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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 37 (2001), 1 – 8

COUPLED FIXED POINTS OF MIXED MONOTONE
OPERATORS ON PROBABILISTIC BANACH SPACES

ISMAT BEG, ABDUL LATIF, RASHID ALI, AKBAR AZAM

Abstract. The existence of minimal and maximal fixed points for monotone

operators defined on probabilistic Banach spaces is proved. We obtained suf-
ficient conditions for the existence of coupled fixed point for mixed monotone

condensing multivalued operators.

1. Introduction and Preliminaries

In his seminal paper Menger [11] introduced the notion of probabilistic metric
space, which is a generalization of the metric space. The study of these spaces
was extensively performed by Schweizer and Sklar [12, 13] and many other authors
[4, 7, 14, 18]. The theory of probabilistic metric/normed spaces is of fundamental
importance in probabilistic functional analysis. Recently a number of fixed point
theorems and their applications in probabilistic metric spaces have been proved
by several authors; Beg, Rehman and Shahzad [1], Bharucha-Reid [2], Cain and
Kasriel [3], Hadzic [8], Stojakovic [15, 16] and others [5, 19]. In this paper, we
introduce mixed monotone operators in probabilistic Banach spaces by definig a
suitable ordering in these spaces and proved the existence of coupled minimal and
maximal fixed points for these operators. The results obtained are probabilistic
analogue of the results of [6, 9] and [17].

Let R denotes the set of real numbers and R+ = {x ∈ R : x ≥ 0}. A mapping
f : R→ R+ is called a distribution function if it is nondecreasing, left continuous
with infx∈R f(x) = 0 and supx∈R f(x) = 1. We will denote by L the set of all
distribution functions.

Definition 1.1 [4]. Let E be a vector space over the field R. Let ‖ ; ‖ be a mapping
on E with values in L. For each p ∈ E the distribution function ‖ ; ‖(p) will be
denoted by ‖p; ‖ and the value of ‖ ; ‖(p) at t ∈ Rwill be denoted by ‖p; t‖. The
function ‖ ; ‖ is assumed to satisfy the following conditions:
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(PN1) ‖p; ‖ = H if and only if p = 0 ∈ E, where H is a distribution function
defined by

H(t) =
{

0 if t ≤ 0
1 if t > 0 .

(PN2) For every p ∈ E, t ∈ R+ and λ ∈ R− {0}

‖λp; t‖ = ‖p; t

|λ| ‖ .

(PN3) If ‖p; t1‖ = 1, ‖q; t2‖ = 1, then

‖p+ q; t1 + t2‖ = 1

for all p, q ∈ E and t1, t2 > 0.
The mapping p → ‖p; ‖ is called the probabilistic norm on E and E together

with this norm is called probabilistic normed space (or simply a PN-space). The
PN-space (E, ‖ ; ‖) becomes a PM-space under the probabilistic metric F : E ×
E → L defined by F (p, q) = ‖p − q; ‖.For detailed discussion on probabilistic
normed spaces, we refer to [4, 5, 13, 18].

Let (E, ‖ ; ‖) be a PN-space. Then a neighbourhood of an element p ∈ E, is
defined by the set: Up(ε, λ) = {q ∈ E : ‖p−q; ε‖ > 1−λ},where ε > 0, λ ∈ (0, 1).

Definition 1.2. Let (E, ‖ ; ‖) be a PN-space and A be a nonempty subset of
E. The probabilistic diameter of A is a function DA, defined on R+ by DA(t) =
sups<t infp,q∈A ‖p − q; s‖. A subset A of a PN-space is said to be bounded if
supt>0DA(t) = 1.

Definition 1.3 [13]. Let µ : L× L → L be a triangle function. A probabilistic
normed space under a triangle function µ is a triple (E, ‖ ; ‖, µ) satisfying PN1,
PN2 and µ satisfies the following condition for any t ∈ R:
(PN4) ‖p+ q; t‖ ≥ µ(‖p; t‖, ‖q; t‖) = µ(‖p; .‖, ‖q; .‖)(t).
Definition 1.4. Let E be a probabilistic Banach space. A subset P ⊂ E is a
cone if and only if it satisfies the following conditions:

(i) P is closed and convex;

(ii) if p ∈ P , tp ∈ P for every t ≥ 0;

(iii) if both p and −p are in P , then p = 0.

The order “≤” is introduced by the cone P in E. That is, p, q ∈ E, p ≤ q if
and only if p − q ∈ P . Thus E becomes a partially ordered probabilistic Banach
space. Let E be a partially ordered probabilistic Banach space, x, y ∈ E and
x ≤ y.A cone P is said to be normal if and only if there is some m > 0 such that
‖x; t‖ ≥ ‖y; t

m‖, t ∈ R.
Let u, v ∈ E. The set of element x ∈ E such that u ≤ x ≤ v is called an ordered

interval and is denoted by [u, v]. An ordered interval is closed and convex. It is
bounded if the cone P is normal.
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Definition 1.5. Let D be a subset of E. An operator A : D ×D → E is said to
be mixed monotone if for each fixed y ∈ D, A(x, y) is nondecreasing in x and for
each fixed x ∈ D, A(x, y) is nonincreasing in y.

2. The Results

Throughout this section the probabilistic Banach space (E, ‖ ; ‖) will be denoted
by E, which is partially ordered by a cone P in E.

Definition 2.1. Let D be a subset of E and A : D ×D → E be an operator:
(a) If x, y ∈ D with x ≤ y can be found such that

x ≤ A(x, y) and A(y, x) ≤ y ,

then (x, y) is called a coupled lower and upper fixed point of A.
(b) If x, y ∈ D with x ≤ y can be found such that

x = A(x, y) and A(y, x) = y ,

then (x, y) is called coupled fixed point of A. If a coupled fixed point (x?, y?) can
be found such that

x? ≤ x and y ≤ y?

for every coupled fixed point (x, y) of A, then (x?, y?) is called the minimal and
maximal fixed point of A.
(c) A point x? ∈ D is a fixed point of A if

A(x?, x?) = x? .

A sequence {xn} in E is said to be monotone increasing (decreasing) if and only
if xn−1 ≤ xn (xn−1 ≥ xn) for all n.The operator A is called compact if for
every bounded subset D1 ⊂ D, A(D1 ×D1) is relatively compact. We now state
the following standard lemma whose proof is routine.

Lemma 2.2. Let P be a cone in the probabilistic Banach space E. Let D be a
subset of E and A : D ×D → E be mixed monotone operator. Assume that there
is an ordered interval [u, v] ⊂ D such that (u, v) is coupled lower and upper fixed
point of A. Then:

(i) A maps [u, v]× [u, v] into [u, v];
(ii) the sequences {xn}, {yn} defined by setting x0 = u, y0 = v and xn =

A(xn−1, yn−1), yn = A(yn−1, xn−1) for n ≥ 1 are monotone increasing and
decreasing respectively.

Theorem 2.3. Let P be a cone in the probabilistic Banach space E. Let D be
a subset of E and A : D ×D → E be continuous and mixed monotone operator.
Assume that there is an ordered interval [u, v] ⊂ D such that (u, v) is a coupled
lower and upper fixed point of A. Then A has a coupled fixed point in [u, v]× [u, v]
if P is normal and A is compact.
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Proof. Define sequences {xn} and {yn} by setting x0 = u, y0 = v and xn =
A(xn−1, yn−1), yn = A(yn−1, xn−1) for n ≥ 1. By Lemma 2.2, {xn}, {yn} are
monotone increasing and decreasing respectively. Since [u, v] is bounded as P
is normal, so the set A([u, v], [u, v]) is relatively compact. Thus it suffices to
prove that a monotone sequence in a relatively compact set is convergent. By
compactness {xn} has a convergent subsequence {xnk} with limit x (say). Since
{xnk} is monotone increasing xnr − xnk ∈ P for k ≤ r. By letting r tends to
infinity, we have x − xnk ∈ P . That is, xnk ≤ x for all k. Now for n ≥ nk,
xn ≥ xnk implies x− xn ≤ x− xnk and it follows as P is normal that there is an
m > 0 such that

‖x− xn; t‖ ≥ ‖x− xnk;
t

m
‖ .

Letting k →∞, we get ‖x− xn; t‖ ≥ H(t) for t ∈ R. Thus ‖x− xn; t‖ = H(t). It
implies by [10, Theorem 11.1.7] that xn → x. Similarly the convergence of {yn}
can be shown. Since x = u, y = v and (u, v) is coupled lower and upper fixed
point of A, therefore x ≤ y. Now by the continuity of A, we have

xn = A(xn−1, yn−1) ,

x = lim
n→∞

xn = lim
n→∞

A(xn−1, yn−1) = A( lim
n→∞

xn−1, lim
n→∞

yn−1) = A(x, y)

and

y = lim
n→∞

yn = lim
n→∞

A(yn−1, xn−1) = A( lim
n→∞

yn−1, lim
n→∞

xn−1) = A(y, x) .

Thus (x, y) is a coupled fixed point of A. 2

Theorem 2.4. Let u, v ∈ E with u ≤ v and D = [u, v]. Suppose that A : D×D →
E is mixed monotone operator and the following conditions holds:

(i) (u, v) is coupled lower and upper fixed point of A.
(ii) A(D,D) is separable and sequentially compact in E.

Then A has the coupled minimal and maximal fixed point in D.

Proof. Similar to the proof of [17, Theorem 1].

Theorem 2.5. Let E be a probabilistic Banach space under the triangle function
µ with µ = inf and 0 < k < 1. Let u, v ∈ E with u ≤ v and D = [u, v]. Suppose
that A : D×D → E is an operator satisfying all the assumptions in Theorem 2.4,
and also satisfies the following conditions:
(iii) For any fixed x ∈ D and t ∈ R

‖A(u, x)−A(v, x); t‖ > ‖u− v; t
k
‖ for all u, v ∈ D ;

(iv) for any fixed y ∈ D and t ∈ R

‖A(y, u) −A(y, v); t‖ > ‖u− v; t
k
‖ for all u, v ∈ D .

Then A has a unique fixed point u? in D, and x? = u? = y?, where (x?, y?) is
a coupled minimal and maximal fixed point of A in D.
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Proof. From Theorem 2.4, it follows that A has a coupled minimal and maximal
fixed point (x?, y?) in D. So it suffices to show that x? = y?. For this, let us
assume the contrary, that is, x? 6= y?. By using condition (iii) and (iv) we get

‖x? − y?; t‖ = ‖A(x?, y?)− A(y?, x?); t‖
= ‖A(x?, y?)− A(x?, x?) +A(x?, x?) −A(y?, x?); t‖
≥ µ(‖A(x?, y?)− A(x?, x?); t‖, ‖A(x?, x?) −A(y?, x?); t‖)

> µ(‖y? − x?; t
k
‖, ‖x? − y?;

t

k
‖)

= ‖x? − y?;
t

k
‖

≥ ‖x? − y?; t‖
which is a contradiction. So x? = y? and u? = x? = y? is a fixed point of A. The
uniqueness of u? in D follows from the fact that the set of coupled fixed points of
A is a subset of [x?, y?]. 2

Definition 2.6. Let D be a subset of a probabilistic Banach space E, which is
partially ordered by a cone P of E, and A : D ×D → 2E ( the set of all subsets
of E) a multivalued mapping. The operator A is said to be mixed monotone, if
A(x, y) is nondecreasing in x and nonincreasing in y, that is,

(i) for each y ∈ D and any x1, x2 ∈ D, x1 ≤ x2 (x1 ≥ x2), if u1 ∈ A(x1, y) then
there exists a u2 ∈ A(x2, y) such that u1 ≤ u2 (u1 ≥ u2);

(ii) for each x ∈ D and any y1, y2 ∈ D, y1 ≤ y2 (y1 ≥ y2), if v1 ∈ A(x, y1) then
there exists a v2 ∈ A(x, y2) such that v1 ≥ v2 (v1 ≤ v2).

A point (x?, y?) ∈ D ×D is called coupled fixed point of A, if

x? ∈ A(x?, y?), y? ∈ A(y? , x?) .

Definition 2.7. An operator A : D × D → 2E is said to be probabilistically
condensing if for any D1, D2 ⊂ D either αD1 or αD2 is smaller than H, then

αA(D1,D2)(t) > min{αD1(t), αD2(t)} ,
where αDi is probabilistic Kuratowski measure of noncompactness of Di(i = 1, 2).
For more details regarding probabilistic Kuratowski measure of noncompactness
we refer to Istratescu [10].

Remark 2.8. For continuity of multivalued operators in case of PN-spaces, we
can easily modify the Definition 10.2.3 of [10].

Theorem 2.9. Let E be a probabilistic Banach space. Let u0, v0 ∈ E and
D = [u0, v0]. Let A : D × D → 2D be a continuous mixed monotone multivalued
operator with nonempty closed values. Suppose that A is probabilistically condens-
ing operator and [u0, v0] is bounded. Then A has a coupled fixed point (x?, y?) in
D × D and x? = limn→∞ un, y? = limn→∞ vn, where un ∈ A(un−1, vn−1) and
vn ∈ A(vn−1, un−1), satisfy the following condition:

u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ; v0 ≥ v1 ≥ . . . ≥ vn ≥ . . . ,
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and if un+1 = un, vn+1 = vn, then un+k = un and vn+k = vn where k = 1, 2, . . .

Proof. If u0 ∈ A(u0, v0) and v0 ∈ A(v0, u0), take x? = un = u0 and y? = vn =
v0 (n = 1, 2, . . .), then the conclusion of the theorem is proved. Otherwise, taking
u1 ∈ A(u0, v0) ⊂ [u0, v0] then v0 ≥ u1 and v1 ≤ v0. If u1 ∈ A(u1, v1), v1 ∈
A(v1, u1), take x? = un = u1, y

? = vn = v1 (n = 2, 3, . . .), then the conclusion
of theorem is proved; otherwise, by the mixed monotonicity of A, since u1 ∈
A(u1, v1), v1 ∈ A(v1, u1) and u0 ≤ u1, v1 ≤ v0, there exist

u2 ∈ A(u1, v1) such that u1 ≤ u2

and
v2 ∈ A(v1, u1) such that v2 ≤ v1 .

Choose uk ∈ A(uk−1, vk−1), vk ∈ A(vk−1, uk−1), such that uk−1 ≤ uk, vk−1 ≥ vk.
If uk ∈ A(uk, vk), vk ∈ A(vk, uk), then take x? = un = uk, y? = vn = vk
(n = k + 1, k + 2, . . .). Otherwise, by the mixed monotonicity of A, there exist
uk+1 ∈ A(uk, vk), vk+1 ∈ A(vk, uk) such that

uk ≤ uk+1 , vk ≥ vk+1 .

Repeating this process, either the conclusion of theorem is proved, or we can obtain
a nondecreasing sequence and a nonincreasing sequence as follows:

u0 ≤ u1 ≤ . . . ≤ un ≤ . . . ; v0 ≥ v1 ≥ . . . ≥ vn ≥ . . . .

Letting D1 = {un}, D2 = {vn}, (n = 0, 1, 2, . . .), then D1 ⊂ A(D1, D2) ∪
{u0}, D2 ⊂ A(D2, D1)∪{v0}. By the properties of Kuratowski probabilistic mea-
sure αD1 of noncompactness (for detailed properties of Kuratowski probabilistic
measure αD1 of noncompactness see [10, Theorem 11.3.2])

αD1(t) ≥ min{αA(D1,D2)(t), α{u0}(t)}
= min{αA(D1,D2)(t), H(t)}
= αA(D1,D2)(t) .

Similarly αD2(t) ≥ αA(D1,D2)(t). If either αD1 or αD2 is smaller than H, then
by the condensing condition of A,

αA(D1,D2)(t) > min{αD1(t), αD2(t)}
and

αA(D2,D1)(t) > min{αD2(t), αD1(t)} .
Therefore

αD1(t) > min{αD1(t), αD2(t)}, αD2(t)} > min{αD2(t), αD1(t)} .
Hence min{αD1(t), αD2(t)} > min{αD1(t), αD2(t)}, a contradiction. This shows
that we must have αD1(t) = αD2(t) = H(t) for each t ∈ R. Istratescu [10, Theorem
11.3.5] further implies that set associated to both the sequences {un} and {vn}
are precompact. Therefore there exist convergent subsequences {unk}, {vnk} of
{un} and {vn} respectively such that

lim
k→∞

unk = x? ∈ [u0, v0] , lim
k→∞

vnk = y? ∈ [u0, v0] .
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Let limn→∞ un 6= x?. Then there exists ε0 > 0 and λ0 ∈ (0, 1) and a subsequence
{u′ni} of {un} such that

‖u′ni − x
?; ε0‖ ≤ 1− λ0 .

By the precompactness of {un}, there is a subsequence {u′nij } of {u′ni} such that
limj→∞ u

′
nij

= x′. Hence for any given k it follows from the nondecreasingness of
{un} that when j is large enough

unk ≤ u′nij
.

First letting j → ∞ and then letting k → ∞ we have x? ≤ x′. Similarly we can
also prove that x′ ≤ x?. Hence x′ = x?. It follows that when j is large enough

‖u′nij − x
?; ε0‖ > 1− λ0 .

This contradicts ‖u′nij − x?; ε0‖ ≤ 1 − λ0 (for all i). Hence limn→∞ un = x?.
Similarly it can be proved that limn→∞ vn = y?. Since un ∈ A(un−1, vn−1) and
vn ∈ A(vn−1, un−1), it follows by the continuity of A that x? ∈ A(x?, y?) and
y? ∈ A(y? , x?). Thus (x?, y?) is a coupled fixed point of A. 2

Corollary 2.10. Let all the conditions of Theorem 2.8 and the following condition
be satisfied: for any x1 ≤ x2, y1 ≥ y2, (x1, y1) 6= (x2, y2) and any u ∈ A(x1, y1)
and any v ∈ A(x2, y2), u ≤ v. Then

un ≤ x? ≤ y? ≤ vn ,

and the coupled fixed point (x?, y?) is minimal and maximal in the sense that for
any coupled fixed point (x̄, ȳ) ∈ D ×D of A,

x? ≤ x̄ ≤ y?, x? ≤ ȳ ≤ y? .
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