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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 37 (2001), 81 – 101

ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF DELAY

DIFFERENTIAL EQUATIONS OF n–TH ORDER

N. PARHI AND SESHADEV PADHI

This paper deals with property A and B of a class of canonical linear
homogeneous delay differential equations of n-th order.

1.

In a recent paper [1], Dzurina has studied property (A) of n-th order linear
delay-differential equations of the form

(1.1) Lny(t) + p(t) y(g(t)) = 0 ,

where n ≥ 2, p ∈ C([σ,∞), [0,∞)), g ∈ C([σ,∞), R) is nondecreasing, g(t) < t
and g(t)→∞ as t→∞,

Lny(t) =

(
1

rn−1(t)

(
. . .

(
1

r1(t)
y′(t)

)′
. . .

)′)′

and ri ∈ C([σ,∞), R) such that ri(t) > 0, 1 ≤ i ≤ n − 1. He has obtained
sufficient conditions under which (1.1) has property (A). These conditions include
non-existence of eventually positive solutions of first order linear delay-differential
inequalities of the form

y′(t) + qi(t) y(g(t)) ≤ 0 ,

1 ≤ i ≤ n − 1, where qi(t) is given in [1]. In another paper [2], he has studied
property (B) of

(1.2) Ln y(t) − p(t) y(g(t)) = 0
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under the assumption that

y′(t) + q`(t) y(w(t)) ≤ 0 ,

1 ≤ ` ≤ n − 2, has no eventually positive solutions, where q̀ (t) is given in [2],
g(t) < w(t) < t,

Lny(t) =
1

rn(t)

 1
rn−1(t)

(
. . .

(
1

r1(t)

(
y(t)
r0(t)

)′)′
. . .

)′′ ,
p, g, ri, 1 ≤ i ≤ n − 1, are same as in (1.1) and rn, r0 ∈ C([σ,∞], R) such that
rn(t) > 0 and r0(t) > 0. However, q`(t) are different from qi(t) stated above.

The present work is motivated by our work on delay-differential equations of
third order (see [9] and [10]) and the observation that the method developed to
study property (A) could be applied to study property (B) and vice-versa. The
latter problem was brought to our notice by Prof. Dzurina. In Section 2 we study
property (A) of

(1.3) Lny(t) + p(t) y(g(t)) = 0 ,

where n ≥ 2, L0y(t) = y(t)/r0(t), Liy(t) = (Li−1y(t))′/ri(t), 1 ≤ i ≤ n, p,
ri ∈ C([σ,∞], R) such that p(t) ≥ 0, ri(t) > 0, 0 ≤ i ≤ n and g ∈ C([σ,∞], R) is
increasing, g(t) < t and g(t) → ∞ as t → ∞. We have considered two methods,
one with g(t) and the other with higher delay w(t), and have compared them.
Although our method with g(t) has some similarity with the work in [1], they
differ for higher i. Section 3 deals with the study of property (B) of

(1.4) Lny(t) − p(t) y(g(t)) = 0 ,

where p and g are same as in (1.3). We have compared our results with the work
in [2] for better understanding. The technique employed here is different from that
in [2].

We assume in the sequel that

(1.5)
∫ ∞
σ

ri(t) dt =∞ , 1 ≤ i ≤ n− 1 .

The operator Ln is said to be in canonical form if (1.5) holds. It is well-known that
any differential operator of the form Ln can always be represented in a canonical
form in an essentially unique way (see [11]). A nontrivial solution of (1.3) (or
(1.4)) is called oscillatory if it has arbitrarily large zeros; otherwise, it is called
nonoscillatory. Equation (1.3) (or (1.4)) is said to be oscillatory if all its solutions
are oscillatory.

The asymptotic behaviour of solutions of (1.3) is described in the following
lemma which is a generalization of a lemma due to Kiguradze [5, Lemma 3].
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Lemma 1.1. If y(t) is a nonoscillatory solution of (1.3) on (Ty ,∞), Ty ≥ σ, then
there is an integer ` ∈ {0, 1, . . ., n− 1} with n+ ` odd and t0 > Ty such that

(1.6)
y(t)Liy(t) > 0 , 0 ≤ i ≤ `

(−1)i−`y(t)Liy(t) > 0 , ` ≤ i ≤ n

for all t ≥ t0.

If N denotes the set of all nonoscillatory solutions of (1.3) and N` denotes the
set of all nonoscillatory solutions of (1.3) satisfying (1.6), then

N = N0 ∪N2 ∪ · · · ∪Nn−1 for n odd,

N = N1 ∪N3 ∪ · · · ∪Nn−1 for n even.

Following Kiguradze, Eq. (1.3) is said to have property (A) if for n odd N = N0

and for n even N = ∅, that is, (1.3) is oscillatory.
The following lemma which is a generalization of a lemma due to Kiguradze [5,

Lemma 3] describes the asymptotic behaviour of solutions of (1.4).

Lemma 1.2. If y(t) is a nonoscillatory solution of (1.4) on [Ty,∞), Ty ≥ σ, then
there is an integer ` ∈ {0, 1, . . ., n} with ` ≡ n(mod 2) and t0 > Ty such that (1.6)
holds for all t ≥ t0.

If N̄ denotes the set of all nonoscillatory solutions of (1.4) and N̄` denotes the
set of all nonoscillatory solutions of (1.4) satisfying (1.6), then

N̄ = N̄1 ∪ N̄3 ∪ · · · ∪ N̄n for n odd,

N̄ = N̄0 ∪ N̄2 ∪ · · · ∪ N̄n for n even.

Equation (1.4) is said to have property (B) if for n odd N̄ = N̄n and for n even
N̄ = N̄0 ∪ N̄n.

Following [6], we define

(1.7)

I0 = 1

Ik (t, s; rik, . . . , ri1) =
∫ t

s

rik(x) Ik−1(x, s; rik−1, . . . , ri1) dx ,

where ik ∈ {1, . . . , n− 1}, 1 ≤ k ≤ n− 1, and t, s ∈ [σ,∞). It is easy to see that

(1.8)

(i) Ik (t, s; rik, . . . , ri1) = (−1)kIk (s, t; ri1, . . . , rik)

(ii) Ik (t, s; rik, . . . , ri1) =
∫ t

s

ri1(x) Ik−1 (t, x; rik, . . . , ri2) dx .

The following lemma is a generalization of Taylor’s formula with remainder. The
proof is straightforward.
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Lemma 1.3. If y(t) is a solution of (1.3) or (1.4) on [Ty,∞), then

(1.9)

Liy(t) =
k∑
j=1

(−1)j−iLjy(s) Ij−i (s, t; rj, . . . , ri+1)

+ (−1)k−i+1
∫ s

t

Ik−i (x, t; rk, . . . , ri+1) rk+1(x)Lk+1 y(x) dx

for 0 ≤ i ≤ k ≤ n− 1 and t, s ∈ [Ty,∞).

2.

In this section sufficient conditions are obtained so that Eq. (1.3) has property
(A).

Theorem 2.1. If the delay-differential inequality

(2.1) z′(t) + F`(t, T ) z(g(t)) ≤ 0 ,

` ∈ {1, . . . , n − 1}, does not admit eventually positive solutions for every large
T > 0, then Eq. (1.3) has property (A), where

Fn−1(t, T ) = rn(t) p(t) r0(g(t)) In−1 (g(t), T ; r1, . . . , rn−1)

and

F`(t, T ) = r`+l(t) I` (g(t), T ; r1, . . . , r`)
∫ ∞
t

r`+2(sn−`−1)

×
∫ ∞
sn−`−1

r`+3(sn−`−2)· · ·
∫ ∞
s2

rn(s1) p(s1) r0(g(s1)) ds1 . . . dsn−`−1

for ` ∈ {1, 2, . . . , n− 2}.
Proof. If possible, suppose that Eq. (1.3) does not have property (A). Hence
Eq. (1.3) admits a nonoscillatory solution y(t) such that y ∈ N`, where ` ∈
{1, . . . , n − 1}. We may assume, without any loss of generality, that y(t) > 0
and y(g(t)) > 0 for t ≥ t1 > t0. Hence from Lemma 1.1 it follows that n+ ` is odd
and

(2.2) Li y(t) > 0 , 0 ≤ i ≤ ` and (−1)i−`Li y(t) > 0 , ` ≤ i ≤ n ,

for t ≥ t1. Putting i = 0, k = `− 1, t ≥ s and s = t1 in (1.9) we obtain

L0y(t) =
`−1∑
j=0

(−1)jLjy(t1) Ij(t1, t; rj, . . . , r1)

+ (−1)`
∫ t1

t

I`−1(x, t; r`−1, . . . , r1) r`(x)L` y(x) dx .
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The use of (1.7), (1.8) and (2.2) yields

L0 y(t) =
`−1∑
j=0

Lj y(t1) Ij(t, t1; r1, . . . , rj)

+
∫ t

t1

I`−1(t, x; r1, . . . , r`−1) r`(x)L` y(x) dx

≥
∫ t

t1

I`−1(t, x; r1, . . . , r`−1) r`(x)L` y(x) dx

≥L` y(t)
∫ t

t1

I`−1(t, x; r1, . . . , r`−1) r`(x) dx

= L` y(t) I`(t, t1; r1, . . . , r`) .

For t ≥ t2 ≥ t1, we have g(t) > t1. Thus, for t ≥ t2,

(2.3) L0 y(g(t)) ≥ L` y(g(t)) I`(g(t), t1; r1, . . . , r`) ,

where ` ∈ {1, 2, . . . , n− 1}.
Let ` = n− 1. From (1.3) and (2.3) we obtain, for t ≥ t2,

(2.4) −Ln y(t) = p(t) y(g(t)) ,

that is,

−(Ln−1 y(t))′ = rn(t) p(t) r0(g(t))L0 y(g(t))

≥ rn(t) p(t) r0(g(t))Ln−1 y(g(t)) In−1(g(t), t1; r1, . . . , rn−1)

= Fn−1(t, t1)Ln−1 y(g(t)) .

Thus z(t) = Ln−1 y(t) is a positive solution of

z′(t) + Fn−1(t, t1) z(g(t)) ≤ 0

for t ≥ t2, a contradiction to the given hypothesis. Next let ` ∈ {1, . . . , n − 2}.
Repeated integration of (2.4) yields, due to (2.2), that

−(L` y(t))′ ≥ r`+1(t)
∫ ∞
t

r`+2(sn−`−1)
∫ ∞
sn−`−1

r`+3(sn−`−2)

· · ·
∫ ∞
s2

rn(s1) p(s1) y(g(s1)) ds1 . . . dsn−`−2 dsn−`−1

= r`+1(t)
∫ ∞
t

r`+2(sn−`−1)
∫ ∞
sn−`−1

r`+3(sn−`−2)

· · ·
∫ ∞
s2

rn(s1) p(s1) r0(g(s1))L0 y(g(s1)) ds1 . . . dsn−`−2 dsn−`−1
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for t ≥ t2. Since L0y(t) is increasing and g(t) is nondecreasing, we get, using (2.3),

−(L` y(t))′ ≥ L0 y(g(t)) r`+1(t)
∫ ∞
t

r`+2(sn−`−1)
∫ ∞
sn−l−1

r`+3(sn−`−2)

· · ·
∫ ∞
s2

rn(s1) p(s1) r0(g(s1)) ds1 . . . dsn−`−2 dsn−`−1

≥ L` y(g(t))F`(t, t1)

for t ≥ t2. Thus z(t) = L` y(t) is a positive solution of

z′(t) + F`(t, t1) z(g(t)) ≤ 0

for t ≥ t2, a contradiction. Hence the theorem is proved. �

We need the following lemma (see [8, pp. 16, 19]) for our use in the sequel.

Lemma 2.2. If

lim inf
t→∞

∫ t

g(t)
p(s) ds > 1

/
e

or

lim sup
t→∞

∫ t

g(t)
p(s) ds > 1 ,

then y′(t) + p(t) y(g(t)) ≤ 0 does not admit eventually positive solutions.

Corollary 2.3. If, for ` ∈ {1, 2, . . . , n− 1} such that n + ` odd

lim inf
t→∞

∫ t

g(t)
F`(s, T ) ds > 1

/
e

or

lim sup
t→∞

∫ t

g(t)
F`(s, T ) ds > 1 ,

for every large T > 0, then Eq. (1.3) has property (A), where F`(t, T ) is same as
in (2.1).

This follows from Theorem 2.1 and Lemma 2.2.

Remark. It is easy to verify that F`(t, T ), ` ∈ {1, . . . , n − 1}, and q`(t), ` ∈
{1, . . . , n− 1}, (see [1]) differ for higher `.

Example 1. Consider the canonical delay-differential equation

2
√

2 t
√

2+1

(
1

2t
√

2−1

(
1

4
√

2 t
√

2−1

(
4t
√

2y
)′)′)′

+ 24+
√

2y

(
t

2

)
= 0 , t ≥ 1 .
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For T ≥ 1,∫ t

t/2
F2(s, T ) ds = 4 log 2 +

23+
√

2T
√

2

√
2

1

t
√

2
− 23+2

√
2T
√

2

√
2

1

t
√

2

− 22+2
√

2T 2
√

2

2
√

2

1

t2
√

2
+

22+4
√

2T 2
√

2

2
√

2

1

t2
√

2

implies that

lim inf
t→∞

∫ t

t/2
F2(s, T ) ds = 4 log 2 >

1
e

for every T ≥ 1. Hence the equation has property (A) due to Corollary 2.3.

In the following we present another method of obtaining sufficient conditions so
that Eq. (1.3) has property (A). This problem was brought to our notice by Prof.
Dzurina.

Theorem 2.4. If the delay-differential inequality

(2.5) z′(t) + Q`(t, T ) z(w(t)) ≤ 0 ,

` ∈ {1, . . . , n − 1}, does not admit eventually positive solutions for every large
T > 0, then Eq. (1.3) has property (A), where

Qn−1(t, T ) = p(t) r0(g(t)) rn(t) In−1(g(t), T ; r1, . . . , rn−1)

and

Q`(t, T ) = r`+1(t)
∫ τ(t)

t

In−`−2(x, t; rn−1, . . . , r`+2) rn(x) p(x)

× r0(g(x)) I`(g(x), T ; r1, . . . , r`) dx ,

` ∈ {1, . . . , n − 2}, τ and w are real valued continuous functions on [σ,∞) such
that τ (t) > t and w(t) = g(τ (t)) < t.

Proof. Since g(t) is nondecreasing, then g(t) < w(t) < t. Proceeding as in the
proof of Theorem 2.1 we obtain, for t ≥ t2,

−(Ln−1 y(t))′ ≥ Qn−1(t, t1)Ln−1 y(g(t)) .

Since Ln−1 y(t) is monotonic decreasing, then

−(Ln−1 y(t))′ ≥ Qn−1(t, t1)Ln−1 y(w(t))

for t ≥ t2. Thus z(t) = Ln−1 y(t) is a positive solution of

z′(t) + Qn−1(t, t1) z(w(t)) ≤ 0
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for t ≥ t2, a contradiction. Let ` ∈ {1, . . . , n− 2}. Putting i = `+ 1, k = n− 1 and
s ≥ t ≥ t1 in Lemma 1.3 and using (2.2) we obtain

L`+1 y(t) =
n−1∑
j=`+1

(−1)j−`−1Lj y(s) Ij−`−1(s, t; rj, . . . , r`+2)

+ (−1)n−`−1
∫ s

t

In−`−2(x, t; rn−1, . . . , r`+2) rn(x)Ln y(x) dx

≤
∫ s

t

In−`−2(x, t; rn−1, . . . , r`+2) rn(x)Ln y(x) dx

=
∫ s

t

In−`−2(x, t; rn−1, . . . , r`+2) rn(x) p(x) r0(g(x))L0 y(g(x)) dx .

Letting s→∞, we get, using (2.3),

−L`+1 y(t) ≥
∫ ∞
t

In−`−2(x, t; rn−1, . . . , r`+2) rn(x) p(x) r0(g(x))L0y(g(x)) dx

≥
∫ τ(t)

t

In−`−2(x, t; rn−1, . . . , r`+2)rn(x) p(x) r0(g(x))

× I`(g(x), t1; r1, . . . , r`)L` y(g(x)) dx

for t ≥ t2. Since g is nondecreasing, w(t) = g(τ (t)) and L` y is monotonic decreas-
ing, then

−(L` y(t))′ ≥ r`+1(t)L` y(w(t))
∫ τ(t)

t

In−`−2(x, t; rn−1, . . . , r`+2) rn(x)

× p(x) r0(g(x))I`(g(x), t1; r1, . . . , r`) dx

≥ Q`(t, t1)L` y(w(t))

for t ≥ t2. Thus z(t) = L` y(t) is a positive solution of

z′(t) +Q`(t, t1) z(w(t)) ≤ 0

for t ≥ t2, a contradiction which completes the proof of the theorem. �
Corollary 2.5. If, for ` ∈ {1, . . .n − 1},

lim inf
t→∞

∫ t

w(t)
Q`(s, T ) ds >

1
e

or

lim sup
t→∞

∫ t

w(t)
Q`(s, T ) ds > 1 ,

for every large T > 0, then Eq. (1.3) has property (A), where Q`(t, T ) is same as
in (2.5).

Remark. We may notice that Fn−1(t, T ) = Qn−1(t, T ). However, F`(t, T ) 6≡
Q`(t, T ) for ` < n− 1.
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Example 2. Consider

(
log

t

2t1

)t
t(t((log

t

T

)2

y(t)

)′)′′′ + log
t

2t1
y

(
t

2

)
= 0 ,

t > T > 1 ,(2.6)

where

r0(t) =
1(

log t
T

)2 , r1(t) = r2(t) = r3(t) =
1
t
, r4(t) =

1
log t

2T

,

p(t) = log
t

2T
and g(t) =

t

2
.

Hence ∫ ∞
s2

r4(s1) p(s1) r0(g(s1)) ds1 > s2
1

log s2
2T

,∫ ∞
t

r3(s2)
∫ ∞
s2

r4(s1) p(s1) r0(g(s1)) ds1 ds2 >

∫ ∞
t

1
s
· s 1

log s
2T

ds

> t

{
lim
α→∞

logα− log

(
log

t

2T

)}
and

I1(g(t), T ; r1) =
∫ t/2

T

1
s
ds = log

t

2T
.

Hence

F1(t, T ) = r2(t) I1(g(t), T ; r1)
∫ ∞
t

r3(s2)
∫ ∞
s2

r4(s1) p(s1) r0(g(s1)) ds1 ds2 =∞ ,

for every t. Thus

lim inf
t→∞

∫ t

g(t)
F1(s, T ) ds >

1
e
.

Further

I3(g(t), T ; r1, r2, r3) =
∫ t/2

T

r1(s1)
∫ s1

T

r2(s2)
∫ s2

T

r3(s3) ds3 ds2 ds1

=
1
6

(
log

t

2T

)3
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and

F3(t, T ) =
1
6

log
t

2T
.

Hence

lim inf
t→∞

∫ t

g(t)
F3(s, T ) ds >

1
e
.

Thus, from Corollary 2.3, it follows that Eq. (2.6) has property (A). However,
Corollary 2.5 cannot be applied to Eq. (2.6) because, for τ (t) = t + 1 > t, we
obtain w(t) = g(τ (t)) = t+1

2 ,

I1(g(t), T ; r1) = log
t

2T
, I1(x, t; r3) = log

x

t
,

Q1(t, T ) =
1
t

∫ t+1

t

log
x

t
· 1

log x
2T

· log
x

2T
· 1(

log x
2T

)2 · log
x

2T
dx

<
1

t log t
2T

· log
(

1 +
1
t

)
and

lim inf
t→∞

∫ t

w(t)
Q1(s, T ) ds < lim

t→∞
log
(

1 +
2

t+ 1

)
· 1

log( t+1
4T )
· log

(
2

1 + 1
t

)
= 0 <

1
e
< 1 .

Remark. As the conditions in Corollaries 2.3 and 2.5 are not comparable, it
would be interesting to find an example where Corollary 2.5 holds but Corollary
2.3 fails to hold.

In the following we state a result which is a particular case of Theorem 1 due
to Fink and Kusano [3].

Theorem 2.6. Let ` be an integer such that 0 ≤ ` < n and n+` odd. A necessary
and sufficient condition for Eq. (1.3) to have a maximal solution y(t) satisfying
(1.6) is that

(2.7)
∫ ∞
σ

Kn−`−1(t, σ) p(t)|J`(g(t), σ)| dt <∞ ,

where

(2.8) Ji(t, s) = r0(t) Ii(t, s; r1, . . . , ri)

and

(2.9) Ki(t, s) = rn(t) Ii(t, s; rn−1, . . . , rn−i), 0 ≤ i ≤ n− 1 .
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Remark. We may observe that, for ` = n− 1,

Kn−`−1(t, σ) p(t) J`(g(t), σ) = F`(t, σ) = Q`(t, σ)

and, for ` ∈ {0, 1, . . ., n− 2},

Kn−`−1(t, σ) p(t) J`(g(t), σ) 6= F`(t, σ) and 6= Q`(t, σ) .

In Example 2, n = 4 and hence from Corollary 2.3 it follows that all solutions
of (2.6) are oscillatory. It is confirmed by Theorem 2.6 because (2.7) fails to hold
for ` = 1.

An attempt has been made in the following to compare property (A) of certain
n-th order canonical ordinary differential equations with that of delay differential
equations.

Theorem 2.7. Let g ∈ C1([σ,∞), R) such that g′(t) > 0. If the differential equa-
tion

(2.10) Lnx+
p
(
g−1(t)

)
rn
(
g−1(t)

)
rn(t)g′ (g−1(t))

x = 0

has property (A), then Eq. (1.3) has property (A).

Proof. Let y(t) be a nonoscillatory solution of (1.3). In order to complete the
proof of the theorem it is enough to show, in view of Lemma 1.1, that ` = 0. If
possible, suppose that ` 6= 0. Without any loss of generality, we may assume that
y(t) > 0 and y(g(t)) > 0 for t ≥ t0 > σ. Hence L0y(t) > 0 and Ln y(t) < 0 for
t ≥ t1 > t0 by Lemma 1.1. Integrating (1.3) from t to ∞, t > t1, we obtain

Ln−1 y(t) >
∫ ∞
t

rn(s1) p(s1) y(g(s1)) ds1 .

Further integration from t to ∞ yields

−Ln−2 y(t) >
∫ ∞
t

rn−1(s2)

(∫ ∞
s2

rn(s1) p(s1) y(g(s1)) ds1

)
ds2 .

Repeating the process we get

L` y(t) >
∫ ∞
t

r`+1(sn−`)· · ·
∫ ∞
s3

rn−1(s2)
∫ ∞
s2

rn(s1) p(s1) y(g(s1)) ds1 ds2 . . . dsn−` .

Integrating the above inequality from t1 to t, one may obtain

L`−1 y(t) >
∫ t

t1

r`(sn−`+1)
∫ ∞
sn−`+1

r`+1(sn−`)

· · ·
∫ ∞
s2

rn(s1) p(s1) y(g(s1)) ds1 . . . dsn−`+1 .
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Repeated integration yields

L0 y(t) > K +
∫ t

t1

r1(sn)· · ·
∫ sn−`+2

t1

r`(sn−`+1)
∫ ∞
sn−`+1

r`+1(sn−`)

· · ·
∫ ∞
s2

rn(s1) p(s1) y(g(s1)) ds1 . . . dsn

= K +
∫ t

t1

r1(sn)· · ·
∫ sn−`+2

t1

r`(sn−`+1)
∫ ∞
sn−`+1

r`+1(sn−`)

· · ·
∫ ∞
g(s2)

rn(g−1(s1)) p(g−1(s1)) y(s1)
g′(g−1(s1))

ds1 . . . dsn

> K +
∫ t

t1

r1(sn)· · ·
∫ sn−`+2

t1

r`(sn−`+1)
∫ ∞
sn−`+1

r`+1(sn−`)

· · ·
∫ ∞
s2

rn(g−1(s1)) p(g−1(s1)) y(s1)
g′(g−1(s1))

ds1 . . . dsn ,

where K = L0 y(t1) > 0 and we have used the facts that g′ exists, g is increasing
and g(t) < t. Thus

L0 y(t) > K +
∫ t

t1

r1(sn)· · ·
∫ sn−`+2

t1

r`(sn−`+1)
∫ ∞
sn−`+1

r`+1(sn−`)

· · ·
∫ ∞
s2

rn(g−1(s1)) p(g−1(s1))r0(s1)L0 y(s1)
g′(g−1(s1))

ds1 . . . dsn .

From Lemma 5 due to Kusano and Naito [6] it follows that the integral equation

v(t) > K +
∫ t

t1

r1(sn)· · ·
∫ sn−`+2

t1

r`(sn−`+1)
∫ ∞
sn−`+1

r`+1(sn−`)

· · ·
∫ ∞
s2

rn(g−1(s1)) p(g−1(s1)) r0(s1) v(s1)
g′(g−1(s1))

ds1 . . . dsn

admits a solution v(t), t ≥ t1, satisfying

K ≤ v(t) ≤ L0 y(t) , t ≥ t1 .

Hence v(t) > 0 for t ≥ t1. Setting x(t) = r0(t) v(t), we obtain x(t) > 0 for t ≥ t1
and

L0 x(t) = K +
∫ t

t1

r1(sn)· · ·
∫ sn−`+2

t1

r`(sn−`+1)
∫ ∞
sn−`+1

r`+1(sn−`)

· · ·
∫ ∞
s2

rn(g−1(s1)) p(g−1(s1))x(s1)
g′(g−1(s1))

ds1 . . . dsn .

Repeated differentiation yields that x(t) is a solution of (2.10) satisfying (1.6)
with ` 6= 0. This contradicts the fact that (2.10) has property (A) and hence the
theorem is proved. �
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3.

This section deals with property (B) of Eq. (1.4). We have the following theorem.

Theorem 3.1. If the delay-differential inequality

(3.1) z′(t) + F`(t) z(g(t)) ≤ 0 ,

` ∈ {1, . . . , n − 2} such that n + ` is even, does not admit eventually positive
solutions, then Eq. (1.4) has property (B), where

Fn−2(t) = rn(t) p(t) r0(g(t))[Rn−1(g(t)) −Rn−1(g(g(t)))]

× In−2(g(g(t)), g(g(g(t))); r1, . . . , rn−2)

and, for 1 ≤ ` ≤ n − 4,

F`(t) = r`+2(t)[R`+1(g(t)) − R`+1(g(g(t)))] I`(g(g(t)), g(g(g(t))); r1 , . . . , r`)

×
∫ ∞
t

r`+3(sn−`−2)
∫ ∞
sn−`−2

r`+4(sn−`−3)

· · ·
∫ ∞
s2

rn(s1) p(s1) r0(g(s1)) ds1 . . . dsn−`−3 dsn−`−2

and Ri(t) =
∫ t
σ
ri(s) ds, 1 ≤ i ≤ n − 1.

Proof. Suppose that Eq. (1.4) does not have property (B). Hence there exists a
solution y(t) of (1.4) such that y ∈ N̄`, where ` ∈ {1, . . . , n− 2}. Without any loss
of generality, we may assume that y(t) > 0 and y(g(t)) > 0 for t ≥ t1 > t0. From
Lemma 1.2 it follows that n+ ` is even and

(3.2) Li y(t) > 0 , 0 ≤ i ≤ ` and (−1)i−`Li y(t) > 0 , ` ≤ i ≤ n ,

for t ≥ t1. We may choose t2 > t1 such that g(t) > t1 for t ≥ t2. Then putting
i = 0, k = ` − 1 and t > s = g(t) for t ≥ t2 in (1.9) and using (1.8) (i) and (3.2)
we obtain

L0 y(t) =
`−1∑
j=0

(−1)jLj y(g(t)) Ij (g(t), t; rj, . . . , r1)

+ (−1)`
∫ g(t)

t

I`−1(x, t; r`−1, . . . , r1) r`(x)L` y(x) dx

≥ (−1)`
∫ g(t)

t

I`−1(x, t; r`−1, . . . , r1) r`(x)L` y(x) dx

≥ (−1)2`
∫ t

g(t)
I`−1(t, x; r1, . . . , r`−1) r`(x)L` y(x) dx

≥ L` y(t)
∫ t

g(t)
I`−1(t, x; r1, . . . , r`−1) r`(x) dx

≥ (−1)`L` y(t)
∫ g(t)

t

I`−1(x, t; r`−1, . . . , r1) r`(x) dx

= (−1)`L` y(t) I`(g(t), t; r`, . . . , r1) = L` y(t) I`(t, g(t), r1, . . . , r`) .
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For t ≥ t3 ≥ t2, g(t) ≥ t2 and hence

L0 y(g(t)) ≥ L` y(g(t)) I`(g(t), g(g(t)); r1, . . . , r`) .

Since L0 y(t) is monotonic increasing, we get, for t ≥ t3,

L0 y(t) ≥ L` y(g(t)) I`(g(t), g(g(t)); r1, . . . , r`) .

Further, for t ≥ t4 ≥ t3, g(t) ≥ t3 and we obtain

(3.3) L0 y(g(t)) ≥ L` y(g(g(t))) I`(g(g(t)), g(g(g(t))); r1 , . . . , r`) .

Since g(t) is increasing, then g−1(t) exists and increasing. Further, g(t) < t implies
that t < g−1(t). Integrating (L` y(t))′ = r`+1(t)L`+1 y(t) we obtain, for t ≥ t4,

L` y(g−1(t))− L` y(t) =
∫ g−1(t)

t

r`+1(s)L`+1y(s) ds ,

that is, for t ≥ t4,

−L` y(t) ≤ L`+1 y(g−1(t))
∫ g−1(t)

t

r`+1(s) ds

= L`+1 y(g−1(t))[R`+1(g−1(t))− R`+1(t)] .

For t ≥ t5 > t4, we have g(t) > t4 and hence

L` y(g(t)) ≥ −L`+1 y(t)[R`+1(t) −R`+1(g(t))] .

Thus, for t ≥ t6,

L` y(g(g(t))) ≥ −L`+1 y(g(t))[R`+1(g(t)) − R`+1(g(g(t)))] .

Hence, using (3.3), we get

L0 y(g(t)) ≥ − L`+1 y(g(t))[R`+1(g(t)) −R`+1(g(g(t)))](3.4)

× I`(g(g(t)), g(g(g(t))); r1, . . . , r`)

for t ≥ t6. From (1.4) we obtain, due to (3.4) with ` = n − 2,

(Ln−1 y(t))′ = rn(t) p(t) y(g(t))

= rn(t) p(t) r0(g(t))L0 y(g(t))

≥ − rn(t) p(t) r0(g(t))Ln−1y(g(t))[Rn−1(g(t)) −Rn−1(g(g(t)))]

× In−2(g(g(t)), g(g(g(t))); r1 , . . . , rn−2) ,
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that is,
−(Ln−1 y(t))′ − Fn−2(t)Ln−1 y(g(t)) ≤ 0 .

Hence z(t) = −Ln−1 y(t) is a positive solution of

z′(t) + Fn−2(t) z(g(t)) ≤ 0

for t ≥ t6, a contradiction. Next suppose that ` ∈ {1, . . . , n− 4}. Integrating (1.4)
and using (3.2) we get

−Ln−1 y(t) =
∫ ∞
t

rn(s1) p(s1) y(g(s1)) ds1 .

Repeated integration and use of (3.2) yield, for t ≥ t6,

(L`+1 y(t))′ ≥ r`+2(t)
∫ ∞
t

r`+3(sn−`−2)
∫ ∞
sn−`−2

r`+4(sn−`−3)

· · ·
∫ ∞
s2

rn(s1) p(s1) y(g(s1)) ds1 . . . dsn−`−3 dsn−`−2

= r`+2(t)
∫ ∞
t

r`+3(sn−`−2)
∫ ∞
sn−`−2

r`+4(sn−`−3)

· · ·
∫ ∞
s2

rn(s1) p(s1) r0(g(s1))L0 y(g(s1)) ds1 . . . dsn−`−2

≥ r`+2(t)L0 y(g(t))
∫ ∞
t

r`+3(sn−`−2)
∫ ∞
sn−`−2

r`+4(sn−`−3)

· · ·
∫ ∞
s2

rn(s1) p(s1) r0(g(s1)) ds1 . . . dsn−`−3 dsn−`−2 .

Hence using (3.4) we obtain, for t ≥ t6,

(L`+1 y(t))′ ≥ − r`+2(t)L`+1 y(g(t))[R`+1(g(t)) −R`+1(g(g(t)))]

× I` (g(g(t)), g(g(g(t))); r1, . . . , r`)

×
∫ ∞
t

r`+3(sn−`−2)· · ·
∫ ∞
s2

rn(s1) p(s1) r0(g(s1)) ds1 . . . dsn−`−2 ,

that is, for t ≥ t6,

−(L`+1 y(t))′ − F` (t)L`+1 y(g(t)) ≤ 0 .

Thus z(t) = −L`+1 y(t) is a positive solution of

z′(t) + F`(t) z(g(t)) ≤ 0

for t ≥ t6, a contradiction which completes the proof of the theorem. �
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Corollary 3.2. If, for ` ∈ {1, . . . , n− 2} such that n+ ` is even,

lim inf
t→∞

∫ t

g(t)
F`(s) ds >

1
e

or

lim sup
t→∞

∫ t

g(t)
F`(s) ds > 1 ,

then Eq. (1.4) has property (B), where F` is same as in (3.1).

This follows from Lemma 2.2 and Theorem 3.1.
In a recent paper (see [2, pp. 152]), Dzurina has obtained the following result.

Theorem 3.3. If, for ` ∈ {1, . . . , n− 2} such that n+ ` even,

lim inf
t→∞

∫ t

w(t)
Q`(s) ds >

1
e

or

lim sup
t→∞

∫ t

w(t)
Q`(s) ds > 1 ,

then Eq. (1.4) has property (B), where

Q`(t) = r`+1(t)
∫ τ(t)

t

rn(s) r0(g(s)) p(s) In−`−2(s, t; rn−1, . . . , r`+2)

× I`(g(s), t1; r1, . . . , r`) ds

for sufficiently large t1 with g(t) > t1.

In the following we give some examples to which Corollary 3.2 can be employed
but Theorem 3.3 cannot be applied.

Example 3. Consider

(3.5) log
t

2t1

t
t
 y(t)

log
(
t
t1

)
′′


′

− 1

log
(

t
2t1

) y( t
2

)
= 0 , t > t1 > 1 ,

where r0(t) = log t
t1

, r1(t) = r2(t) = 1
t , r3(t) = 1

log t
2t1

,

p(t) =
1

log
(

t
2t1

) and g(t) =
t

2
.

Hence

R2(g(t)) −R2(g(g(t))) =
∫ t/2

t/4

1
s
ds = log 2
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and

I1(g(g(t)), g(g(g(t))); r1) =
∫ t/4

t/8

1
s
ds = log 2 .

Then

F1(t) =
1

log
(

t
2t1

) · 1

log
(

t
2t1

) · log

(
t

2t1

)
log 2 · log 2 =

(log 2)2

log
(

t
2t1

)
implies that

lim
t→∞

∫ t

g(t)
F1(s) ds = lim

t→∞
(log 2)2

∫ t

t/2

1

log
(

s
2t1

) ds > (log 2)2 lim
t→∞

1

2 log
(

t
2t1

)
=

(log 2)2

2
· lim
t→∞

t

log
(

t
2t1

) =∞ .

Thus, by Corollary 3.2, Eq. (3.5) has property (B). On the other hand, Theorem
3.3 cannot be applied to Eq. (3.5) because, setting τ (t) = t+ 1, we obtain τ (t) > t
and w(t) = g(τ (t)) = t+1

2 and

Q1(t) =
1
t

∫ t+1

t

1

log
(

s
2t1

) · log

(
s

2t1

)
1

log
(

s
2t1

) · log(
s

2t1
) ds =

1
t
.

Hence

lim
t→∞

∫ t

w(t)
Q1(s) ds = lim

t→∞

∫ t

t+1
2

1
s
ds = log 2 = 0.3010 <

1
3
<

1
e
< 1 .

Example 4. Consider

log

(
t

2t1

)t(t(t( log

(
t

t1

)2
y(t)

)′)′)′′ − log

(
t

2t1

)
y

(
t

2

)
= 0 ,

(3.6)

t > t1 > 1 ,

where

r0(t) =
1(

log
(
t
t1

))2 , r1(t) = r2(t) = r3(t) =
1
t
, r4(t) =

1

log
(

t
2t1

) ,
p(t) = log

(
t

2t1

)
and g(t) =

t

2
.
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Hence

R3(g(t)) −R3(g(g(t))) =
∫ t/2

t/4

1
s
ds = log 2

and

I2(g(g(t)), g(g(g(t))); r1, r2) =
∫ t/4

t/8

1
s1

(∫ s1

t/8

1
s2
ds2

)
ds1 =

1
2

(log 2)2 .

Then

F2(t) =
1

log( t
2t1

)
·log

(
t

2t1

)
· 1(

log
(

t
2t1

))2 ·log 2· 1
2

(log 2)2 =
(log 2)3

2
· 1(

log
(

t
2t1

))2

implies that

lim
t→∞

∫ t

g(t)
F2(s) ds =

(log 2)3

2
lim
t→∞

∫ t

t/2

1(
log
(

s
2t1

))2 ds

≥ (log 2)3

4
· lim
t→∞

1(
log
(

t
2t1

))2 =
(log 2)3

8
· lim
t→∞

t >
1
e
.

Thus, from Corollary 3.2, it follows that (3.6) has property (B). However, Theorem
3.3 cannot be employed to (3.6). Indeed, setting τ (t) = t + 1 > t, we obtain

w(t) = g(τ (t)) =
t+ 1

2
,

I2(g(t), t1; r1, r2) =
∫ t/2

t1

1
s1

(∫ s1

t1

1
s2
ds2

)
ds1 ≤

(∫ t/2

t1

1
s
ds

)2

=
(

log
(

t

2t1

))2

and

Q2(t) ≤ 1
t

∫ t+1

t

1

log
(

s
2t1

) · 1(
log
(

s
2t1

))2 · log

(
s

2t1

)
·
(

log

(
s

2t1

))2

ds =
1
t
.

Hence

lim
t→∞

∫ t

w(t)
Q2(s) ds = lim

t→∞

∫ t

t+1
2

1
s
ds = lim

t→∞
log
(

2

1 + 1
t

)
= log 2 = 0.3010 <

1
3
<

1
e
< 1 .

Remark. Existence of a solution of Eq. (3.5) or Eq. (3.6) is obvious. However, we
could not find explicit solutions to these equations. In the following we give an
example of an equation which has property (B). Here an explicit solution of the
equation is given.
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Example 5. Consider

(3.7) y(iv)(t)− 1944
t4

y

(
t

3

)
= 0 , t ≥ 1 .

Since ri(t) = 1, 0 ≤ i ≤ 4, and g(t) = t/3, then g(g(t)) = t/9 and g(g(g(t))) = t/27
and R3(g(t)) −R3(g(g(t))) = 2t/9. Further,

I2(g(g(t)), g(g(g(t))); r1, r2) =
∫ t/9

t/27

(∫ t/9

s

dθ

)
ds =

2t2

272

and hence

F2(t) =
1944
t4
× 2t

9
× 2t2

272
=

32
27
· 1
t
.

Thus

lim inf
t→∞

∫ t

g(t)
F2(s) ds =

32
27

log 3 >
1
e
.

On the other hand, for τ (t) = t + 1 > t, we have w(t) = g(τ (t)) = (t+1)
3 < t and

Q2(t) = 1944
∫ t+1

t

1
s4 I2(g(s), t1; r1, r2) ds

= 1944
∫ t+1

t

1
s4

(
s2

18
− t1s

3
+

1
2
t21

)
ds

for sufficiently large t such that g(t) > t1 > 1. Clearly,

lim inf
t→∞

∫ t

w(t)
Q2(s) ds = 0 <

1
e
.

Hence Corollary 3.2 can be employed to Eq. (3.7) to conclude that it has property
(B), where as Theorem 3.3 cannot be applied to Eq. (3.7). In particular, y(t) = t4

is a nonoscillatory solution of (3.7) with y(t) > 0, y′(t) > 0, y′′(t) > 0, y′′′(t) > 0
and y(iv)(t) > 0.

In the following we obtain a result which ensures the existence of a nonoscilla-
tory solution of (1.4) whether n is even or odd.

Theorem 3.4. Eq. (1.4) admits a nonoscillatory solution satisfying

y(t)Li y(t) > 0 , 0 ≤ i ≤ n .

Proof. From a result due to Kusano et all. (Lemma 2, [7]) it follows that the
equation

(3.8) Lnx− p∗(t)x = 0 ,
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where p∗(t) = (r0(t))−1p(t) r0(g(t)), admits a nonoscillatory solution x(t) satisfy-
ing

x(t)Li x(t) > 0 , 0 ≤ i ≤ n

for large t. We may assume, without any loss of generality, that x(t) > 0 for
t ≥ t0 > σ. Hence Li x(t) > 0 for t ≥ t0 and x(g(t)) > 0 for t ≥ t1 > t0 and
0 ≤ i ≤ n. Successive integration of (3.8) from t1 to t yields

L0 x(t) ≥ K +
∫ t

t1

r1(s1)
∫ s1

t1

r2(s2)· · ·
∫ sn−1

t1

rn(sn) p∗(sn)x(sn) dsn . . . ds2 ds1

≥ K +
∫ t

t1

r1(s1)
∫ s1

t1

r2(s2)

· · ·
∫ sn−1

t1

rn(sn) p∗(sn) r0(sn)L0 x(sn) dsn . . . ds2 ds1 ,

where K = L0 x(t1) > 0. Since L1 x(t) > 0 for t ≥ t1, then

L0 x(t) ≥ K +
∫ t

t1

r1(s1)
∫ s1

t1

r2(s2)

· · ·
∫ sn−1

t1

rn(sn) p∗(sn) r0(sn)L0 x(g(sn)) dsn . . . ds2 ds1 .

From Lemma 5 due to Kusano and Naito [6] if follows that the integral equation

v(t) = K +
∫ t

t1

r1(s1)
∫ s1

t1

r2(s2) . . .
∫ sn−1

t1

rn(sn) p∗(sn) r0(sn) v(g(sn))dsn . . . ds2 ds1

admits a solution v(t), t ≥ t1, satisfying

K ≤ v(t) ≤ L0 x(t) , t ≥ t1 .

Hence v(t) > 0 for t ≥ t1. Setting y(t) = r0(t) v(t) we obtain y(t) > 0 for t ≥ t1
and

L0 y(t) = K +
∫ t

t1

r1(s1)
∫ s1

t1

r2(s2)· · ·
∫ sn−1

t1

rn(sn) p(sn) y(g(sn)) dsn . . . ds2 ds1 .

Successive differentiation shows that y(t) is a positive solution of (1.4) satisfying
Li y(t) > 0 for t ≥ t1, 0 ≤ i ≤ n. Hence the theorem is proved. �
Theorem 3.5. Suppose that g ∈ C1([σ,∞), R) such that g′(t) > 0. If the differ-
ential equation

(3.9) Lnx−
p(g−1(t))rn(g−1(t))
rn(t)g′(g−1(t))

x = 0

has property (B), then Eq. (1.4) has property (B).

Proof. Let y(t) be a nonoscillatory solution of (1.4). It is sufficient to show, in
view of Lemma 1.2, that ` = 0 or n for n even and ` = n for n odd. If possible,
let ` ∈ {1, 2, . . ., n− 2}. Then proceeding as in the proof of Theorem 2.7 one may
show that (3.9) admits a solution x ∈ N̄`, which contradicts the assumption that
(3.9) has property (B). Thus the theorem is proved. �
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