(X)
be a compact continuous multivalued map with values being such elements of the
Michael family M(X) that F (x) \ {x} ∈ Ck−2, for every x ∈ Fix(F ). Then the set
Fix(F ) has the dimension greater or equal to k.

Proof. Suppose on the contrary that dim(Fix(F )) < k. Let us consider the maps
ψ : Fix(F ) → BC(E) and ϕ : Fix(F ) → E \ {0} defined by the formulae: ψ(x) =
F (x) − x = {y − x | y ∈ F (x)} and ϕ = ψ(x) \ {0} = (F (x) \ {x}) − x. We
are going to prove that the family {ϕ(x) | x ∈ Fix(F )} is equi-LC∞. Let y ∈
ϕ(x0) and r be a positive number such that 0 6∈ BE(y, 3r). Suppose that the set
BE(y, r) ∩ ϕ(x) is non-empty, for a fixed point x of F . Then BE(y, r) ∩ ϕ(x) =
[(BE(y + x, r) ∩ F (x)) − x]. Let z ∈ BE(y + x, r) ∩ F (x). It is easy to show that
BE(y + x, r) ∩ F (x) ⊂ BE(y + x, 3r) ∩ F (x). But the second set of these three
sets being in the Michael family M(X) is C∞ as well as its translation, so the
inclusion of BE(y, r) ∩ ϕ(x) into the set BE(y, 3r)∩ ϕ(x) is homotopically trivial,
and the family {ϕ(x) | x ∈ Fix(F )} is equi-LC∞. It follows from Theorem 1.8
that ϕ has a selection f . Then the map g : Fix(F ) → X defined by the formula:
g(x) = f(x) + x is a selection of F . We conclude that, in view of Theorem 4.10,
there exists a selection h of F being an extension of g. But h has a fixed point
x′ ∈ Fix(F ), h(x′) = g(x′) = f(x′) + x′ = x′, f(x′) = 0 ∈ ϕ(x), which is a
contradiction.

In the case when dimX < +∞, by analogous considerations as in the proof of
4.9 we obtain:

Theorem 4.10. Let X be a retract of a Banach space E and F : X → BC(X) be
a continuous (i.e. both l.s.c. and u.s.c.) map such that F (X) =

⋃
{F (x) | x ∈ X}

is a compact set. Assume that the values of F satisfy the following conditions:

(i) F (x) \ {x} is Ck−2, for every x ∈ Fix(F ),
(ii) F (x) is Ck for every x ∈ X,
(iii) {F (x) | x ∈ Fix(F )} is equi-LCk−2 in E,
(iv) {F (x) | x ∈ X} is equi-LCk in X.

Them dim(Fix(F )) ≥ k.
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The proof of 4.10 is quite analogous to that of 4.9. Finally, note that one can
show an example of a continuous (i.e. both l.s.c. and u.s.c.) map with contractible
values of the local dimension 2 such that (iii) and (iv) are satisfied, but the di-
mension of the set of fixed points equals 1.

It is evident that the above results can be applied directly to differential in-
clusions where the right hand side is a measurable-Lipschitz multivalued map
f : [0, a] × Rn → CB(R). A very general application to the so called almost-
periodicity problem for differential inclusions in Banach spaces is presented in
Section 5 of [7].

Namely, we shall give a topological characterization of the set of solutions of
some boundary value problems for differential inclusions of order k.

Let E be a separable Banach space and let φ : [0, a]×Ek( E be a multivalued
mapping, where Ek = E × . . .×E (k-times).

We shall consider the following problem

x(k)(t) ∈ φ(t, x(t), x′(t), . . . , x(k−1)(t))
x(0) = x0

x′(0) = x1

...
x(k−1)(0) = xk−1,





(4.1)

where the solution x : [0, a] → E is understood in the sense of t almost everywhere
(a.e., t ∈ [0, a]) and x0, . . . , xk−1 ∈ E.

Observe that for k = 1 problem (4.1) reduces to the well-known Cauchy prob-
lem for differential inclusions. In what follows we shall denote by S(φ, x0, . . . , xk−1)
the set of all solutions of (4.1).

Our first application of Theorem 4.6 is the following:

Theorem 4.11. Assume that ϕ is a mapping with compact values. Assume further
that the following conditions hold:

(4.11.1) ϕ is bounded, i.e. there is an M > 0 such that ‖y‖ ≤ M for every
t ∈ [0, a], x ∈ Ek and y ∈ ϕ(t, x),

(4.11.2) the map ϕ( · , x) is measurable for each x ∈ Ek,

(4.11.3) ϕ is a Lipschitz map with respect to the second variable, i.e. there exists
an L > 0 such that for every t ∈ [0, a] and for every z = (z1, . . . , zk), y =
(y1, . . . , yk) ∈ Ek we have:

dH(ϕ(t, z), ϕ(t, y) ≤ L
k∑

i=1

‖zi − yi‖.

Then the set S(ϕ, x0, . . . , xk−1) of all solutions of the problem (4.1) is an AR-
space.
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Sketch of proof. For the proof we define (single-valued) mappings7:
hj : M([0, a], E) → ACj , j = 0, . . . , k − 1, by putting

(hj(z))(t) = x0 + tx1 + . . .+ (tj/j!)xj +

∫ t

0

∫ s1

0

. . .

∫ sj

0

z(s) ds dsj . . . ds1,

where ACj = {u ∈ Cj([0, a], E) : u(j) is absolutely continuous} and for u ∈ ACj

we put:

‖u‖ = ‖u‖Cj + sup esst∈[0,a]{‖u
(j+1)(t)‖}.

Now consider a multivalued mapping ψ : M([0, a], E) → M([0, a], E) defined
as follows:

ψ(x) = {z ∈M([0, a], E) | z(t) ∈ ϕ(t, hk−1(x)(t), . . . , h0(x)(t)), for a.e. t ∈ [0, a]}.

It follows from the Kuratowski–Ryll–Nardzewski Selection Theorem and (4.11.1)
that ψ is well defined (with closed decomposable values in M([0, a], E). Moreover,
it is easy to see that hk−1(Fix(ψ)) = S(ϕ, x0, . . . , xk−1). Consequently, since hk−1

is a homeomorphism onto its image, in view of Theorem 4.6, it is sufficient to show
that ψ is a contractive mapping. We shall do this by using the M([0, a], E)-version
of Bielecki’s method and the Kuratowski–Ryll–Nardzewski Theorem. In fact it is
enough to see that for every u, z ∈ M([0, a], E) and for every y ∈ ψ(u) there is a
v ∈ ψ(z) such that

‖y − v‖1 ≤ α‖u− z‖1,(⋆)

where α ∈ [0, 1) and ‖w‖1 = sup esst∈[0,a]{e
−Lakt‖w(t)‖} is the Bielecki norm

in M([0, a], E). Observe that using Theorem 4.2 (in [66]) for ψ and z, we get a
mapping v ∈ ψ(z) and now (⋆) follows directly from 4.11.3. The proof of Theorem
4.11 is complete.

Remark 4.3. Note that if we impose more assumptions on ϕ then we are able to
get better information on = S(ϕ, x0, . . . , xk−1) ( for details see [7], [66], [69]).

Now following [12], [61], [62] we would like to add that if we consider problem
(4.1) for k = 1 and in Theorem 4.11 we assume moreover that ϕ(t, x) is convex and
dimϕ(t, x) ≥ n for some n and every (t, x) ∈ [0, a] ×E, then, in view of Theorem
4.9 we get that:

dimS(ϕ, x0) ≥ n.

Finally, let us remark that if we reject the assumption that ϕ has compact
values, then still a characterization of S(ϕ, x0) is possible (see Theorem 3.1 in
[105]).

7 here M([0, a], E) is the Banach space of continuous essentialy bounded mappings.
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5. The inverse limit method

The inverse limit method in differential equations and inclusions is quite new and
it was indicated in 1999 by J. Andres, G. Gabor and L. Górniewicz (see: [5], [6]
and [60]).

We shall start from the topological preparation. By an inverse system of topo-
logical spaces we mean a family IS = {Xα, π

β
α, Σ}, where Σ is a set directed

by the relation ≤, Xα is a topological (Hausdorff) space for every α ∈ Σ and
πβ

α : Xα → Xβ is a continuous mapping for every two elements α, β ∈ Σ such
that α ≤ β. Moreover, for each α ≤ β ≤ γ the following conditions should hold:
πα

α = idXα
and πβ

απ
γ
β = πγ

α.
A subspace of the product Πα∈ΣXα is called a limit of the inverse system IS

and it is denoted by lim← IS or lim←{Xα, π
β
α, Σ} if

lim
←

IS = {(xα) ∈ Πα∈ΣXα | πβ
α(xβ) = xα for all α ≤ β}.

An element of lim← IS is called a thread or a fibre of the system IS. One can
see that if we denote by πα : lim← IS → Xα a restriction of the projection
pα : Πα∈ΣXα → Xα onto the α-th axis, then we obtain πα = πβ

απβ for each
α ≤ β.

Now we summarize some useful properties of limits of inverse systems which
are well known (comp. [60]):

Proposition 5.1. Let IS = {Xα, π
β
α, Σ} be an inverse system.

(5.1.1) The limit lim← IS is a closed subset of Πα∈ΣXα.
(5.1.2) If, for every α ∈ Σ, Xα is

(i) compact, then lim← IS is compact;
(ii) compact and nonempty, then lim← IS is compact and nonempty;
(iii) a continuum, then lim← IS is a continuum;
(iv) acyclic, and lim← IS is nonempty, lim← IS is acyclic;
(v) metrizable, Σ is countable, and lim← IS is nonempty, then lim← IS is

metrizable.

The following further information is useful for applications.

Proposition 5.2 ([60]). Let IS = {Xn, π
p
n,N} be an inverse system. If each Xn

is an Rδ-set, then so is lim← S.

The following example shows that a limit of an inverse system of compact
absolute retracts does not have to be an absolute retract.

Example 5.1. Consider a family {Xn}∞n=1 of subsets of R2 defined as follows:

Xn =

([
0,

1

nπ

]
× [−1, 1]

)
∪

{
(x, y)

∣∣∣∣ y = sin
1

x
and

1

nπ
< x ≤ 1

}
.

One can see that for each m,n ≥ 1 such that m ≥ n we have Xm ⊂ Xn.
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Define the maps πm
n : Xm → Xn, πm

n (x) = x. Therefore IS = {Xn, π
m
n ,N}

is an inverse system of compact absolute retracts. It is evident that lim← IS is
homeomorphic to the intersection of all Xn. On the other hand

X =
∞⋂

n=1

Xn = {(0, y) | y ∈ [−1, 1]} ∪

{
(x, y)

∣∣∣∣ y = sin
1

x
and 0 < x ≤ 1

}

and X is not an absolute retract since, for instance, X is not locally connected.

Note that in [60] the following information on a limit of an inverse system of
absolute retracts has been formulated.

Proposition 5.3. Let IS = {Xn, π
p
n,N} be an inverse system of compact absolute

retracts such that Xn ⊂ Xp and πp
n is a retraction for all n ≤ p. Then lim← IS

has the fixed point property, i.e. every continuous map f : lim← IS → lim← IS
has a fixed point.

Example 5.2. Consider the inverse system S = {Xn, π
p
n,N} such that Xn = [n,∞)

and πp
n : Xp →֒ Xn are inclusion maps for n ≤ p. It is obvious that lim← S is

homeomorphic to the intersection of all Xn which is an empty set.

Let us give important examples of inverse systems.

Example 5.3. Let, for every m ∈ N, Cm = C([0,m],Rn ) be a Banach space of all
continuous functions of the closed interval [0,m] into R, and C = C([0,∞),Rn )
be an analogous Fréchet space of continuous functions.

Consider the maps πp
m : Cp → Cm, πp

m(x) = x|[0,m]. It is easy to see that C
is isometrically homeomorphic to a limit of the inverse system {Cm, π

p
m,N}. The

maps πm : C → Cm, πm(x) = x|[0,m] correspond to suitable projections.

Remark 5.1. In the same manner as above we can show that Fréchet spaces C(J,Rn ), where J is an arbitrary interval, L1
loc(J,Rn ) of all locally integrable functions,

ACloc(J,Rn ) of all locally absolutely continuous functions and Ck(J,Rn ) of all
continuously differentiable functions up to the order k can be considered as limits
of suitable inverse systems.

More generally, every Fréchet space is a limit of some inverse system of Banach
spaces.

Now we introduce the notion of multivalued maps of inverse systems. Suppose

that two systems IS = {Xα, π
β
α, Σ} and IS′ = {Yα′ , πβ′

α′ , Σ′} are given.

Definition 5.1. By a multivalued map of the system IS into the system IS′ we
mean a family {σ, ϕσ(α′)} consisting of a monotone function σ : Σ′ → Σ, that
is σ(α′) ≤ σ(β′), and of multivalued maps ϕσ(α′) : Xσ(α′) ( Yα′ with nonempty
values, defined for every α′ ∈ Σ′ and such that

πβ′

α′ϕσ(β′) = ϕσ(α′)π
σ(β′)
σ(α′),(5.1)
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for each α′ ≤ β′.
A map of systems {σ, ϕσ(α′)} induces a limit map ϕ : lim← IS ( lim← IS′

defined as follows:

ϕ(x) = Πα′∈Σϕσ(α′)
(xσ(α′)) ∩ lim

←

IS.

In other words, a limit map is a map such that

πα′ϕ = ϕσ(α′)πσ(α′)(5.2)

for every α′ ∈ Σ′.

Since a topology of a limit of an inverse system is the one generated by the base
consisting of all sets of the form πα(Uα), where α runs over an arbitrary set cofinal
in Σ and Uα are open subsets of the space Xα, it is easy to prove the following
continuity property for limit maps:

Proposition 5.4 (see [5], Proposition 2.7). Let IS = {Xα, π
β
α, Σ} and

IS′ = {Yα′ , πβ′

α′ , Σ′} be two inverse systems, and ϕ : lim← IS ( lim← IS′ be a
limit map induced by the map {σ, ϕσ(α′)}.

If, for every α′ ∈ Σ, ϕσ(α′) is

(i) u.s.c., then ϕ is u.s.c.;
(ii) l.s.c., then ϕ is l.s.c.;
(iii) continuous, then ϕ is continuous (continuous means both u.s.c. and l.s.c.).

The following crucial result allows us to study a topological structure of fixed
point sets of limit maps.

Theorem 5.1 ([60]). Let IS = {Xα, π
β
α, Σ} be an inverse system, and ϕ :

lim← IS ( lim← IS be a limit map induced by a map {id, ϕα}, where ϕα : Xα (
Xα. If fixed point sets of ϕα are acyclic, and the fixed point set of ϕ is nonempty,
then it is acyclic, too.

Theorem 5.2. Let IS = {Xn, π
p
n,N} be an inverse system, and ϕ : lim← IS (

lim← IS be a limit map induced by a map {id, ϕn}, where ϕn : Xn( Xn. If fixed
point sets ϕn are compact Rδ, then the fixed point set of ϕ is Rδ, too.

Corollary 5.1. Let IS = {Xn, π
p
n,N} be an inverse system, and ϕ : lim← IS (

lim← IS be a limit map induced by a map {id, ϕn}, where ϕn : Xn ( Xn. If all
Xn are Fréchet spaces and all ϕn are contractions.

Remark 5.2. Note that, following [70], we can prove Corollary 5.1 for a little larger
class of multivalued maps (see [5], Corollary 2.9).

The inverse system approach described above gives us an easy way to study
a topological structure of solution sets of differential problems on noncompact
intervals. To illustrate it consider the following example:
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Example 5.4. Let F : [0,∞) × Rn ( Rn be a Carathéodory map, i.e.

(i) values of F are nonempty, compact and convex for all (t, x) ∈ [0,∞) × Rn ,
(ii) F (t, · ) is u.s.c. for a.a. t ∈ [0,∞),
(iii) F ( · , x) is measurable for all x ∈ Rn ,

with at most linear growth, i.e. there exists a locally integrable function α :
[0,∞) → [0,∞) such that, for every x ∈ Rn and for a.a. t ∈ [0,∞),

|F (t, x)| ≤ α(t)(1 + ‖x‖),

where |F (t, x)| = sup{|y| | y ∈ F (t, x)}.

Consider the Cauchy problem

ẋ(t) ∈ F (t, x(t)) for a.a. t ∈ [0,∞),
x(0) = x0.

}
(5.3)

We shall show, using the inverse systems technique, that the set of solutions S of
problem (5.3) is Rδ. To do it, consider the family of Cauchy problems

ẋ(t) ∈ F (t, x(t)) for a.a. t ∈ [0,m],
x(0) = x0,

}
(5.4)

where m ≥ 1. It is well known (see [46]) that, for every m ≥ 1, the set Sm of the
above problem is compact Rδ.

On the other hand, Sm is a fixed point set of the following map Ψm : Cm =
C([0,m],Rn )( Cm,

Ψm(x) =

�
x0 +

Z t

0

u(s) ds

����u ∈ L
1([0, m],Rn) and u(t) ∈ G(t, x(t)) for a.a. t ∈ [0, m]

�
.

One can check that {Ψm} is a map of the inverse system {C([0,m],Rn ), πp
m,N},

where πp
m(x) = x|[0,m] for every x ∈ C([0, p],Rn ). Moreover, it induces the limit

map on C([0,∞),Rn )

Ψ(x) =

�
x0 +

Z t

0

u(s) ds

����u ∈ L
1
loc([0,∞),Rn) and u(t) ∈ G(t, x(t)) for a.a. t ∈ [0,∞)

�
with the fixed point set S. By Theorem 5.2 it follows that S is compact Rδ, as
required.

Note that the above result on a topological structure of the solution set of the
Cauchy problem on a halfline can be obtained by using different techniques (see
e.g. [4] for the proof by using the Scorza–Dragoni type result).

Further applications of the inverse systems approach can be found in [5] and
[60].
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6. Concluding remarks and comments

Above we have presented different techniques of characterization of the set of fixed
points and consequently solution sets for differential equations and inclusions. Now,
we would like to show some consequences, which can be obtained by using the
topological structure of solution sets.

We would like to show only results connected with multivalued Poincaré oper-
ator indicated by G. Dylawerski and L. Górniewicz in 1983 ([57]). We recommend
also the following papers: [3], [8], [66], [69], [72], [91], [143], [45].

We shall formulate the simplest version. Most general results of this type are
contained in [45].

Let f : [0, a]×Rn → Rn be a continuous and bounded map. We shall consider
both the Cauchy problem:

x′(t) = f(t, x(t)),
x(t0) = x0,

}
(6.1)

and the following periodic problem:

x′(t) = f(t, x(t)),
x(0) = x(a).

}
(6.2)

We shall associate with (6.2) the multivalued Poincaré operator:

Pa : Rn ( Rn

defined as a composition of the following two maps:R P
7→ C([0, a],Rn )

ea→ Rn ,

where P (x) = S(f ; 0, x) and ea(x) = x(a). It follows from the Aronszajn Theorem
that P has Rδ-values. On the other hand it is well known that P is u.s.c. (comp.
[69] or [11]). Hence Pa = ea ◦ P as a composition of u.s.c. Rδ-valued map P with
a continuous map ea is admissible in the sense of [67]. Therefore the topological
degree of the field (idRn − P ) on any ball B(0, r) ⊂ Rn such that8 Fix(P ) ∩
∂B(0, r) = ∅ is well defined (see: [67], [45] or [92]). In what follows P is called the
Poincaré operator associated with (6.2).

The following proposition is straightforward.

Proposition 6.1. If Fix(Pa) 6= ∅, then problem (6.2) has a solution.

In the terms of topological degree theory Proposition 6.3 can be expressed as
follows:

Proposition 6.2. Assume that for some r > 0 we have Fix(P )∩ ∂B(0, r) = ∅. If
the topological degree deg(idRn − Pa, B(0, r)) of idRn − Pa with respect to B(0, r)
is different from zero, then problem (6.2) has a solution.

8 ∂B(0, r) denotes the boundary of B(0, r) in Rn .
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In order to calculate the topological degree of Poincaré field idRn −Pa we shall
use the guiding function (or potential function) method (see: [91] or [45]).

A C1-map V : Rn → R is called a guiding function ( potential) for f provided
that there exists r0 > 0 such that:

〈gradV (x), f(t, x)〉 > 0(6.3)

for every t ∈ [0, a] and x ∈ Rn such that ‖x‖ ≥ r0, where gradV (x) =
(

∂f
∂x1

(x), . . . ,

∂f
∂xn

(x)
)

is the gradient of V at the point x and 〈 , 〉 stands for the inner product

in Rn .
It follows from (6.3) that for every r ≥ r0 and x ∈ Rn such that ‖x‖ ≥ r0 we

have gradV (x) 6= 0 so from the localization property of the topological degree it
follows that for every r ≥ r0 we have deg(gradV,B(0, r)) = deg(gradV (x), B(0,
r0)). We let:

Ind(V ) = deg(gradV (x), B(0, r)).(6.4)

Finally we obtain:

Theorem 6.1. If f has a potential V such that Ind(V ) 6= 0, then deg(Pa, B(0,
r)) 6= 0 for some r ≥ r0.
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Sadovskĭı, Measures of Noncompactness and Condensing Operators (translated from
Russian), Birkhauser, Berlin, 1992.

3. J. Andres, On the multivalued Poincaré operators, TMNA 10 (1997), 171–182.
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das der lipschitzchen Bedingung nicht genügt, S. B. Preuss. Akad. Wiss. Phys. Math.
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211. G. Conti, V. Obukhovskĭı and P. Zecca, On the topological structure of the solution

set for a semilinear functional-differential inclusion in a Banach space, Topology in
Nonlinear Analysis, Polish Acad. Sci., Warsaw, 1996, 159–169.

212. K. Deimling, On solution sets of multivalued differential equations, Appl. Anal., 30

(1988), 129–135.



TOPOLOGICAL STRUCTURE OF SOLUTION SETS: CURRENT RESULTS 379

213. K. Deimling, Bounds for solution sets of multivalued ODEs, Recent Trends in Dif-
ferential Equations, World Sci. Publishing, River Edge, NJ, 1992, 127–134.

214. P. Diamond and P. Watson, Regularity of solution sets for differential inclusions

quasi-concave in a parameter, Appl. Math. Lett., 13 (2000), 31–35.
215. Y. H. Du, The structure of the solution set of a class of nonlinear eigenvalue prob-

lems, J. Math. Anal. Appl., 170 (1992), 567–580.
216. V. V. Filippov, On the acyclicity of solution sets of ordinary differential equations,

Dokl. Akad. Nauk, 352 (1997), 28–31.
217. A. Gavioli, On the solution set of the nonconvex sweeping process, Discuss. Math.

Differential Incl., 19 (1999), 45–65.
218. V. V. Goncharov, Co-density and other properties of the solution set of differen-

tial inclusions with noncompact right-hand side, Discuss. Math. Differential Incl., 16

(1996), 103–120.
219. T. G. Hallam and J. W. Heidel, Structure of the solution set of some first order

differential equations of comparison type, Trans. Amer. Math. Soc., 160 (1971), 501–
512.

220. G. Herzog and R. Lemmert, On the structure of the solution set of u′′ = f(t, u),
u(0) = u(1) = 0, Math. Nachr., 215 (2000), 103–105.

221. S. C. Hu, V. Lakshmikantham and N. S. Papageorgiou, On the solution set of

nonlinear evolution inclusions, Dynamic Systems Appl., 1 (1992), 71–82.
222. S. C. Hu, V. Lakshmikantham and N. S. Papageorgiou, On the properties of the

solution set of semilinear evolution inclusions, Nonlinear Anal., 24 (1995), 1683–
1712.

223. A. G. Ibrahim and A. M. Gomaa, Topological properties of the solution sets of some

differential inclusions, Pure Math. Appl., 10 (1999), 197–223.
224. G. Isac and G. X.-Z. Yuan, Essential components and connectedness of solution set

for complementarity problems, Fixed Point Theory and Applications (Chinju, 1998),
Nova Sci. Publ., Huntington, NY, 2000, 35–46.

225. N. A. Izobov, The measure of the solution set of a linear system with the largest

lower exponent, Differentsial’nye Uravneniya, 24 (1988), 2168–2170, 2207.
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