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Abstract. Sufficient conditions are obtained for the existence of a unique
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Let 〈X, ‖·‖〉 be a Banach space, ℓ∞(X) be the Banach space of bounded se-
quences x = (xk)+∞

k=0 ⊂ X with the norm ‖x‖∞ := supk≥0 ‖xk‖, and ℓ1(X)

be the Banach space of summable sequences x = (xk)+∞
k=0 ⊂ X with the norm

‖x‖1 :=
∑

k≥0 ‖xk‖.
Consider the linear difference equation

x(n + 1) − x(n) = (Lx) (n) + f(n), n = 0, 1, 2, . . .(1)

together with the N -periodic (N ≥ 1) condition

x(n + N) = x(n), n = 0, 1, 2, . . . .(2)

In (1), f ∈ ℓ1(X), and L : ℓ∞(X) → ℓ1(X) is a linear continuous operator.
Here and below, L is assumed to leave invariant the subspace of sequences having
property (2), and f is supposed to satisfy (2).

Remark 1. The use of special sequence spaces when posing problem (1), (2), in
fact, can be avoided by restricting the consideration to problem (3), (4) or equation
(6); see below. We have began with such a problem setting in order to note at this
point that results similar to those to follow can be obtained for problems other
than the periodic one.

⋆ Research supported in part by OMFB, Grant UK-3/99



576 ANDREI RONTO

The invariance condition above implies that there is a one-to-one correspon-
dence between solutions of (1), (2) and those of the problem

x(n + 1) − x(n) =
N−1∑

ν=0

Ln,νx(ν) + f(n), 0 ≤ n ≤ N − 1,(3)

x(N) = x(0),(4)

where (Ln,ν)
N

n,ν=0 ⊂ B(X) are certain linear operators such that

LN,ν = L0,ν for all ν ∈ {0, 1, . . . , N − 1}.(5)

Here and below, the symbol B(X) stands for the algebra of all bounded linear
operators in X .

Due to property (5), knowing solutions of problem (3), (4), one can reconstruct
those of (1), (2) by extending them periodically to all the non-negative integers.
Furthermore, the periodic nature of problem (3), (4) allows one to consider it
as a single linear equation with operator “matrices” acting in the space XN of
“vectors” (x(0), x(1), . . . , x(N − 1)):

(∆x)(n) =
N−1∑

ν=0

Ln,νx(ν) + f(n), 0 ≤ n ≤ N − 1,(6)

where

(∆x) (n) :=

{

x(n + 1) − x(n) for 0 ≤ n < N − 1,

x(0) − x(n) for n = N − 1.
(7)

The latter circumstance will be essentially used below; we shall even identify
L with the appropriate mapping XN → XN :

(Lx)(n) =
N−1∑

ν=0

Ln,νx(ν), 0 ≤ n < N.

Lemma 1. Assume that the operator ΛL,N : X → X defined with the formula

ΛL,N :=
N−1∑

n=0

N−1∑

ν=0

Ln,ν(8)

is invertible. Then x = (x(0), x(1), . . . , x(N − 1)) is a solution of equation (6) if,

and only if there exists some a ∈ X such that the equalities

x(n) = (HL,N,lLx) (n) + fL,N,l(n) + a, 0 ≤ n ≤ N − 1,(9)

N−1∑

n=0

[
N−1∑

ν=0

Ln,νx(ν) + f(n)

]

= 0(10)
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hold with some l ∈ {0, 1, . . . , N−1}, where the linear mapping HL,N,l : XN → XN

is defined with the formula

(HL,N,lx) (n) :=







N−1∑

k=l

[

x(k) −
N−1∑

ν=0

Lk,νΛ−1
L,N

N−1∑

j=0

x(j)

]

for n = 0,

n−1∑

k=l

[

x(k) −
N−1∑

ν=0

Lk,νΛ−1
L,N

N−1∑

j=0

x(j)

]

for 0 < n < N,

(11)

and

fL,N,l := HL,N,lf.(12)

Proof. Assume that x = (x(0), x(1), . . . , x(N − 1)) satisfies (9) and (10). Then, for
1 ≤ n < N − 1, we have

x(n) = a + fL,N,l(n) +
n−1∑

k=l

N−1∑

ν=0

Lk,νx(ν)

−
n−1∑

k=l

N−1∑

ν=0

Lk,νΛ−1
L,N

N−1∑

k=0

N−1∑

ν=0

Lk,νx(ν)(13)

= a + fL,N,l(n) +
n−1∑

k=l

N−1∑

ν=0

Lk,νx(ν) +
n−1∑

k=l

N−1∑

ν=0

Lk,νΛ−1
L,N

N−1∑

k=0

f(k),(14)

whence

(15) x(n + 1) − x(n) =
N−1∑

ν=0

Ln,νx(ν) +
N−1∑

ν=0

Ln,νΛ−1
L,N

N−1∑

k=0

f(k)

+ fL,N,l(n + 1) − fL,N,l(n).

It is easy to see from definition (11) that, when 1 ≤ n ≤ N−1, (12) is equivalent
to the relation

fL,N,l(n) =
n−1∑

k=l

[

f(k) −
N−1∑

ν=0

Lk,νΛ−1
L,N

N−1∑

j=0

f(j)

]

,(16)

whence

fL,N,l(n + 1) − fL,N,l(n) = f(n) −
N−1∑

ν=0

Ln,νΛ−1
L,N

N−1∑

k=0

f(k)(17)

for 0 < n < N . Combining (15) and (17), we show that (6) holds for 1 ≤ n < N−1.
The case n = 0 is considered analogously.
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Let us now suppose that equality (6) holds. Then, we have

N−2∑

n=0

(N−1∑

ν=0

Ln,νx(ν) + f(n)

)

=
N−2∑

n=0

[x(n + 1) − x(n)] = x(N − 1) − x(0).(18)

According to definition (7), equation (6) for n = N − 1 means that

N−1∑

ν=0

LN−1,νx(ν) + f(N − 1) = x(0) − x(N − 1),

which, combined with (18), implies (10).

Furthermore, in view of (11) and (10), for n ∈ {1, 2, . . . , N − 1}, we have

(HL,N,lLx) (n) =
n−1∑

k=l

[N−1∑

ν=0

Lk,νx(ν) −
N−1∑

µ=0

Lk,µΛ−1
L,N

N−1∑

j=0

N−1∑

ν=0

Lj,νx(ν)

]

=
n−1∑

k=l

[N−1∑

ν=0

Lk,νx(ν) +
N−1∑

µ=0

Lk,µΛ−1
L,N

N−1∑

j=0

f(j)

]

.(19)

Carrying out the manipulations marked as (13), (14), and (15) in the reverse
order and taking into account (19), we find that equality (9) holds for 0 < n ≤
N − 1. When n = 0, in view of (11), identity (19) is replaced by the relation

(HL,N,lLx) (0) =
N−1∑

k=l

[N−1∑

ν=0

Lk,νx(ν) +
N−1∑

µ=0

Lk,µΛ−1
L,N

N−1∑

j=0

f(j)

]

,

and a similar argument leads one to (9) in this case as well. ⊓⊔

Remark 2. Lemma 1 is similar to some statements from [3], [4], and [5].

Lemma 2. The identity

(HL,N,lLx) (n) = ΩL,N,l








x(0)
x(1)

...

x(N − 1)








(20)
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holds for 0 ≤ n < N , where ΩL,N,l : XN → XN is given by the matrix

ΩL,N,l =






















N−1∑

k=l

(

Lk,0 − L#
k

N−1∑

j=0

Lj,0

)

. . .
N−1∑

k=l

(

Lk,N−1 − L#
k

N−1∑

j=0

Lj,N−1

)

0∑

k=l

(

Lk,0 − L#
k

N−1∑

j=0

Lj,0

)

. . .
0∑

k=l

(

Lk,N−1 − L#
k

N−1∑

j=0

Lj,N−1

)

1∑

k=l

(

Lk,0 − L#
k

N−1∑

j=0

Lj,0

)

. . .
1∑

k=l

(

Lk,N−1 − L#
k

N−1∑

j=0

Lj,N−1

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−2∑

k=l

(

Lk,0 − L#
k

N−1∑

j=0

Lj,0

)

. . .
N−2∑

k=l

(

Lk,N−1 − L#
k

N−1∑

j=0

Lj,N−1

)






















(21)

and

L#
k :=

N−1∑

ν=0

Lk,νΛ−1
L,N , 0 ≤ k ≤ N − 1.(22)

Proof. Considering (11), it is not difficult to verify by computation that, for 1 ≤
n ≤ N − 1,

(HL,N,lLx) (n) =
N−1∑

ν=0

[n−1∑

k=l

Lk,ν −
N−1∑

j=0

n−1∑

k=l

L#
k Lj,ν

]

x(ν),(23)

where L#
k (0 ≤ k ≤ N − 1) are the linear operators given by (22) and (8). This,

together with a similar observation for n = 0, leads one to formula (21) for the
operator “matrix” ΩL,N,l in equality (20). ⊓⊔

Introduce the notation

diag XN :=
{
(a, a, . . . , a
︸ ︷︷ ︸

N

) : a ∈ X
}
.(24)

Lemma 3. diag XN ⊂ kerHL,N,lL.

Proof. According to equality (23) established in the proof of Lemma 2, we have

(HL,N,lLa) (n) =
N−1∑

ν=0

[n−1∑

k=l

Lk,ν −
N−1∑

j=0

n−1∑

k=l

L#
k Lj,ν

]

a

=
n−1∑

k=l

[N−1∑

ν=0

Lk,ν − L#
k

N−1∑

j=0

N−1∑

ν=0

Lj,ν

]

a,
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whence, by definitions (8) and (22),

(HL,N,lLa) (n) =
n−1∑

k=l

[N−1∑

ν=0

Lk,ν − L#
k ΛL,N

]

a = 0

for all a ∈ X and n ∈ {1, 2, . . . , N − 1}.
The remaining case when n = 0 is considered in a similar way. ⊓⊔

Let us now put ρL(N) := r (ΩL,N,l), the spectral radius of the linear operator
ΩL,N,l : XN → XN defined with formula (21). The notation is justified by the
following

Lemma 4. ρL(N) is independent of l.

Proof. Let us first prove the following claim: If A : XN → XN and B : XN → XN

are bounded linear mappings such that σ(B) ⊂ σ(A) and imB ⊂ kerA, then

σ(A + B) = σ(A).
Indeed, let λ 6∈ σ(A) be a regular point for A. Then the equation

Ax − λx = y − φ

has the unique solution x(y − φ, λ) := −λ−1[y − φ + λ−1A(y − φ) + . . . ] for all y
and φ. Consider the equation

φ = Bx(y − φ, λ),(25)

or, which is the same,

φ = λ−1B
+∞∑

ν=0

λ−νAν(φ − y).

Since, obviously, we are seeking for a φ in imB, the assumption that imB ⊂
kerA yields

∑+∞

ν=0 λ−νAνφ = φ and, therefore, equation (25) rewrites as

Bφ − λφ = B
+∞∑

ν=0

λ−νAνy.(26)

Since λ 6∋ σ(A) ⊃ σ(B), we see that (26), and hence (25), has a unique solution,
say φ(y, λ). Thus, for every y, the equation

Ax − λx = y − φ(y, λ)(27)

has a unique solution and, moreover, by virtue of the form of equation (25), the
solution Ξ(y, λ) := x (y − φ(y, λ), λ) of (27) also satisfies the equation

Ax − λx = y − Bx.(28)
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Let us prove that (28) cannot have any other solutions. Indeed, in the contrary
case, when (28) has another solution, say z, the difference δ := Ξ(y, λ)−z satisfies
the equality

Aδ − λδ = −Bδ.(29)

Since, by assumption, imB is contained in kerA, relation (29) implies that A2δ =
λAδ. Therefore, Aδ = 0, because otherwise Aδ would be an eigen-vector of A
with the eigen-value λ, which has been assumed to be regular for A. The same
equality (29) then yields Bδ = λδ, which can be the case only when δ = 0, because
λ 6∈ σ(B). Hence, z and Ξ(y, λ) coincide.

The argument above shows that, for λ 6∈ σ(A) and arbitrary y, equation (28)
has a unique solution, whose continuous dependence upon y is obvious. Therefore,
σ(A) ⊃ σ(A + B).

Conversely, if λ 6∈ σ(A + B), then there exists a bounded inverse operator
(A + B − λI)−1, where I stands for the unity in B(X). Since, by assumption,
AB = 0, we have

(A − λI)(B − λI) = −λ[A + B − λI],(30)

an invertible operator. Assume that B − λI is non-invertible. Then, according to
a well-known criterion (see, e. g., Theorem 2 in [1, p. 209]), there is some sequence
(uk)+∞

k=1 such that ‖uk‖ = 1 and ‖Buk − λuk‖ ≤ 1
k

for all k ≥ 1. On the other
hand, since operator (30) is invertible, the same reasoning shows the existence of a
constant c ∈ (0,+∞) such that ‖(A− λI)(B − λI)x‖ ≥ c‖x‖ for all x. Combining
these two statements, we obtain that, for all k ≥ 1,

c ≤ ‖(A − λI)(B − λI)uk‖ ≤ ‖A − λI‖ · ‖Buk − λuk‖ ≤
‖A − λI‖

k
,

which is impossible. Therefore, B − λI is invertible and, by (30), so does A − λI,
i. e., λ 6∈ σ(A). Hence, σ(A + B) ⊃ σ(A), and the proof of the claim is complete.

Returning to our lemma, one can readily check that matrix (21) corresponding
to operator (11) has the property

[ΩL,N,l1x − ΩL,N,l2x](n) =

l2∑

k=l1

N−1∑

ν=0

[

Lk,ν − L#
k

N−1∑

j=0

Lj,ν

]

x(ν)

for all n ∈ {0, 1, . . . , N − 1}. It is then easy to verify that σ (ΩL,N,l1 − ΩL,N,l2) =

σ(β), where β :=
∑l2

k=l1

∑N−1
ν=0 [Lk,ν −L#

k

∑N−1
j=0 Lj,ν ]. Recalling notations (8) and

(22), we see that, in fact, β = 0.
Finally, putting A := ΩL,N,l1 and B := ΩL,N,l2 − ΩL,N,l1 in the claim above,

we obtain that σ(ΩL,N,l1) = σ(ΩL,N,l2) for all l1 and l2 in {0, 1, . . . , N − 1}. ⊓⊔

Lemma 5. ρL(N) = r(QL,N ), where QL,N : XN−1 → XN−1 is given by

(QL,Nx) (n) :=
n−1∑

k=0

N−1∑

ν=0

(

Lk,ν − L#
k

N−1∑

j=0

Lj,ν

)

x(ν), 1 ≤ n ≤ N − 1.(31)
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Proof. By virtue of Lemma 4, we can put l = 0 in (11), in which case, as is easy
to see, the first row of matrix (21) is filled with zeroes. Thus, ΩL,N,0 =

[
0 0
M QL,N

]

with a certain M and, obviously, r(ΩL,N,0) = r(QL,N ). ⊓⊔

Now we can apply the above lemmata to obtain the following theorem.

Theorem 1. Assume that operator (8) is invertible and, moreover, ρL(N) < 1.
Then equation (6) has a unique solution for every f : {0, 1, . . . , N − 1} → X.

Proof. By Lemma 1, every solution of (6), if there are any, satisfies relations (9) and
(10) for some a ∈ X and, conversely, a solution of (9) is also that of (6) whenever
a is such that (10) holds. Let us fix some a ∈ X and consider the corresponding
equation (9).

Introduce the sequence

ym+1(n) = a + fL,N,l(n) + (HL,N,lLym) (n), 0 ≤ n < N, m ≥ 0,

where fL,N,l : {0, 1, . . . , N − 1} → X is defined by (12) and the starting member
is arbitrary. We have:

ym+1 = a + fL,N,l + HL,N,lLym

= a + fL,N,l + HL,N,lL [a + fL,N,l + HL,N,lLym−1] ,

which, by Lemma 3, yields

ym+1 = a + fL,N,l + HL,N,lLfL,N,l + (HL,N,lL)
2
ym−1.

Proceeding similarly, we arrive at the equality

ym+1 = a +
m∑

ν=0

(HL,N,lL)ν fL,N,l + (HL,N,lL)m+1 y0.

It follows immediately from Lemma 2 that r (HL,N,lL) = ρL(N) and, therefore,

our assumption implies the convergence of the series
∑+∞

ν=0 (HL,N,lL)
ν
fL,N,l, which

means that equation (9) has a unique solution for every a ∈ X .
Furthermore, according to Lemma 1, a certain x : {0, 1, . . . , N − 1} → X is a

solution of equation (6) if, and only if

x = a +
+∞∑

ν=0

(HL,N,lL)ν fL,N,l(32)

with some a ∈ X such that (10) holds. However, it is easy to see that, for x given
by (32), relation (10) is equivalent to the equality

a = −Λ−1
L,N

N−1∑

n=0

(

f(n) +

[

L
+∞∑

ν=0

(HL,N,lL)
ν
fL,N,l

]

(n)

)

.(33)
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Inserting (33) into (32) and expanding notation (12), we obtain the unique solution
of equation (6) in the form of the series

(34) x =
+∞∑

ν=0

[

(HL,N,lL)
ν
HL,N,lf − Λ−1

L,N

N−1∑

k=0

[L (HL,N,lL)
ν
HL,N,lf ] (k)

]

− Λ−1
L,N

N−1∑

k=0

f(k),

and the proof of the theorem is thus complete. ⊓⊔

Remark 3. Theorem 1 is in the spirit of Corollary 5.2 from [2] and Corollary 4.2.1
from [6] established for linear systems of ordinary differential equations.

Let us say that some problem does not possess uniqueness property if it either
has no solutions or has more than one solution.

Corollary 1. Assume that {Lk,ν}
N−1
k,ν=0 ⊂ B(X) are some linear operators such

that the corresponding mapping (8) is invertible. Then, for the boundary value

problem

x(n + 1) − x(n) = λ
N−1∑

ν=0

Ln,νx(ν) + f(n), 0 ≤ n ≤ N − 1,(35)

x(N) = x(0)(36)

not to possess the uniqueness property for some f : {0, 1, 2, . . . , N − 1} → X, it is

necessary that the parameter λ ∈ (−∞,+∞) satisfy the inequality

|λ| ≥ 1/ρL(N).

Proof. It suffices to replace system (35), (36) by an equation of type (6) and apply
Theorem 1. ⊓⊔

Corollary 2. Assume that the operators {Lk,ν}
N−1
k,ν=0 ⊂ B(X) satisfy the condition

N−1∑

ν=0

Ln,ν = A for all n ∈ {0, 1, . . . , N − 1}(37)

with some invertible A ∈ B(X) and, moreover, the spectral radius of the operator
















L1,1 −
1

N

N−1∑

j=0

Lj,1 . . . L1,N−1 −
1

N

N−1∑

j=0

Lj,N−1

1∑

k=0

Lk,1 −
2

N

N−1∑

j=0

Lj,1 . . .
1∑

k=0

Lk,N−1 −
2

N

N−1∑

j=0

Lj,N−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
N−2∑

k=0

Lk,1 −
N − 1

N

N−1∑

j=0

Lj,1 . . .
N−2∑

k=0

Lk,N−1 −
N − 1

N

N−1∑

j=0

Lj,N−1

















(38)
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is less than one. Then, for every f ∈ diag XN+1, problem (3), (4) has a unique

solution, and this solution belongs to diag XN+1:

x(n) = −A−1f for all n ∈ {0, 1, 2, . . . , N}.

Proof. As before, instead of (3), (4), we consider equation (6).
Taking into account notations (22) and (8), it is not difficult to verify that,

under assumption (37), ΛL,N = N · A and L#
k = 1

N
I (0 ≤ k ≤ N − 1), whence

we see that the operator defined by matrix (38) is nothing but QL,N given by
(31). Theorem 1, together with Lemma 5, then guarantees the unique solvability
of equation (6), whose solution can be represented as series (34).

By Lemma 3, the relation f ∈ diag XN yields HL,N,lf = 0, whence, considering

(34), we conclude that the solution of (6) is equal identically to −Λ−1
L,N

∑N−1
k=0 f(k).

Returning to problem (3), (4), we obtain the conclusion desired. ⊓⊔

Remark 4. The condition imposed on ρL(N) in Theorem 1, generally speaking,
cannot be weakened. Indeed, consider the simplest scalar difference equation

x(n + 1) = −x(n) (n ≥ 0).(39)

The 2-periodic boundary value problem for equation (39) can be interpreted as (6)
with N = 2, f(0) = f(1) = 0, L0,1 = L1,0 = 0, and L0,0 = L1,1 = −2. It is obvious
that, in this case, ΩL,N,0 =

[
0 0
−1 1

]
and, thus, ρL(2) = 1. On the ther hand, every

non-trivial solution of (39) is periodic with period 2. Hence, the corresponding
inhomogeneous problem does not have uniqueness property and, therefore, the
inequality ρL(2) < 1 in Theorem 1 [resp., |λ| ≥ ρL(2) in Corollary 1] cannot be
replaced by ρL(2) ≤ 1 [resp., |λ| > ρL(2)].

One can also construct similar examples for an arbitrary period N ≥ 2 (this is
not done here).

Acknowledgement. The author wishes to express his sincere gratitude to
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