Archivum Mathematicum

Werner Kratz

Sturm-Liouville difference equations and banded matrices

Archivum Mathematicum, Vol. 36 (2000), No. 5, 499--505

Persistent URL: http://dml.cz/dmlcz/107764

Terms of use:

© Masaryk University, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

STURM-LIOUVILLE DIFFERENCE EQUATIONS AND BANDED MATRICES

Werner Kratz
Abteilung Angewandte Analysis, Universität Ulm
D- 89069 Ulm, Germany
Email: kratz@mathematik.uni-ulm.de

Abstract. In this paper we consider discrete Sturm-Liouville eigenvalue problems of the form

$$
L(y)_{k}:=\sum_{\mu=0}^{n}(-\Delta)^{\mu}\left\{r_{\mu}(k) \Delta^{\mu} y_{k+1-\mu}\right\}=\lambda \rho(k) y_{k+1}
$$

for $0 \leq k \leq N-n$ with $y_{1-n}=\cdots=y_{0}=y_{N+2-n}=\cdots=y_{N+1}=0$,
where N and n are integers with $1 \leq n \leq N$ and with the assumptions that $r_{n}(k) \neq 0, \rho(k)>0$ for all k. These problems correspond to eigenvalue problems for symmetric, banded matrices $\mathcal{A} \in \mathbb{R}^{(N+1-n) \times(N+1-n)}$ with band-width $2 n+1$. We present the following results: - a formula for the chracteristic polynomial of \mathcal{A}, which yields a recursion for its calculation - an oscillation theorem, which generalizes Sturm's well-known theorem on Sturmian chains, and - an inversion formula, which shows that every symmetric, banded matrix corresponds uniquely to a Sturm-Liouville eigenvalue problem of the above form.

AMS Subject Classification. 39A10, 39A12, 65F15, 15A18

Keywords. Sturm-Liouville equations, banded matrices, eigenvalue problems; Sturmian chains.

1. Introduction

We consider discrete Sturm-Liouville eigenvalue problems (with eigenvalue parameter λ) of the form

$$
\begin{equation*}
L(y)_{k}:=\sum_{\mu=0}^{n}(-\Delta)^{\mu}\left\{r_{\mu}(k) \Delta^{\mu} y_{k+1-\mu}\right\}=\lambda \rho(k) y_{k+1} \tag{1}
\end{equation*}
$$

for $0 \leq k \leq N-n$, where $\Delta y_{k}=y_{k+1}-y_{k}$, and with the boundary conditions

$$
\begin{equation*}
y_{1-n}=\cdots=y_{0}=y_{N+2-n}=\cdots=y_{N+1}=0 \tag{2}
\end{equation*}
$$

where N and n are fixed integers with $1 \leq n \leq N$ and where we always assume that

$$
\begin{equation*}
r_{n}(k) \neq 0 \quad \text { for all } k \tag{3}
\end{equation*}
$$

These problems correspond to eigenvalue problems for symmetric, banded matrices \mathcal{A} of size $(N+1-n) \times(N+1-n)$ with band-width $2 n+1$. In particular, \mathcal{A} is tridiagonal in the case $n=1$.

In this paper we essentially formulate and discuss our results while detailed proofs will be given in a forthcoming paper. The following theorems will be presented:

- a formula for the characteristic polynomial of \mathcal{A} (Theorem 1). This result yields also a recursion for its calculation. In the case $n=1$ we obtain the well-known algorithm, which is commonly used in numerical analysis to handle eigenvalue problems for tridiagonal matrices (cf. [[4], pp. 305; [8], pp. 134; [9], pp. 299]).
- an oscillation theorem (Theorem 2). This result generalizes Sturm's well-known theorem on Sturmian chains (cf. e.g. [[4], Theorem 8.5-1 or [8], Sätze 4.8 and 4.9]).
- an inversion formula (Theorem 3). This identity can be used to calculate the matrix \mathcal{A} when the discrete Sturm-Liouville operator from equation (1) is given and vice versa. Hence, every symmetric, banded matrix with bandwidth $2 n+1$ corresponds uniquely to such a Sturm-Liouville operator.

Our method and most of our results have continuous counterparts along the lines of the book [6] (cf. also [7]).

2. Discrete Sturm-Liouville equations and Associated Hamiltonian systems

In this section we give the connection between discrete Sturm-Liouville equations and Hamiltonian difference systems (cf. [[1], Proposition 5]), and we introduce the important notions of conjoined bases and focal points of it (cf. [[1], Definitions 1 and 3]). Moreover, the multiplicity of focal points is defined according to [3]. It will turn out that these multiplicities always equal one for Hamiltonian systems, which we treat here, i.e. which originate from Sturm-Liouville equations.

Lemma 1. A vector $y=\left(y_{k}\right)_{1-n}^{N+1} \in \mathbb{R}^{N+1-n}$ solves the Sturm-Liouville difference equation (1) for $0 \leq k \leq N-n$ if and only if (x, u) solves the Hamiltonian difference system

$$
\begin{equation*}
\Delta x_{k}=A x_{k+1}+B_{k} u_{k}, \Delta u_{k}=\left(C_{k}-\lambda \tilde{C}_{k}\right) x_{k+1}-A^{T} u_{k} \tag{4}
\end{equation*}
$$

for $0 \leq k \leq N$, where we use the following notation:
$A, B_{k}, C_{k}, \tilde{C}_{k}$ are $n \times n$-matrices defined by

$$
\begin{gathered}
A=\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 \\
0 & \cdots & 0 & 0
\end{array}\right), B_{k}=\frac{1}{r_{n}(k)} B \text { with } B=\operatorname{diag}(0, \ldots, 0,1), \\
C_{k}=\operatorname{diag}\left(r_{0}(k), \ldots, r_{n-1}(k)\right), \tilde{C}_{k}=\rho(k) \tilde{C} \text { with } \tilde{C}=\operatorname{diag}(1,0, \ldots, 0),
\end{gathered}
$$

for $0 \leq k \leq N$, and $x_{k}=\left(x_{k}^{(\nu)}\right)_{\nu=0}^{n-1}, u_{k}=\left(u_{k}^{(\nu)}\right)_{\nu=0}^{n-1} \in \mathbb{R}^{n}$ are defined by

$$
x_{k}^{(\nu)}=\Delta^{\nu} y_{k-\nu}, u_{k}^{(\nu)}=\sum_{\mu=\nu+1}^{n}(-\Delta)^{\mu-\nu-1}\left\{r_{\mu}(k) \Delta^{\mu} y_{k+1-\mu}\right\}
$$

for $0 \leq \nu \leq n-1,0 \leq k \leq N+1$ with suitably chosen $y_{N+2}, \ldots, y_{N+n+1}$ (which are used for $\left.u_{N+2-n}, \ldots, u_{N+1}\right)$.

Definition 1. Assume that (3) holds.
(i) A pair $(X, U)=\left(X_{k}, U_{k}\right)_{k=0}^{N+1}$ is called a conjoined basis of (4), if the real $n \times n$-matrices X_{k}, U_{k} solve (4) for $0 \leq k \leq N$, and if

$$
X_{0}^{T} U_{0}=U_{0}^{T} X_{0} \text { and } \operatorname{rank}\left(X_{0}^{T}, U_{0}^{T}\right)=n \text { holds. }
$$

(ii) Suppose that (X, U) is a conjoined basis of (4) and let $0 \leq k \leq N$. We say that X has no focal point in the interval $(k, k+1]$ if
$\operatorname{Ker} X_{k+1} \subset \operatorname{Ker} X_{k}$ and $D_{k}:=X_{k} X_{k+1}^{\dagger} \tilde{A} B_{k} \geq 0$ holds, where $\tilde{A}:=(I-A)^{-1}$. Moreover, if $\operatorname{Ker} X_{k+1} \subset \operatorname{Ker} X_{k}$ and $D_{k} \nsupseteq 0$, then ind D_{k} is called the multiplicity of the focal point of X in the interval $(k, k+1)$.

Remark 1.

(i) For a matrix M we denote by $\operatorname{Ker} M$ the kernel of M, ind M denotes the index of M, i.e., the number of negative eigenvalues of M, provided M is symmetric (and real), and M^{\dagger} denotes the Moore-Penrose inverse of M. Moreover, $M \geq 0$ means that M is symmetric (and real) and non-negative definite. Observe that D_{k} is symmetric, if $\operatorname{Ker} X_{k+1} \subset \operatorname{Ker} X_{k}$ (cf. [[1], Proposition 1]).
(ii) For our Sturm-Liouville difference equations the multiplicity of focal points, which we defined only in case $\operatorname{Ker} X_{k+1} \subset \operatorname{Ker} X_{k}$, always equals 1, because $\operatorname{rank} D_{k} \leq \operatorname{rank} B=1$.

3. Associated quadratic functionals and banded matrices

For $y=\left(y_{k}\right)_{k=1}^{N+1-n} \in \mathbb{R}^{N+1-n}$ we define a quadratic functional \mathcal{F}, which corresponds to the Sturm-Liouville operator $L(y)$ from equation (1), by

$$
\mathcal{F}(y):=\sum_{k=0}^{N} \sum_{\mu=0}^{n} r_{\mu}(k)\left(\Delta^{\mu} y_{k+1-\mu}\right)^{2},
$$

where we assume (2), i.e., $y_{1-n}=\cdots=y_{0}=y_{N+2-n}=\cdots=y_{N+1}=0$.
Lemma 2. The following formulas hold.
(i) $\mathcal{F}(y)=y^{T} \mathcal{A} y$, where $\mathcal{A} \in \mathbb{R}^{(N+1-n) \times(N+1-n)}$ is a symmetric, banded matrix with band-width $2 n+1$, which is defined by

$$
a_{k+1, k+1+t}=(-1)^{t} \sum_{\mu=t}^{n} \sum_{\nu=t}^{\mu}\binom{\mu}{\nu}\binom{\mu}{\nu-t} r_{\mu}(k+\nu)
$$

for $0 \leq t \leq n$ and $0 \leq k \leq N-n-t$.
(ii) $(\mathcal{A} y)_{k+1}=L(y)_{k}$ for $0 \leq k \leq N-n$ with $L(y)_{k}$ given by (1).

Observe that \mathcal{A} is a tridiagonal $N \times N$-matrix in the case $n=1$. In the sequel we use the notation:
$\mathcal{A}_{N+1}=\mathcal{A} \in \mathbb{R}^{(N+1-n) \times(N+1-n)}$ is the symmetric, banded matrix as defined in Lemma 2 , and $\mathcal{A}_{k} \in \mathbb{R}^{(k-n) \times(k-n)}$ is defined correspondingly for $n+1 \leq k \leq N+1$. Moreover, let $\mathcal{A}(\lambda):=\mathcal{A}-\lambda \mathcal{D}$ with
$\mathcal{D}:=\operatorname{diag}(\rho(0), \ldots, \rho(N-1))$, and as before, $\mathcal{A}_{k}(\lambda)$ is defined accordingly.
The following statement follows directly from Lemma 2.
Corollary 1. The discrete Sturm-Liouville eigenvalue problem (1) and (2) from Section 1 is equivalent with the algebraic eigenvalue problem (matrix pencil)

$$
\mathcal{A} y=\lambda \mathcal{D} y \text { or } \mathcal{A}(\lambda) y=0
$$

4. Results

We assume throughout that (X, U) is the so-called principal solution of (4), i.e., $X=X_{k}(\lambda), U_{k}=U_{k}(\lambda)$ satisfy (4) with

$$
\begin{equation*}
X_{0} \equiv 0, U_{0} \equiv I \tag{5}
\end{equation*}
$$

Moreover, as in the previous sections, $y=\left(y_{k}\right)_{k=1}^{N+1-n} \in \mathbb{R}^{N+1-n}$ satisfies (2), i.e., $y_{1-n}=\cdots=y_{0}=y_{N+2-n}=\cdots=y_{N+1}=0$, and

$$
\mathcal{F}(y)=\sum_{k=0}^{N} \sum_{\mu=0}^{n} r_{\mu}(k)\left(\Delta^{\mu} y_{k+1-\mu}\right)^{2}, \quad D_{k}=X_{k} X_{k+1}^{\dagger} \tilde{A} B_{k}\left(=D_{k}(\lambda)\right) .
$$

First, we cite some auxiliary results mainly from [1].

4.1. Auxiliary results

Lemma 3. The following assertions hold, provided (3) and (5) are fulfilled.
(i) X_{0}, \ldots, X_{n} are independent of λ.
(ii) $\operatorname{det} X_{k}=0, D_{k}=0, \operatorname{Ker} X_{k+1} \subset \operatorname{Ker} X_{k}$ for $k=0, \ldots, n-1$.
(iii) $\operatorname{det} X_{n}=\left\{r_{n}(0) \cdots r_{n}(n-1)\right\}^{-1} \neq 0$.
(iv) $\operatorname{det} X_{k}(\lambda) \neq 0$ for $n \leq k \leq N+1$, if λ is sufficiently small, provided $\rho(k)>0$ for $0 \leq k \leq N-n$.
(v) $D_{k}(\lambda)=\frac{1}{r_{n}(k)} \frac{\operatorname{det} X_{k}(\lambda)}{\operatorname{det} X_{k+1}(\lambda)} B$, provided $\operatorname{det} X_{k+1}(\lambda) \neq 0$, for $n \leq k \leq N$.

Proof. The assertions (i) and (iii) are derived in a forthcoming paper. The assertion (ii) is contained in [[1], Proposition 6], and (iv) follows from [[1], Satz 9], because

$$
\mathcal{F}(y)-\lambda \sum_{k=0}^{N-n} \rho(k) y_{k+1}^{2}>0 \text { for } \lambda \leq \lambda_{0}
$$

if $y \neq 0$ and $\rho(k)>0$ for $0 \leq k \leq N-n$. Finally, the assertion (v) is shown in [[2], Lemma 4.1].

Observe that $X_{k}(\lambda), U_{k}(\lambda)$ are matrix-polynomials in λ, so that $D_{k}(\lambda)$ is a rational function of λ as follows from Lemma 3 (v). Hence, if $\rho(k)>0$ for all k, then $\operatorname{det} X_{k}(\lambda) \neq 0$ for $n \leq k \leq N+1$ and all $\lambda \in \mathbb{R} \backslash \mathcal{N}$ with a finite set \mathcal{N}. The next result follows from [[1], Proposition 1] and Lemma 3.

Lemma 4. (Picone's identity) Suppose (2), (3), and (5), and assume that $\operatorname{det} X_{k}(\lambda) \neq 0$ for $n \leq k \leq N+1$. Then

$$
\mathcal{F}(y)-\lambda \sum_{k=0}^{N-n} \rho(k) y_{k+1}^{2}=\sum_{k=n}^{N} z_{k}^{T} D_{k} z_{k}
$$

where $z_{k}=u_{k}-U_{k}(\lambda) X_{k}^{-1}(\lambda) x_{k}$ with x_{k}, u_{k} as in Lemma 1.
The next statement with the notation of Section 3 follows immediately from Lemma 3 and Lemma 4.

Corollary 2. Under the assumptions of Lemma 4

$$
y^{T}\left(\mathcal{A}_{N+1}-\lambda \mathcal{D}\right) y=\sum_{k=n}^{N} r_{n}(k) \frac{\operatorname{det} X_{k+1}(\lambda)}{\operatorname{det} X_{k}(\lambda)} w_{k+1-n}^{2}
$$

where $w_{\nu}=y_{\nu}+\sum_{\mu=\nu+1}^{\nu+n} \alpha_{\mu} y_{\mu}$ with suitable coefficients $\alpha_{\mu}=\alpha_{\mu}(\nu, \lambda)$. Hence, $w=T y$ with $T=\left(\begin{array}{ccc}1 & \star & \star \\ \vdots & \ddots & \star \\ 0 & \cdots & 1\end{array}\right)$, so that $\operatorname{det} T=1$.

4.2. Main Results

First, the Lemmas 3 and 4 with Crollary 2 yield our first result, which states a formula for the characteristic polynomial of \mathcal{A} and its recursive calculation.
Theorem 1. (Recursion) Assume (3), (5), and suppose that

$$
\begin{equation*}
\rho(k)>0 \quad \text { for } \quad 0 \leq k \leq N-n \tag{6}
\end{equation*}
$$

holds. Then, with the notation of Section 3,

$$
\begin{equation*}
\operatorname{det}(\mathcal{A}-\lambda \mathcal{D})=r_{n}(0) \cdots r_{n}(N) \operatorname{det} X_{N+1}(\lambda) \tag{7}
\end{equation*}
$$

for all $\lambda \in \mathbb{R}$. Moreover, by (4) and (5), $X_{N+1}(\lambda)$ is given by the recursion

$$
X_{k+1}=\tilde{A}\left(X_{k}+B_{k} U_{k}\right), U_{k+1}=\left(C_{k}-\lambda \tilde{C}_{k}\right) X_{k+1}+\left(I-A^{T}\right) U_{k}
$$

for all $0 \leq k \leq N$ with $X_{0}=0, U_{0}=I$.
Proof. By Lemma 3 and Lemma 4 we have that

$$
\begin{aligned}
\operatorname{det} \mathcal{A}(\lambda) & =r_{n}(n) \frac{\operatorname{det} X_{n+1}(\lambda)}{\operatorname{det} X_{n}(\lambda)} \cdots r_{n}(N) \frac{\operatorname{det} X_{N+1}(\lambda)}{\operatorname{det} X_{N}(\lambda)} \\
& =r_{n}(0) \cdots r_{n}(N) \operatorname{det} X_{N+1}(\lambda)
\end{aligned}
$$

Next, the general oscillation theorem for Hamiltonian systems from reference [3] implies a corresponding result here.
Theorem 2. (Oscillation) Under the assumptions of Theorem 1 let $\lambda \in \mathbb{R}$ with $\operatorname{det} X_{k}(\lambda) \neq 0$ for $n \leq k \leq N+1$. Then, the number of eigenvalues (including multiplicities) of the eigenvalue problem (1), (2) from Section 1, which are less than λ, equals the number of focal points of $X(\lambda)$ in the interval $(0, N+1]$.

Remark 2. Observe first, that the multiplicity of an eigenvalue λ is given by the rank of the kernel of $X_{N+1}(\lambda)$. Hence, it is an integer in $\{1, \ldots, n\}$. Moreover, by Remark 1 , the focal points of $X(\lambda)$ are all simple, i.e., of multiplicity one, and their number in $(0, N+1$] equals the number of the elements of the set

$$
\left\{k: n \leq k \leq N \text { with } r_{n}(k) \frac{\operatorname{det} X_{k+1}(\lambda)}{\operatorname{det} X_{k}(\lambda)}<0\right\}
$$

The next corollary is just another formulation of Theorem 2. It generalizes the well-known theorem of Sturm on "Sturmian chains" (cf. [[4], Theorem 8.5-1 and [8], Sätze 4.8 and 4.9). Moreover, it yields the Poincaré separation theorem for banded matrices (cf. [[5], 4.3.16 Corollary]).
Corollary 3. Under the assumptions of Theorem 2 and the previous notation define polynomials $f_{k}(t)$ by

$$
\begin{equation*}
f_{k}(t):=\operatorname{det} \mathcal{A}_{k}(t) \quad \text { for } n+1 \leq k \leq N+1 \quad \text { and } \quad f_{n}(t) \equiv 1 \tag{8}
\end{equation*}
$$

Then the number of zeros of $f_{N+1}(t)$ (including multiplicities), which are less than λ, equals the number of sign changes of $\left\{f_{k}(\lambda)\right\}$ for $n \leq k \leq N+1$, i.e., $\left\{f_{k}(\lambda)\right\}$ is a "Sturmian chain".

Proof. The assertion follows from Theorem 1 and Theorem 2, because

$$
f_{k}(\lambda)=r_{n}(0) \cdots r_{n}(k-1) \operatorname{det} X_{k}(\lambda)
$$

for $n \leq k \leq N+1$, so that

$$
\frac{f_{k+1}(\lambda)}{f_{k}(\lambda)}=r_{n}(k) \frac{\operatorname{det} X_{k+1}(\lambda)}{\operatorname{det} X_{k}(\lambda)}
$$

Finally, we have the following inversion formula, where the "easy" part is the assertion (i) of Lemma 2, while the main formula will be proved in detail via generating functions in a forthcoming paper as already mentioned in the introduction.

Theorem 3. (Inversion) The following inversion formulas hold:

$$
\begin{equation*}
r_{\mu}(k+\mu)= \tag{9}
\end{equation*}
$$

$$
(-1)^{\mu} \sum_{s=\mu}^{n}\left\{\binom{s}{\mu} a_{k+1, k+1+s}+\sum_{l=1}^{s-\mu} \frac{s}{l}\binom{\mu+l-1}{l-1}\binom{s-l-1}{s-\mu-l} a_{k+1-l, k+1-l+s}\right\}
$$

for $0 \leq \mu \leq n$ and all k, if and only if the $a_{\mu \nu}$ are given by

$$
\begin{equation*}
a_{k+1, k+1+t}=(-1)^{t} \sum_{\mu=t}^{n} \sum_{\nu=t}^{\mu}\binom{\mu}{\nu}\binom{\mu}{\nu-t} r_{\mu}(k+\nu) \tag{10}
\end{equation*}
$$

for $0 \leq t \leq n$ and all k.

References

1. M. Bohner, Zur Positivität diskreter quadratischer Funktionale, Dissertation, Ulm, (1995).
2. M. Bohner and O. Došlý, Positivity of block tridiagonal matrices, SIAM J. Matrix Anal. Appl. 20 (1999), 182-195.
3. M. Bohner, O. Došlý and W. Kratz, An oscillation theorem for discrete eigenvalue problems, to appear.
4. G.H. Golub and C.F. Van Loan, Matrix computations, John Hopkins University Press, Baltimore, (1983).
5. R.A.Horn and C.A. Johnson, Matrix analysis, Cambridge University Press, Cambridge, (1991).
6. W. Kratz, Quadratic functionals in variational analysis and control theory, Akademie Verlag, Berlin, (1995).
7. W.T. Reid, Sturmian theory for ordinary differential equations, Springer Verlag, New York, (1980).
8. H.R. Schwarz, H. Rutishauser and E. Stiefel, Numerik symmetrischer Matrizen, Teubner Verlag, Stuttgart, (1972).
9. J.H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, (1965).
