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Abstract. Sufficient conditions are established for the existence of pos-
itive solutions and oscillation of bounded solutions of p-th order neutral
difference equations of the form

∆
p[xn + anxτ(n)] + δ qnf(xσ(n)) = hn, n ∈ N(n0 ),

where δ = ±1, N(n0 ) = {n0, n0 + 1, . . . }, n0 is fixed in N = {1, 2, . . . },
a, q, h : N(n0 ) → R, τ, σ ∈ N(n0 ) → N with τ (n) < n and lim

n→∞

τ (n) =

lim
n→∞

σ(n) = ∞. Combining the sufficient conditions we are able to give

necessary and sufficient conditions for every bounded solution of the above
equation to be oscillatory or almost oscillatory. Our results improve and
generalize several oscillation criteria obtained previously.

AMS Subject Classification. 39A10, 34A11, 34A99
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1. Introduction

In this paper we consider p-th order neutral difference equations of the form

∆p[xn + anxτ(n)] + δ qnf(xσ(n)) = hn, n ∈ N(n0 ),(1)
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where δ = ±1, N(n0 ) = {n0, n0 + 1, . . . }, n0 is fixed in N = {1, 2, . . .}, a, q, h :N(n0 ) → R, τ, σ ∈ N(n0 ) → N with τ(n) < n and lim
n→∞

τ(n) = lim
n→∞

σ(n) = ∞.

Throughout this paper it is assumed that f ∈ C(R,R).
In what follows n(s) denotes the factorial function; that is, n(0) = 1 and n(s) =

n(n − 1) · · · (n − s + 1) for any integer s ≥ 1.
As usual a solution {xn} of equation (1) is called oscillatory if for a given

M ≥ 0, there exists n ≥ M such that xnxn+1 ≤ 0, and it is said to be almost
oscillatory if {xn} is either oscillatory or satisfies lim

n→∞
xn = 0.

The oscillatory behavior of solutions of first and second order difference equa-
tions has been extensively studied by many authors However, much less has been
done for higher order equations. For some results regarding the oscillation and
asymptotic behavior of higher order difference equation, we refer in particular to
[2]-[10] and the references cited therein. In [8], the first author of the present article
considered a special case of (1), namely, the difference equation

∆p[xn + c xn−l] + δ qnf(xn−k) = hn, n ∈ N(n0 ),(2)

where l and k are integers with l > 0, and proved that if

(C1) c 6= ±1,
(C2) f satisfies Lipschitz conditions on an interval [a, b], where a and b depend

upon the range of c 6= 0,

(C3)
∞
∑

n(p−1)|qn| < ∞,

(C4)
∞
∑

n(p−1)|hn| < ∞,

then (2) has a positive solution, and if

(H1) xf(x) > 0 for all x 6= 0,
(H2) qn ≥ 0 with infinitely many positive terms,
(H3) there exists an oscillatory function ρ on N such that ∆pρn = hn and

lim
n→∞

∆jρn = 0 for j = 0, 1, . . . , p − 1,

(H4)
∞
∑

n(p−1)qn = ∞,

then every bounded solution {xn} of (2) is oscillatory when (−1)pδ = 1, and almost
oscillatory when (−1)pδ = − 1.

Later the same author [9] gave a necessary and sufficient condition for the
oscillation of bounded solutions of (1) when τ(n) = n − l, σ(n) = n − k, and
−b0 ≤ cn ≤ −b1 < −1, where b0 and b1 are fixed real numbers. The dependence
mentioned in (C2) was obtained as a/b < (b1 − 1)/b0.

A similar result was also established in [7] for equation (1) when p is even,
τ(n) = n − l, σ(n) = n − k, hn ≡ 0, and 0 ≤ cn < b2 < 1. Instead of (H4), they
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had imposed the condition that

∞
∑

qnf
(

(n − k

2p−1

)

p−1
)

= ∞.

Our purpose here in this paper is to find sufficient conditions for the existence of
positive solutions and oscillation of bounded solutions of equation (1), and thereby
establish necessary and sufficient conditions for oscillation or almost oscillation of
bounded solutions of equation (1).

For simplicity we first consider the difference equation

∆p[xn + c xτ(n)] + δ qnf(xσ(n)) = 0, n ∈ N(n0 )(3)

in sections 2 and 3, and next extend the results obtained to equation (1) in section
4.

2. Existence of positive solutions

In this section we are concerned with the existence of positive solutions of neutral
type difference equations of the form (3). It will be proved that (3) has a positive
solution when |c| 6= 1 provided that the function f satisfies a Lipschitz condition
on an interval [a, b], where a and b are arbitrary positive real numbers.

Theorem 1. If (C1) and (C3) hold and

(C̄2) for some positive numbers a and b, the function f satisfies the Lipschitz
condition with a constant L on the interval [a, b],

then equation (3) has a positive solution.

Proof. Let K = max {|f(x)|/|x| : a ≤ x ≤ b} and M = max {K,L}.

We first consider the case |c| < 1. Because of (C3), there exists a sufficiently
large integer n1 ≥ n0 such that

∞
∑

s=n1

s(p−1)|qs| <
(p − 1)!

Mb
β, β =

(b − a)(1 − |c|)

2
,(4)

and such that τ(n) ≥ n0 and σ(n) ≥ n0 for all n ∈ N(n1 ).

We introduce the Banach Space

Y =

{

x : sup
n≥N0

|xn| < ∞

}

with the norm
||x|| = sup

n≥N0

|xn|,
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where N0 = infn≥n1
{τ(n), σ(n)}.

Set X = {x ∈ Y : a ≤ x ≤ b}. It is clear that X is a bounded, convex and
closed subset of Y . Define an operator S : X → Y by

Sxn = α − c xτ(n) +
(−1)p

(p − 1)!

∞
∑

s=n

(s + p − 1 − n)(p−1)qsf(xσ(s)), n ≥ n1

= Sxn1
, N0 ≤ n ≤ n1,

where

α =
(b + a)(1 + c)

2
.

We shall show that S is a contraction mapping on X . We prove this when
0 ≤ c < 1, the case −1 < c < 0 is similar. It is easy to see that S maps X into
itself. In fact, for x ∈ X , n ≥ n1, using (4) it follows that

Sxn ≥ α − c b − β = a

and

Sxn ≤ α − c a + β = b,

and hence Sx ∈ X . To show that S is a contraction, let x, y ∈ X . It is easy to see
that

|Sxn − Syn| ≤ c |xτ(n) − yτ(n)|

+
M

(p − 1)!

∞
∑

s=n

(s + p − 1 − n)(p−1)|qs||xσ(s) − yσ(s)|

≤ c||x − y|| +
β

b
||x − y||,

and so

||Sx − Sy|| ≤ (c +
β

b
)||x − y||.

Since c + β/b < 1, S is a contraction on X . It follows that S has a fixed point
x ∈ X , that is, Sx = x. It is easy to check that x is a positive solution of equation
(3).

Suppose that |c| > 1. In this case we fix

β =
(b − a)(|c| − 1)

2|c|

and let n1 be so large that

∞
∑

s=τ−1(n1)

s(p−1)|qs| <
(p − 1)!

Mb
|c|β.(5)
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Define an operator S : X → Y as follows:

Sxn =
1

c
[α − xτ−1(n) +

(−1)p

(p − 1)!

∞
∑

s=τ−1(n)

(s + p − 1 − τ−1(n))(p−1)qsf(xσ(s))],

n ≥ n1

= Sxn1
, N0 ≤ n ≤ n1

where

α =
(b + a)(1 + c)

2
.

We may claim that S is contraction on X . We shall prove our claim when c > 1,
the case c < −1 is similar. In view of (5) we see that

Sxn ≥
α

c
−

b

c
− β = a

and

Sxn ≤
α

c
−

a

c
+ β = b.

Thus we have Sx ∈ X . It is not also difficult to see that if x, y ∈ X then

|Sxn − Syn| ≤
1

c
|xτ−1(n) − yτ−1(n)|

+
1

c

M

(p − 1)!

∞
∑

s=τ−1(n)

(s + p − 1 − τ−1(n))(p−1)|qs||xσ(s) − yσ(s)|

≤ (
1

c
+

β

b
)||x − y||.

Since 1/c + β/b < 1, S is a contraction on X . This completes the proof.

3. Oscillation of bounded solutions

In this section we investigate the oscillation behavior of bounded solutions of (3)
and establish necessary and sufficient conditions under which every solution {xn}
of (3) is either oscillatory or almost oscillatory.

The following lemmas will be needed in the proof of our theorems. The first
three of them can be found in [1]. The last one is essentially new and may be of
interest for other studies as well.

Lemma 1. Let {yn} and {∆pyn} be sequences defined on N(n0 ) with yn∆pyn < 0
on N(n0 ). Then there exists an integer l, 0 ≤ l ≤ p − 1, with p − l odd such that
for n ∈ N(n0 ),

yn∆jyn > 0, j = 0, 1, . . . , l,

(−1)j−lyn∆jyn > 0, j = l + 1, . . . , p − 1.
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Lemma 2. Let {yn} and {∆pyn} be sequences defined on N(n0 ) with yn∆pyn > 0
on N(n0 ). Then for n ∈ N(n0 ), either

yn∆jyn > 0, j = 1, . . . , p

or there exists an integer l, 0 ≤ l ≤ p− 2, with p− l even such that for n ∈ N(n0 ),

yn∆jyn > 0, j = 0, 1, . . . , l,

(−1)j−lyn∆jyn > 0, j = l + 1, . . . , p − 1.

Lemma 3. If {yn} is a sequence defined on N(n0 ), then

n−1
∑

s=n1

s(p−1)∆pys =

p
∑

k=1

(−1)k+1∆k−1s(p−1)∆p−kys+k−1|
n
s=n1

.

Lemma 4. Let g be a continuous monotone function such that lim
n→∞

g(n) = ∞.

Set

zn = xn + anxg(n).(6)

If xn is eventually positive, lim inf
n→∞

xn = 0 and lim
n→∞

zn = ℓ ∈ R exists, then ℓ = 0

provided that for some real numbers b1, b2, b3 and b4 the sequence {an} satisfies
one of the following:

(a) b1 ≤ an ≤ 0, (b) 0 ≤ an ≤ b2 < 1, (c) 1 < b3 ≤ an ≤ b4.

Proof. We see from (6) that

zg−1(n) − zn = xg−1(n) + ag−1(n)xn − xn − anxg(n)

and so

lim
n→∞

{

xg−1(n) + ag−1(n)xn − xn − anxg(n)

}

= 0.(7)

Let {nk} be a sequence of real numbers such that

lim
k→∞

xnk
= 0.(8)

Assume that (a) holds. It follows from (7) and (8) that

lim
k→∞

{

xg−1(nk) − ank
xg(nk)

}

= 0.

As xg−1(nk) > 0 and −ank
xg(nk) ≥ 0, we see that

lim
k→∞

xg−1(nk) = 0
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and so from (6) we get

ℓ = lim
k→∞

zg−1(nk) = lim
k→∞

{

xg−1(nk) + ag−1(nk)xnk

}

= 0.

Assume that (b) holds. By replacing n by g(n) in (7) and using (8) we have

lim
n→∞

{

xn + anxg(n) − xg(n) − ag(n)xg(g(n))

}

= 0.(9)

It is clear from (8) and (9) that

lim
k→∞

{

[ank
− 1]xg(nk) − ag(nk)xg(g(nk))

}

= 0

and so
lim

k→∞
xg(nk) = 0.

Thus,
ℓ = lim

k→∞
zg(nk) = lim

k→∞

{

xg(nk) + ag(nk)xg(g(nk))

}

= 0.

Finally, let (c) be satisfied. Replacing n by g−1(n) in (7) and using (8) leads to

lim
k→∞

{

xg−1(g−1(nk)) + [ag−1(g−1(nk)) − 1]xg−1(nk)

}

= 0

and hence

lim
k→∞

xg−1(nk) = 0.(10)

In view of (6) and (10), it follows that

ℓ = lim
k→∞

zg−1(nk) = 0.

This completes the proof.

Theorem 2. Suppose that (H1), (H2) and (H4) hold.

(i) If c ≥ 0 and c 6= 1, then every bounded solution {xn} of (3) is oscillatory when
(−1)pδ = 1, and is almost oscillatory when (−1)pδ = −1.

and

(ii) If c < −1 and inf
n≥0

[n − τ(n)] > 0, then every bounded solution {xn} of (3) is

oscillatory when (−1)pδ = −1, and is almost oscillatory when (−1)pδ = 1.

Proof. Suppose on the contrary that {xn} is a nonoscillatory bounded solution of
(3). Without loss of generality we may assume that {xn} is eventually positive.
Set

zn = xn + c xτ(n).
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Clearly, {zn} is bounded and

δ∆pzn = −qnf(xσ(n)) < 0.(11)

Let c ≥ 0 and c 6= 1. It is obvious that {zn} is eventually positive and
δzn∆pzn < 0. Applying Lemma 1 and Lemma 2 we see that there exist n1 and
integer l ∈ {0, 1} with (−1)p−lδ = −1 such that

∆kzn > 0, k = 0, 1, . . . , l

(−1)k−l∆kzn > 0, k = l, l + 1, . . . , p − 1(12)

for all n ≥ n1. Multiplying (3) by s(p−1) and summing from n1 to n− 1 we obtain

n−1
∑

s=n1

s(p−1)δ∆pzs +
n−1
∑

s=n1

s(p−1)qsf(xσ(s)) = 0.(13)

Applying Lemma 3 to the first term in the left side of (13) we have

n−1
∑

s=n1

s(p−1)δ∆pzs =

p−1
∑

k=1

(−1)k+1δ∆k−1s(p−1)∆p−kzs+k−1|
n
s=n1

+ (−1)p+1δ∆p−1s(p−1)δ∆p−pzs+p−1|
n
s=n1

=

p−1
∑

k=1

(−1)k+1δ∆k−1n(p−1)∆p−kzn+k−1

+ (−1)p+1δ(p − 1)![zn+p−1 − zn1+p−1] − K(14)

where in view of (12)

K =

p−1
∑

k=1

(−1)k+1δ∆k−1n
(p−1)
1 ∆p−kzn1+k−1 ≥ 0.

Using (14) in (13) leads to

n−1
∑

s=n1

s(p−1)qsf(xσ(s)) ≤ K + (−1)pδ(p − 1)![zn+p−1 − zn1+p−1].(15)

Since {zn} is bounded and (H4) holds, we obtain from (15) that

lim inf
n→∞

f(xn) = 0

or
lim inf
n→∞

xn = 0.

It follows from Lemma 4 that ℓ = lim
n→∞

zn = 0. But ℓ = 0 is possible only when

l = 0, since in the case l = 1, {zn} being positive and increasing cannot approach
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zero. This means that bounded solutions of (3) must be oscillatory when (−1)pδ =
1. It is clear that if ℓ = 0, then in view of 0 < xn ≤ zn we have

lim
n→∞

xn = 0.

Suppose that c < −1. We claim that {zn} is eventually negative. Otherwise,
for sufficiently large values of n, xn > −c xτ(n). Replacing n by τ−1(n), using
mathematical induction one can see that

xrm(n) > (−c)mxn,(16)

where
r1(n) = τ−1(n) and rm(n) = τ−1(rm−1(n)) for m ≥ 2.

We shall show that lim
m→∞

rm = ∞. In that case since {xn} is bounded we get

a contradiction. We first notice that τ(n) < n and so r1(n) > n. In view of
inf
n≥0

[n − τ(n)] > 0 there exists ε > 0 such that r1(n) > n + ε. By mathematical

induction we obtain

rm(n) > n + mε

and hence lim
m→∞

rm = ∞. Therefore {zn} is eventually negative. Since

δ∆pzn = −qnf(xσ(s)) < 0

we have δzn∆pzn > 0. Applying Lemma 1 and Lemma 2 it follows that there are
n1 and l ∈ {0, 1} with (−1)p−lδ = 1 such that

∆jzn < 0, j = 0, 1, ....l,

(−1)j−l∆jzn < 0, j = l + 1, . . . , p − 1.

Using the arguments of the previous case we see that

lim inf
n→∞

xn = 0

and hence by Lemma 4, ℓ = lim
n→∞

zn = 0. Moreover, we observe as in the previous

case that ℓ = 0 is possible only when l = 0. In this case since zn < 0 it follows
that for a given ǫ > 0 there exists an n2 so large that

zn > −ǫ for n ≥ n2.

This means that

xn > −ǫ− c xτ(n) for n ≥ n2.(17)

If we define c̃ = −1/c, then we see from (17) that

xn < c̃ ǫ + xr1(n).



632 A. ZAFER, Y. YALÇIN AND Y. S. YILMAZ

It follows that

xn < (c̃ + c̃2 + · · · c̃m)ǫ + c̃m xrm(n)

and therefore

xn <
c̃

1 − c̃
ǫ + c̃m xrm(n).(18)

In view of 0 < c̃ < 1 we easily deduce from (18) that lim
n→∞

xn = 0. This completes

the proof.

In view of Theorem 1 and Theorem 2, we obtain a necessary and sufficient
condition for oscillation of bounded solutions of (3), which gives an improvement
of the theorem given in Section 1.

Theorem 3. Let (H1), (H2) and (C̄2) be satisfied. Then the conclusion of Theo-
rem 2 holds if and only if (H4) is satisfied.

4. Some generalizations

In this section we extend the results obtained for equation (3) to equation (1).
Since the proofs are similar, we will omit the details.

Theorem 4. Suppose that (C3) and (C4) are satisfied, and (C2) holds with posi-
tive real numbers a and b satisfying the following:

(A) a/b < (b2 + 1)/(b1 + 1), when b1 ≤ an ≤ b2 < −1,
(B) a/b < (b1 + 1)/(b2 + 1), when −1 < b1 ≤ an ≤ b2 ≤ 0,
(C) a/b < (1 − b2)/(1 − b1), when 0 ≤ b1 ≤ an ≤ b2 < 1,
(D) a/b < (b1 − 1)/(b2 − 1), when 1 < b1 ≤ an ≤ b2,

where b1 and b2 are real numbers.
Then equation (1) has a positive solution.

Proof. Let K = max {|f(x)|/|x| : a ≤ x ≤ b} and M = max {K,L}.
We first consider case (A). Let

β =
b(b2 + 1) − a(b1 + 1)

2b2
.

In view of (C3) and (C4) we can find sufficiently large n1 ≥ n0 such that if n ≥ n1

then

∞
∑

s=τ−1(n1)

s(p−1)|qs| <
(p − 1)!β

2Mb
(−b2)(19)
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and

∞
∑

s=τ−1(n1)

s(p−1)|hs| <
(p − 1)!β

2
(−b2).(20)

We may assume that τ(n) ≥ n0 and σ(n) ≥ n0 for all n ≥ n1.

We introduce the Banach Space

Y =

{

x : sup
n≥N0

|xn| < ∞

}

with the supremum norm

||x|| = sup
n≥N0

|xn|,

where N0 = infn≥n1
{τ(n), σ(n)}. Let

X = {x ∈ Y : a ≤ x ≤ b} .

It is clear that X is a bounded, convex and closed subset of Y .

Define an operator S : X → Y by

Sxn =
1

aτ−1(n)
[α − xτ−1(n) +

(−1)p

(p − 1)!

∞
∑

s=τ−1(n)

(s + p − 1 − τ−1(n))(p−1)qsf(xσ(s))

+
(−1)p−1

(p − 1)!

∞
∑

s=τ−1(n)

(s + p − 1 − τ−1(n))(p−1)hs], n ≥ n1

= Sxn1
, N0 ≤ n ≤ n1,

where

α =
b(b2 + 1) + a(b1 + 1)

2
.

We shall show that S is a contraction mapping on X . It is easy to show that S
maps X into itself. In fact if x ∈ X then, because of (19) and (20), it follows that

Sxn ≤
−1

b2
[−α + b − b2β] = b

and

Sxn ≥
−1

b1
[−α + a + b2β] = a.

Therefore SX ⊆ X .
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To show that S is a contraction, we take x, y ∈ X . Obviously,

|Sxn − Syn| ≤
−1

b2
|xτ−1(n) − yτ−1(n)|

+
M

(−b2)(p − 1)!

∞
∑

s=τ−1(n)

s(p−1)|qs||xσ(s) − yσ(s)|

≤ (
−1

b2
+

β

2b
)||x − y||.(21)

Since
−1

b2
+

β

2b
< 1, S is a contraction on X , and therefore there exists a fixed

point x ∈ X such that Sx = x. It can easily be verified that x is a positive solution
of equation (1). This completes the proof in the case when (A) is satisfied.

To prove the theorem for the cases (B), (C), and (D) we need only to make
the following modifications on β, α and S in each case:

Case (B) :

β =
b(b1 + 1) − a(b2 + 1)

2
, α =

b(b1 + 1) + a(b2 + 1)

2
,

Sxn = α − anxτ(n) +
(−1)p

(p − 1)!

∞
∑

s=n

(s + p − 1 − n)(p−1)qsf(xσ(s))

+
(−1)p−1

(p − 1)!

∞
∑

s=n

(s + p − 1 − n)(p−1)hs, n ≥ n1

= Sxn1
, N0 ≤ n ≤ n1,

where n1 is chosen so large that

∞
∑

s=n1

s(p−1)|qs| <
(p − 1)!

2Mb
β,(22)

∞
∑

s=n1

s(p−1)|hs| <
(p − 1)!

2
β(23)

for all n ≥ n1.
Case(C) :

β =
b(1 − b2) − a(1 − b1)

2
, α =

b(b2 + 1) + a(b1 + 1)

2
,

S is defined as in the case (B), and (22) and (23) are satisfied for all n ≥ n1.

Case(D):

β =
b(b1 − 1) − a(b2 − 1)

2b1
, α =

b(b1 + 1) + a(b2 + 1)

2
,
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S is defined as in the case (i), and

∞
∑

s=τ−1(n1)

s(p−1)|qs| <
(p − 1)!

2Mb
βb1

∞
∑

s=τ−1(n1)

s(p−1)|hs| <
(p − 1)!

2
βb1

for all n ≥ n1.

The next theorem is a generalization of the results given in Theorem 2 to
equation (1). For a similar result and especially the technique about handling the
difficulty of having a forcing term, we refer the reader to [8,9].

Theorem 5. Suppose that (H1) - (H4) hold.

(i) If 0 ≤ an ≤ b2 < 1 or 1 < b1 ≤ an ≤ b2, then every bounded solution
{xn} of (1) is oscillatory when (−1)pδ = 1, and is almost oscillatory when
(−1)pδ = −1.

(ii) If b1 ≤ an ≤ b2 < −1 and inf
n≥0

[n − τ(n)] > 0, then every bounded solution

{xn} of (1) is oscillatory when (−1)pδ = −1, and is almost oscillatory when
(−1)pδ = 1.

Finally, by combining Theorem 4 and Theorem 5 we obtain the following nec-
essary and sufficient condition for oscillation of bounded solutions of (1).

Theorem 6. Suppose that (C4), (H1) - (H3) hold, and that (C2) is fulfilled on
[a, b], where a and b are as in (A), (C), and (D). Then the conclusion of Theorem
5 holds if and only if (H4) is satisfied.

Remark 1. In this paper we have assumed that {an} is bounded away from ±1. It
is not difficult to provide specific examples showing that this assumption cannot
be dropped. Therefore, finding similar results concerning (1) when {an} is not
bounded away from ±1 seems to be very interesting.
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