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Abstract. In this paper we investigate a general boundary value problem,
which can be rewritten to the coincidence problem of the form L(x) = F (x),
where L is a Fredholm operator of nonnegative index and F is not neces-
sarily compact map. We apply a homotopy invariant called a coincidence
index.

AMS Subject Classification. 34G20, 34B15, 47H09, 55M20

Keywords. Fredholm operator, boundary value problem in Banach space,
fixed point index

1. Introduction

Let AC = AC([0, T ], E) be the space of absolutely continuous functions u :
[0, T ] → E defined on the unit interval [0, T ] with values in a Banach space E
and let f : [0, 1]×E ×E → E be a Caratheodory map, what means that f(·, u, v)
is mesurable for every (u, v) ∈ E×E and f(t, ·, ·) is continuous for a.a. t ∈ [0, T ]. If
we are to study the existence of solutions to the general boundary value problem

{

u′(t) = f(t, u(t), u′(t))
l1(u(0)) + l2(u(T )) = α(u),

(1)

where l1, l2 : E → E′ are linear bounded maps, α : AC ( E′ is a continuous
map, (E′ is a Banach space) then we reformulate it to the following:

{

y(t) = f(t, z +
∫ t

0
y(s)ds, y(t))

l1(z) + l2(z +
∫ T

0 y(s)ds) = α(z +
∫ ·

0 y(s)ds).
(2)



448 DOROTA GABOR

Obviously, if (z, y) ∈ E × AC is a solution to the problem (2), then u(t) =

z +
∫ t

0
y(s)ds is a solution to the problem (1).

Putting
x = (z, y),

L(z, y) = (y, l1(z) + l2(z))

and

F (z, y) =

(

f(·, z +

∫ ·

0

y(s)ds, y(·)), α(z +

∫ ·

0

y(s)ds)) − l2(

∫ T

0

y(s)ds)

)

we arrive at a coincidence problem (a generalized fixed point problem) of the form

L(x) = F (x).(3)

Such coincidence problems have been intensively studied by many authors,
especially in case when F is a compact (single- or multivalued )map and L is the
identity (the Leray-Schauder fixed point theory) or L is a Fredholm operator of
index 0 (e.g. Mawhin [9], Pruszko [10]) or of nonnegative index (Kryszewski [8]).
The situation when L is a Fredholm operator of nonnegative index and F belongs
to a more general class of nonlinear (single- or multivalued) transformations, so
called L–fundamentally contractible maps was investigated in [4]. We use some
theoretical results from this paper, but not in the most general case (i.e. only for
singlevalued maps) .

Observe that in case E = E′, l1 = idE , l2 = −idE and α ≡ 0, (1) becomes an
ordinary periodic boundary value problem.

In Section 1 we introduce some notions and cite a few results and in Section 2
we carefully describe and solve our problem.

Throughout the paper we will use the following notation: if U is a subset of a
Banach space E, then by clU we mean the closure of U , by bdU - the boundary
of U , conv (U) - the convex hull of U and conv (U) = cl conv (U). Moreover, let
BE(x0, r) = {x ∈ E; ||x0−x||E ≤ r} and if E = Rn , then Bn(x0, r) := BRn

(x0, r).

2. Preliminaries

Let E, E′ be Banach spaces with norms || · ||E , || · ||E′ , respectively. A bounded
linear map L : E → E′ is a Fredholm operator if dimensions of its kernel (KerL)
and cokernel (CokerL := E′/Im (L), where Im (L) is the image of L), are finite.
By the index of a Fredholm operator L we mean the number

i(L) := dimKerL− dimCokerL.1

Since both Ker (L) and Im (L) are direct summands in E and E′, respectively,
we may consider continuous linear projections P : E → E and Q : E′ → E′, such

1 Observe that if L : Rm → Rn is linear, then L is Fredholm and i(L) = m − n.
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that KerL = Im(P ) and KerQ = Im(L). Clearly E, E′ split into (topological)
direct sums

Ker (P )⊕Ker (L) = E, Im (Q)⊕ Im (L) = E′.

Moreover, since Im (L) is a closed subspace of E′, L|KerP : KerP → ImL is a
linear homeomorphism onto Im (L). Denote by KP the inverse isomorphism for
L|KerP . Note also that L is proper when restricted to a closed bounded set.

Consider a continuous map F : X → E′, where X ⊂ E.

Definition 1. A closed convex and nonempty set K ⊂ E′ is called L-fundamental
for F , provided

(i) F (L−1(K) ∩X) ⊂ K; and
(ii) if for x ∈ X , L(x) ∈ conv (F (x) ∪K), then L(x) ∈ K.

It is clear that for any F some L-fundamental set exists (for instance whole E′

or conv (F (X))).
Observe that if E = E′ and L = idE is the identity on E, then K is nothing

else but a fundamental set for F in the sense of e.g. [2] (see also references therein).
Some properties of L-fundamental sets are summarized in the following result

(comp. [4] or [5]).

Proposition 1.

(i) If K is an L-fundamental set for F , then {x ∈ X | L(x) = F (x)} ⊂
L−1(K).

(ii) If K1, K2 are L-fundamental sets for F , then the set K := K1 ∩ K2 is
L-fundamental or empty.

(iii) If P ⊂ K and K is an L-fundamental set for F , then so is K ′

= conv (F (L−1(K) ∩X) ∪ P ).
(iv) If K is the intersection of all L-fundamental sets for F , then

K = conv (F (L−1(K) ∩X)).

(v) For any A ⊂ E′, there exists an L-fundamental set K such that K =
conv (F (L−1(K) ∩X) ∪A).

Definition 2. We say that F is an L-fundamentally restrictible map if for any
y ∈ E′ there exists a compact L-fundamental set for F , which contains y.

Let us collect some important examples of L-fundamentally restrictible maps.

Example 1. Let L : E → E′ be an arbitrary Fredholm operator.

(i) if F : X → E′ is compact (i.e. cl F (X) is compact), then K = conv (F (X)×
{y}) is a compact L- fundamental set for F ; hence F is L-fundamentally
restrictible.
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(ii) Let µ be a measure of noncompactness in E′ having usual properties (see
e.g. [1]) and let F be L-condensing in the sense that, for any bounded set A ⊂
X , if µ(F (A)) ≥ µ(L(A)), then A is compact. If F is bounded, then one shows
that an L-fundamental set K, satisfying K = conv (F (L−1(K) ∩ X) ∪ {y})
for some y ∈ E′ (see Proposition 1) is compact; hence F is L-fundamentally
restrictible.

(iii) If F is an L-set contraction (i.e. there exists k ∈ (0, 1), such that for any
bounded A ⊂ X , µ(F (A)) ≤ kµ(L(A))), then F is L-condensing and therefore
L-fundamentally restrictible.

Some other examples one can find in [4] and in [5].

Now we are going to sketch the construction of a generalized index of coin-
cidence between L and an L-fundamentally restrictible map F . More details (in
more general, multivalued case), one can find e.g. in [3] or in [5].

Let U be an open bounded subset of Rm and let F : clU → Rn , where m ≥
≥ n ≥ 1 and suppose that 0 6∈ F (x) for x ∈ bdU . It implies that there is ε > 0
such that F (bd U) ⊂ Rn \Bn(0, ε).

We can of course define the Brouwer degree for such map, but if m > n it is
useless, because always equal to 0. Better homotopy invariant defined Kryszewski
(comp. [8]), developing some ideas from [6]. In this definition he used cohomotopy
sets. Consider the following sequence of maps:

πn(Rn ,Rn \Bn(0, ε))
F#

−→ πn(clU,bdU)
i
#
1←− πn(Rm ,Rm \ U)

i
#
2−→

i
#
2−→ πn(Rm ,Rm \Bm(0, r)),

where r > 0 is such that U ⊂ Bm(0, r) and i1 : (clU,bdU) → (Rm ,Rm \ U)
and i2 : (Rm ,Rm \Bm(0, r))→ (Rm ,Rm \U) are inclusions. Arrows denote maps
between cohomotopy sets induced by respective maps (see [7]). By the excision

property i#1 is a bijection. Hence we have defined the transformation

K := i#2 ◦ (i#1 )−1 ◦ F# : πn(Sn) = πn(Rn ,Rn \Bn(0, ε))→
→ πn(Rm ,Rm \Bm(0, r)) = πn(Sm).

(4)

Definition 3. By the generalized degree of the map F on U we understand the
element

deg((F,U, 0) := K(1) ∈ πn(Sm).

(1 denotes the generator of πn(Sn) ∼= Z, i.e. the homotopy class of the identity
map id : Sn → Sn.)

It is clear that this definition does not depend on the choice of ε and r.
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Remark 1. One can check that if n = m, then deg(F,U, 0) ∈ πn(Sn) is nothing
else but the ordinary Brouwer degree of the map F (comp. the Hopf theorem [7],
th.11.5).

Now we are going to define a generalized index of coincidence between a Fred-
holm operator L of index i(L) = k and an L-fundamentally restrictible map
F : X → E′, where X is open subset of E and E, E′ are Banach spaces. Suppose
that C := {x ∈ X | L(x) ∈ F (x)} is bounded and closed. Therefore there is
an open bounded set U such that C ⊂ U ⊂ clU ⊂ X . Let K0 be any com-
pact L-fundamental set for F . In view of Proposition 1 (i), C is contained in
L−1(K0) ∩ clU . Since L|clU is proper, we gather that C being obviously closed is
also compact. Now let consider a map

F|(L−1(K0)∩X) : L−1(K0) ∩X → E′,

According to Definition 1, the range of this map is contained in K0. Hence it has
a compact extension

F : X → K0
2.

It is clear that {x ∈ X | L(x) = F (x)} = C.
There is ε0 > 0 such that

{y ∈ E′ | ∃x∈bdU y = L(x)− F (x)} ∩BE′

(0, 2ε0) = ∅.

Take ε ∈ (0, ε0] and let lε : clF (U) → E′ be a Schauder projection of the
compact set cl F (U) into a finite dimensional subspace Z of E′, such that ||lε(y)−
y||E′ < ε for y ∈ clF (U). Denote by W ′ the finite dimensional subspace of Im (L)
such that Z ⊂W = W ′⊕ Im (Q). Put T := L−1(W ), UW = U ∩T . It is clear that
the closure cl UW (in T ) is contained in clU ∩T and its boundary bd UW (relative
T ) in bdU ∩ T . Further let FW = lε ◦ F |cl UW

and LW = L|T : T → W . Observe,
that LW is a Fredholm operator of index

i(LW ) = dim T − dimW = k = i(L).

Enlarging W ′ if necessary we may assume that dimW := n ≥ k + 2. Putting
m := dimT = n + k we arrive in a finite dimensional situation discussed above.

Definition 4. By the generalized index of the L-fundamentally restrictible map
F we understand the element

Ind L(F,X) := deg(LW − FW ), UW , 0) ∈ Πk.

By definition, deg(LW − FW , UW , 0) belongs to πn(Sm) but since m < 2n− 1
we know that πn(Sm) ∼= Πk.

One can check (see [5] or [3]) that the definition does not depend on the choice
of a compact L-fundamental set K0, an extension F of F |L−1(K0)∩X , an open
subset U , a number ε ∈ (0, ε0], a projection lε and a space W ′.

2 For instance one can take any retraction r : E′ → K0 and define F := r ◦ F .
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Definition 5. Given L-fundamentally restrictible maps F0, F1 we say that they
are (L,K)–homotopic (written F0 ≃K F1) if there is a homotopy H : X × [0, 1]→
E′ such that the set {x ∈ X | L(x) ∈ H(x, t)) for some t ∈ [0, 1]} is bounded
and closed in E and K is a compact L-fundamental set for any map X ∋ x 7→
H(x, t) where t ∈ [0, 1].

At the first glance the above definition of homotopic pairs is enough for our
next considerations (comp. Theorem 1), but in applications we need the following
more general one.

Definition 6. Two L-fundamentally restrictible maps F0, F1 are L-homotopic if
there is a finite number of compact convex sets K1, . . . ,Kn and L-fundamentally
restrictible maps G1, . . . , Gn−1 such that

F0 ≃K1
G1 ≃K2

· · · ≃Kn−1
Gn−1 ≃Kn

F1.

Theorem 1. The generalized index Ind L on has the following properties (as
above, C := {x ∈ X | L(x) ∈ F (x)}):

(i) (Existence) If Ind L(F,X) 6= 0, then there is x ∈ X such that L(x) ∈ F (x).
(ii) (Localization) If X ′ ⊂ X is open and C ⊂ X ′, then Ind L(F,X ′) is defined
and equal to Ind L(F,X).

(iii) (Homotopy Invariance) If F0, F1 are L-homotopic, then Ind L(F0, X) =
Ind L(F1, X).

(iv) (Additivity) If X1, X2 are open disjoint subsets of X such that C ⊂ X1 ∪
X2, then

Ind L(F,X) = Ind L((F,X1) + Ind L(F,X2).

(v) (Restriction) If F (X)) ⊂ Y , where Y ⊂ Y ′ ⊕ Im (Q) is a closed subspace
of E′, then Ind L(F,X) = Ind LY

(FY , X ∩ T ), where T := L−1(Y ′ ⊕ Im (Q)),
FY = F |X∩T ) and LY = L|T .

The proof can be found in [4] or in [3].

Applying the coincidence index constructed above, we present in the following
theorem conditions sufficient for the existence of solutions to the abstract coinci-
dence problem

L(x) = F (x),(5)

where L : E → E′ is a Fredholm linear operator of nonnegative index k (E, E′ are
Banach spaces) and F is a continuous map. This result is a slight modification of
Theorem 4.1 in [4] (see Remark 4.2 therein), where the proof is included. Let P
and Q be respective projections defined for L, I ′ be the identity map on E′ and
let ImQ 6= {0}.

Theorem 2. Let F : E( E′ be a map such that
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(i) there exists an open bounded subset V of E such that, for any x ∈ E \V and
λ ∈ [0, 1], 0 6∈ ((1− λ)(I ′ −Q) + Q) ◦ F (x), and F |cl V is an L-fundamentally
restrictible map with some L-fundamental set containing 0,

(ii) IndO(Q ◦ F |V ∩Im P , V ∩ ImP ) is nontrivial (O : Im (P ) → Im (Q) is a
Fredholm operator such that O(v) = 0 for all v ∈ Im (P )).

Then the problem L(x) = F (x) has a solution.

3. Boundary value problem

Below we illustrate the above result by the boundary value problem.
Let E,E′ be Banach spaces with Hausdorff measures of noncompactness 3

χ and χ′ respectively and Z be the set of all positive numbers k such that the
Fredholm linear operator D : E → E′ is (k, χ, χ′)-set contraction4. Following [1]
we define

||D||(χ,χ′) := inf Z.

Note that ||D||(χ,χ′) ≤ ||D||.
Denote J = [0, T ] ⊂ R and let ξ be a Hausdorff measure of noncompactness in

the space L = L1(J,E) of integrable functions in the sense of Bochner with the

norm ‖u‖L =
∫ T

0
‖u(s)‖E ds.

Let f : J ×E ×E → E be a map satisfying the following assumptions:

(f1) f(·, u, v) is a measurable map for every (u, v) ∈ E × E, and f(t, ·, ·) is con-
tinuous for almost all t ∈ J ,

(f2) there are two continuous functions λ1, λ2 : J → [0,∞) such that, for any
u1, u2, v1, v2 ∈ E and almost all t ∈ J ,

‖f(t, u1, v1)− f(t, u2, v2)‖E ≤ λ1(t)‖u1 − u2‖E + λ2(t)‖v1 − v2‖E ,

(f3) there are integrable functions m,n : J → [0,∞) such that ‖f(t, u, v)‖E ≤
m(t) + n(t)‖u‖E for any u, v ∈ E and almost all t ∈ J .

Let us consider the following boundary value problem

{

u′(t) = f(t, u(t), u′(t)) for a.a. t ∈ J,
A1(u(0)) + A2(u(T )) = α(u(0)),

(6)

where f satisfies assumptions (f1)-(f3), α is a continuous compact map, and
A1, A2 : E → E′ are linear operators such that A := A1 + A2 is a Fredholm
operator of nonnegative index. By a solution of problem (6) we mean an abso-
lutely continuous map satisfying the equation for a.a. t ∈ J an the boundary
condition.

3 Recall that χ is a Hausdorff measure of noncompactness on a space Banach E if for
any bounded set A ⊂ E, χ(A) = inf{ε | A has a finite ε-net}

4 i.e. for any bounded set B ∈ E, the set D(B) is bounded and χ′(D(B)) ≤ kχ(B).
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The problem (6) is equivalent to the following one:

L(z, y) = F (z, y),(7)

where L,F : E ×L → E′ ×L and

L(z, y) = (A(z), y)

F (z, y) =

(

α(z)−A2(
∫ T

0

y(s)ds), f(·, z +

∫ (·)

0

y(s)ds, y(·))
)

.

In fact, (z, y) is a solution of the coincidence problem (7) iff the map u ∈ L,

u(t) := z +
∫ t

0 y(s)ds is a solution of (6).

Assume that in the spaces E × L and E′ × L we have the norms ‖(z, y)‖1 =
max(‖z‖E, ‖y‖L) and ‖(z′, y)‖2 = max(‖z′‖E′ , ‖y‖L), respectively. Denote by µ
and µ′ the Hausdorff measures of noncompactness in E×L and E′×L, respectively,
and by prE and prL (resp. prE′ and pr′L) projections of the space E × L (resp.
E′ ×L) onto E and onto L (resp. onto E′ and L). Observe that if S is a bounded
subset of E ×L, then µ(S) = max(χ(prE(S)), ξ(prL(S))).

Let N =
∫ T

0 n(s)ds, M =
∫ T

0 m(t)dt, Λ1 =
∫ T

0 λ1(s)ds, Λ2 = supt∈J λ2 and let
PA, QA i KPA

be the respective projections and the right inverse for A.

Theorem 3. Assume that f satisfies assumptions (f1)− (f3), the maps α and A
are as above, and QA 6≡ 0. Moreover, let
(f4) Λ2 < 1 and Λ1(1 + ‖KPA

‖(χ
′,χ)) < 1− Λ2,

(f5) ‖A2‖ < 1,
(f6) ‖KPA

‖ ·N exp(N) < 1,
(f7) ImA2 ⊂ ImA,
(f8) there exists R > 0 such that, for every z ∈ E satisfying ‖PA(z)‖E ≥ R,
QA(α(z)) 6= 0 and IndO(QA◦α,BE(0, R)∩ImPA) 6= 0, where O : ImPA → ImQA

and O ≡ 0

Then problem (7) has a solution.

Assumptions (f4) and (f5) will secure that F is L-condensing, while (f6)–(f8)
will allow us to check that a generalized index of F is nontrivial, which will imply
the existence of a solution to problem (7).

Proof. We show that L and F satisfy assumptions of Theorem 1. For clarity we
divide the proof into some steps but first of all, notice that L is a Fredholm operator
of index i(L) = i(A) ≥ 0. Respective projections and the right inverse of L will be
denoted in a standard way by P , Q and KP . The following equalities hold: KerL =
KerA× {0}, KerP = KerPA ×L, ImL = ImA×L and ImQ = ImQA × {0}.

STEP 1. We prove that F is continuous.
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Let (z0, y0) ∈ E × L and ε > 0 be arbitrary. By the continuity of α, there is
δ1 > 0 such that ‖α(z0)− α(z)‖E′ < ε

4 for ‖z0 − z‖E < δ1.
Take

δ < min(δ1,
ε

4‖A2‖
,

ε

8Λ1
,

ε

4Λ2
)(8)

and assume that for some (z, y) ∈ E ×L,

δ > ‖(z0, y0)− (z, y)‖E×L = max(‖z0 − z‖E, ‖y0 − y‖L) =

= max

(

‖z0 − z‖E,

∫ T

0

‖y0(s)− y(s)‖Eds

)

.

Since

‖F (z0, y0)−F (z, y)‖E′×L=

max

(
∥

∥

∥

∥

∥

α(z0)−A2

(

∫ T

0

y0(s)ds

)

−α(z)+A2

(

∫ T

0

y(s)ds

)
∥

∥

∥

∥

∥

E′

,

∥

∥

∥

∥

f

(

·, z0 +

∫ ·

0

y0(s)ds, y0(·)

)

− f

(

·, z +

∫ ·

0

y(s)ds, y(·)

)∥

∥

∥

∥

L

)

and one can check, from (8), that

∥

∥

∥

∥

∥

α(z0)−A2

(

∫ T

0

y0(s)ds

)

− α(z) + A2

(

∫ T

0

y(s)ds

)∥

∥

∥

∥

∥

E′

≤
ε

2
,

∥

∥

∥

∥

f(·, z0 +

∫ ·

0

y0(s)ds, y0(·)) − f(·, z +

∫ ·

0

y(s)ds, y(·))

∥

∥

∥

∥

L

≤
ε

2
,

we obtain

‖F (z0, y0)− F (z, y)‖E′×L < ε,

which implies a continuity of F .

STEP 2. We show that for any open bounded subset V of E×L, the set F (V )
is also bounded, and F |clV is L-condensing (so, L-fundamentally restrictible).

Let S be an arbitrary subset of V . We check that µ′(F (S)) < µ′(L(S)). Let
χ(prE(S)) = ε and ξ(prL(S)) = δ. Then

µ′(L(S)) = max
[

χ′(prE′(L(S))), ξ(prL(L(S)))
]

= max
[

χ′(prE′L(S))), δ
]

.

Since KerL = ImPA is a finite dimensional space,

χ(prE(S)) = χ((IE − PA) ◦ prE(S)) = χ(KPA
◦A ◦ prE(S)).
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One knows that

χ(KPA
◦A ◦ prE(S)) ≤ ‖KPA

‖(χ
′,χ)χ′(A(prE(S)))

and

prE′(L(S)) = A(prE(S)),

thus

χ′(prE′(L(S))) ≥
χ(prE(S))

‖KPA
‖(χ′,χ)

=
ε

‖KPA
‖(χ′,χ)

.

This implies

µ′(L(S)) ≥ max

[

ε

‖KPA
‖(χ′,χ)

, δ

]

.

Now, calculate µ′(F (S)). Obviously,

µ′(F (S)) = max

(

χ′({α(z)−A2(
∫ T

0

y(s)ds); (z, y) ∈ S}),

ξ({f(·, z +

∫ (·)

0

y(s)ds, y(·)); (z, y) ∈ S})
)

.

Since α is a compact map, χ′({α(z)|z ∈ prE(S)}) = 0, hence, by a suitable prop-
erty of measures of noncompactness,

χ′({α(z)−A2(
∫ T

0

y(s)ds)|(z, y) ∈ S}) ≤ χ′({A2(
∫ T

0

y(s)ds)|y ∈ prL(S)}).

For every δ1 > 0 there is a finite (δ + δ1)–net in prL(S). Let yk be an arbitrary
element of this net. If ‖yk − y‖L ≤ δ + δ1 for some y ∈ prL(S), then
∥

∥

∥

∥

∥

A2

(

∫ T

0

yk(s)ds

)

−A2

(

∫ T

0

y(s)ds

)∥

∥

∥

∥

∥

E′

=

∥

∥

∥

∥

∥

A2

(

∫ T

0

yk(s)− y(s)ds

)∥

∥

∥

∥

∥

E′

≤

≤ ‖A2‖ ·

∥

∥

∥

∥

∥

∫ T

0

(yk(s)− y(s))ds

∥

∥

∥

∥

∥

E

≤ ‖A2‖ ·

∫ T

0

‖yk(s)− y(s)‖Eds =

= ‖A2‖ · ‖yk − y‖L <

< ‖A2‖(δ + δ1).

Therefore χ′(A2({
∫ T

0 y(s)ds|y ∈ prL(S)})) ≤ ‖A2‖δ < δ, what implies that

µ′(F (S)) ≤ max

(

δ, ξ({f(·, z +

∫ (·)

0

y(s)ds, y(·)); (z, y) ∈ S})
)

.
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Analogously, for every ε1 > 0 there is a finite (ε + ε1)–net in prE(S). Let zl be
its arbitrary element. If ‖yk − y‖L ≤ δ + δ1 and ‖zl − z‖ ≤ ε + ε1 hold for some
y ∈ prL(S) and z ∈ prE(S), then

∫ T

0

∥

∥

∥

∥

f

(

t, zl +

∫ t

0

yk(s)ds, yk(t)

)

− f

(

t, z +

∫ t

0

y(s)ds, y(t)

)
∥

∥

∥

∥

E

dt ≤

≤

∫ T

0

(

λ1(t)

∥

∥

∥

∥

zl +

∫ t

0

yk(s)ds− z −

∫ t

0

y(s)ds

∥

∥

∥

∥

E

+ λ2(t)‖yk(t)− y(t)‖E

)

dt ≤

∫ T

0

(

λ1(t)

(

‖zl − z‖E + ‖

∫ t

0

yk(s)ds−

∫ t

0

y(s)ds‖E

)

+λ2(t)‖yk(t)− y(t)‖E

)

dt ≤

≤

∫ T

0

λ1(t)(ε+ε1+ δ+δ1)dt +

∫ T

0

λ2(t)‖yk(t)−y(t)‖Edt ≤

≤ Λ1(ε+ε1+δ+δ1) + Λ2(δ + δ1).

Since ε1 and δ1 was arbitrary, we have

ξ(pr′L(F (S))) ≤ Λ1(ε + δ) + Λ2δ,

and consequently, using (f4),

µ′(F (S)) = max (χ′ (prE′(F (S))) , ξ (pr′L(F (S)))) < max

(

δ,
ε

‖KPA
‖(χ′,χ)

)

≤

≤ µ′(L(S)).

This implies that F |cl V is L-condensing map, hence there exists a compact L-
fundamental set for F |cl V containing 0.

STEP 3. We prove that, for some open bounded set V ⊂ E × L, the map
((1− λ)(I −Q) + Q) ◦ F has no coincidence points with L outside V (I denotes
the identity map in E′ × L). Let IE , IE′ be the identity maps on spaces E, E′

respectively
Let Z > 0 be such that α(E) ⊂ BE(0, Z). Choose R1 > 0 such that

R1 >
‖KPA

‖(Z + M exp(N) + NR exp(N))

1− ‖KPA
‖N exp(N)

and let

R2 := (M + N(R + R1)) exp(N).

Define

V :={(z, y)∈E×L| PA(z)∈BE(0, R) ∩KerA,

(IE − PA)(z)∈BE(0, R1) ∩KerPA, y ∈ BL(0, R2)}.
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Suppose, on the contrary, that there is λ ∈ [0, 1] such that

L(z, y) = ((1− λ)(I −Q) + Q) ◦ F (z, y).

It follows that Q ◦ F (z, y) = 0, since L(z, y) ∈ (I −Q)(E′ ×L). Moreover,

((1− λ)(I −Q) + Q) ◦ F (z, y) =

=

(

((1− λ)(IE′ −QA) + QA)
(

α(z)−A2(

∫ T

0

y(s)ds)

)

, f(·, z +

∫ ·

0

y(s)ds, y(·))

)

,

so we obtain that:

y(·) = f

(

·, z +

∫ ·

0

y(s)ds, y(·)

)

,(9)

A(z) = (1− λ)(IE′ −QA)

(

α(z)−A2(

∫ T

0

y(s)ds)

)

,(10)

and

QA

(

α(z)−A2(

∫ T

0

y(s)ds)

)

= 0.(11)

The last equality and assumption (f7) imply QA(α(z)) = 0, so by (f8),

‖PA(z)‖E < R.(12)

Consider the continuous map [0, T ] ∋ t 7→
∫ t

0
‖y(s)‖ds. From equality (9) and

assumption (f3) it follows that

∫ t

0

‖y(s)‖Eds =

∫ t

0

∥

∥

∥

∥

f

(

s, z+

∫ s

0

y(τ)dτ, y(s)

)∥

∥

∥

∥

E

ds≤

≤

∫ t

0

(

m(s)+n(s)

∥

∥

∥

∥

z+

∫ s

0

y(τ)dτ

∥

∥

∥

∥

E

)

ds ≤

∫ t

0

m(s)ds +

+

∫ t

0

n(s)(‖PA(z)‖E + ‖(IE − PA)(z)‖E)ds +

∫ t

0

(n(s)

∫ s

0

‖y(r)‖Edr)ds,

and, by the Gronwall inequality,

∫ t

0

‖y(s)‖Eds ≤ (M + N(‖PA(z)‖E + ‖(IE − PA)(z)‖E)) exp(

∫ t

0

n(s)ds) ≤

≤ (M + N(‖PA(z)‖E + ‖(IE − PA)(z)‖E)) exp(N).
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Combining this with (12) one obtains

‖y‖L ≤ (M + N(R + ‖(IE − PA)(z)‖E)) exp(N).(13)

Since (IE −PA)(z) = KPA
◦A(z), conditions (10), (13) and assumption (f5) imply

that

‖(IE − PA)(z)‖E = (1− λ)

∥

∥

∥

∥

∥

KPA
◦ (IE′ −QA)

(

α(z)−A2(

∫ T

0

y(s)ds)

)∥

∥

∥

∥

∥

E

≤

≤ (1− λ)

(

‖KPA
◦(IE′ −QA)(α(z))‖E + ‖KPA

◦(IE′ −QA)◦A2(

∫ T

0

y(s)ds)‖E

)

≤

≤(1−λ)

(

‖KPA
‖ · ‖(IE′ −QA)(α(z))‖E′ +

+‖KPA
‖ · ‖IE′ −QA‖ · ‖A2‖ · ‖

∫ T

0

y(s)ds‖E

)

≤

≤ ((1− λ)‖KPA
‖ · (Z + (M + N(R + ‖(IE − PA)(z)‖E)) exp(N)) .

Now, if λ = 1, then ‖(IE − PA)(z)‖ = 0 < R1 and if 0 ≤ λ < 1, then also
(using the above inequalities)

‖(IE − PA)(z)‖E ≤
‖KPA

‖(Z + M exp(N) + NR exp(N))

1− ‖KPA
‖N exp(N)

≤ R1,(14)

which jointly with (13) implies

‖y‖L < (M + N(R + R1)) exp(N) = R2.(15)

By inequalities (12), (14) and (15) we can conclude that all coincidence points
of L and maps ((1− λ)(I −Q) + Q) ◦ F , where λ ∈ [0, 1], are contained in V .

STEP 4. We use assumptions (f7) and (f8) to obtain that, for every (z, y) ∈ V ,

Q ◦ F |V ∩ImP (z, y) = Q(α(z), 0) = QA(α(z)),

and hence, IndO(Q ◦ F |V ∩ImP , V ∩ ImP ) is nontrivial.
Resuming, in succeeding steps we have proved that the Fredholm operator

L and the map F satisfy the assumptions of Theorem 1, so problem (6) has a
solution.
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