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ON PROJECTABLE OBJECTS ON FIBRED MANIFOLDS

VASILE CRUCEANU, MARCELA POPESCU AND PAUL POPESCU

Abstract. The aim of this paper is to study the projectableandN -projectable
objects (tensors, derivations and linear connections) on the total space E of

a fibred manifold ξ, where N is a normalization of ξ.

In this paper we study the projectable and N -projectable objects (tensors,
derivations and linear connections) on the total space E of a fibred manifold ξ =
(E, π,M ), where N is a normalization of ξ. Also, with this occasion, we extend,
complete and unify certain notions and results concerning the vector bundles and
fibred manifolds, presented in the papers quoted in the enclosed references.

1. Definitions and notations

A fibred manifold is a triplet ξ = (E, π,M ), where E and M are differentiable
manifolds which are connected and paracompact and π : E → M is a surjective
submersion. We say that E is the total space, M is the base manifold and π
is the canonical projection of the fibred manifold ξ. In the sequel we identify
the fibred manifold with the total space E. All manifolds, maps and objects
are assumed to be C∞ differentiable. For every x ∈ M , the sets Ex = π−1(x)
are closed submanifolds of E, which are assumed to be connected, too. Let us
denote by m the dimension of M and by n the dimension of Ex, (∀)x ∈ M .
We consider on E and M differentiable atlases which are adapted to the fibred
structures, i.e. in each point z ∈ E there is a chart (V, ψ) with ψ(z) = (xi, ya),
(i, j, k, . . . = 1,m, a, b, c, . . . = 1, n) and in x = π(z) ∈ M, a chart (U,ϕ) so that
U = π(V ) and ϕ(x) = (xi). The pairs of natural bases associated to the local

charts on M and on E are (∂i, di) and (∂i, ∂a; di, da) respectively, where ∂i =
∂

∂xi
,

∂a =
∂

∂ya
, di = dxi, da = dya. The change rules of the adapted charts is given by

the following equations:

xi
′

= xi
′
(xi), ya

′
= ya

′
(xi, ya) .(1)
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Therefore, the natural bases on M and on E have the following change rules:

∂i = ∂xi
′

∂xi ∂i′ , d
i′ = ∂xi

′

∂xi d
i ,

∂i = ∂xi
′

∂xi ∂i′ + ∂ya
′

∂xi ∂a′ , ∂a′ = ∂ya

∂ya
′ ∂a ,

di
′

= ∂xi
′

∂xi
di, da

′
= ∂ya

′

∂xi
di + ∂ya

′

∂ya
da .

(2)

Thus, the coordinates of the vectors X = Xi∂i ∈ TxM and A = Ai∂i +Aa∂a ∈
TzE have the following change rules:

Xi′ =
∂xi

′

∂xi
Xi, Ai

′
=
∂xi

′

∂xi
Ai, Aa

′
=
∂ya

′

∂xi
Ai +

∂ya
′

∂ya
Aa ,(3)

and the coordinates of the co-vectors ω = ωid
i ∈ T ∗xM and α = αid

i+αada ∈ T ∗zE
have the following change rules:

ωi′ =
∂xi

∂xi′
ωi , αi′ =

∂xi

∂xi′
αi +

∂ya

∂xi′
αa , αa′ =

∂ya

∂ya′
αa .(4)

If we consider VzE = ker Tzπ for every z = (x, y) ∈ E, then we obtain the
vertical distribution, therefore the vertical subbundle of TE, denoted by V E.
This distribution is tangent to the vertical foliation. If we consider the quotient
bundle WE = TE/V E, then we obtain the following vector bundles on E exact
sequence:

0→ V E
i→ TE

p→WE → 0 ,(5)

where i and p are the canonical injection and the canonical projection respectively.
We have for V E and for WE the local bases (∂a) and (∂̂i = p(∂i)) respectively.

If we put, for every z ∈ E, V⊥z E = {α ∈ T ∗z E | α(A) = 0, (∀)A ∈ VzE}, we
obtain a subbundle of T∗E called the orthogonal dual of V E. If we consider
W⊥E = T ∗E/V ⊥E then we obtain a new exact sequence of vector bundles over
E:

0→ V ⊥E
j→ T ∗E

q→W⊥E → 0 ,(6)

where j and q are the canonical injection and the canonical projection respectively.
For V ⊥E and W⊥E we have the local bases (di) and (d̂a = q(da)) respectively. If
the change rule of the local coordinates is given by (1), then we have the following
change rule for the local bases (∂̂i) and (d̂a):

∂̂i′ =
∂xi

∂xi
′ ∂̂i , d̂

a′ =
∂ya

′

∂ya
d̂a .(7)

It follows that (WE)∗ and (V E)∗ are canonically isomorphic with V ⊥E and
W⊥E respectively. In a similar way WE and (WE)∗ are canonically isomorphic
with π−1TM and π−1T ∗M respectively.

A distinguished tensor field (or d-tensor) of type
(
p r
q s

)
on the total space E of the

fibred manifold ξ is a section in the vector bundle ⊗pWE⊗r V E⊗q V ⊥E⊗sW⊥E
on the base E. The local expression of a d-tensor field T of type

(
p r
q s

)
is:

T = T
i1···ipa1···ar
j1···jqb1···bs ∂̂i1 ⊗ · · · ⊗ ∂a1 ⊗ · · · ⊗ dj1 ⊗ · · · ⊗ d̂b1 ⊗ · · · ⊗ d̂bs .(8)
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Let F(M ) be the ring of the real functions, T pq (M ) be the F(M )-module of tensor
fields of type (p, q) and T (M ) the two-graded F(M )-algebra of tensor fields on
M . We denote as T p,rq,s and T (E) the F(E)-module of d-tensor fields of type

(
p r
q s

)
and the four-graded F(E)-algebra of d-tensor fields on E respectively. Four one-
graded algebras and six two-graded algebras are more important subalgebras of
T (E), namely the subalgebras generated by the d-tensor fields of type

(
p 0
0 0

)
,
(

0 r
0 0

)
,(

0 0
q 0

)
,
(

0 0
0 s

)
;
(
p 0
q 0

)
,
(

0 r
0 s

)
,
(
p r
0 0

)
,
(

0 r
q 0

)
,
(
p 0
0 s

)
,
(

0 0
q s

)
, p, q, r, s ∈ N. Among these we

remark two subalgebras:
• The subalgebra of T (E) of two-graded d-tensors of type

(
0 r
q 0

)
, q, r ∈ N,

which consists of sections E →⊗rV E ⊗q V ⊥E. We call such sections as vertical-
horizontal or semi-basic tensor fields.
• The subalgebra of T (E) of two-graded d-tensors of type

(
p 0
q 0

)
, p, q ∈ N, which

consists of sections E →⊗pWE ⊗q V ⊥E. The local coordinates of these sections
follow the same change rule as the local coordinates of tensors of type (p, q) on M .

The d-lift (or WV ⊥-lift) of the tensor field t ∈ T pq (M ), given in local coordinates

by t = t
i1···ip
j1···jq∂i1 ⊗ · · · ⊗ d

j1 ⊗ · · · ⊗ djq , is the d-tensor field td ∈ T p,0q,0(E) given
locally by

td = t
i1···ip
j1···jq ◦ π∂̂i1 ⊗ · · · ⊗ ∂̂ip ⊗ d

j1 ⊗ · · · ⊗ djq .(9)

Notice that the d-lift is an F(M )-linear application of T pq (M ) in T p,0q,0(E).

The W -lift of a tensor field t ∈ T p0 (M ) = T p(M ) is td ∈ T p,00,0(E) and the V⊥-lift

of a tensor field t ∈ T 0
q (M ) = Tq(M ) is td ∈ T 0,0

q,0(E).
A vertical vector field is a section in the vector bundle V E. A vertical vector

field has a local formA = Aa(xi, yb)∂a. Since the vertical distribution is integrable,
for every A,B ∈ V T1(E) = T 1,0

0,0(E), we have [A,B] ∈ V T 1(E). Thus V T1(E) is
an F(E)-submodule and a Lie F(M )-subalgebra of T 1(E).

A horizontal 1-form on E is a section in the vector bundle V⊥E. It has the
local expression α = αi(xj , ya)di and α(A) = 0, for every vertical vector field A.

The horizontal lift of an 1-form ω ∈ T1(M ) is the 1-form on E given by ωh =
T ∗π (ω) . If ω(x) = ωi(xj)di, then ωh(x) = ωi(xj)di. Particularly (di)h = di.

2. Induced derivations and derivation laws in the algebra of
d-tensor fields

Generally, if D is a derivation in the algebra T (E), then it does not induce a
derivation in algebra T (E), since it does not respect always the graduation.

Let D be a derivation on T (E) which has the local expression

D(xi) = Di , D(ya) = Da ,
D(∂j) = Dk

j ∂k + Dc
j∂c , D (∂b) = Dk

b ∂k +Dc
b∂c .

(10)

Proposition 2.1. A derivation D in algebra T (E) induces a derivation in algebra
T (E) iff it satisfies one of the following equivalent conditions:

1. in the local expression (10), Dkb = 0;
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2. D carries every vertical vector field in a vertical vector field;
3. p ◦D ◦ i = 0.

Proof. Indeed, the four components of T (E) must be invariant by D, particu-
larly the component of the type

(
0 1
0 0

)
. Conversely, if the vector subbundle V E is

invariant by D, then its dual orthogonal is also invariant, since

Dα (A) = D (α (A))− α (DA) , α ∈ T1(E), A ∈ T 1(E) .

Defining D̂Â = D̂A and D̂α̂ = D̂α, we obtain two derivations denoted as D̂ on
WE and on W⊥E respectively and consequently a derivation D̂ in algebra T (E).
The conditions 2) and 3) are obviously equivalent to 1).

Let now D be a linear connection on E. Taking into account that DA is a
derivation in the algebra T (E) for every A ∈ T 1(E), and that the local expression
of D in local coordinates is

D∂i∂j = Γkij∂k + Γcij∂c, D∂a∂j = Γkaj∂k + Γcaj∂c ,
D∂i∂b = Γkib∂k + Γcib∂c, D∂a∂b = Γkab∂k + Γcab∂c

(11)

from Proposition 2.1, we obtain:

Proposition 2.2. A linear connection D on E induces a derivation law in the
four graded algebra T (E) iff it satisfies one of the following equivalent conditions:

1. using local coordinates, we have Γkib = 0, Γkab = 0;
2. DAB ∈ V T 1 (E) for every A ∈ T 1 (E) and B ∈ V T 1 (E);
3. p ◦ DA ◦ i = 0, (∀)A ∈ T 1 (E).

3. Projectable objects on the total space E

A function f̃ ∈ F(E) is called projectable if there is a function f ∈ F(M ) so
that f̃ = f ◦ π.

Using local adapted coordinates (xi, ya), it follows that a projectable function
depends only on the coordinates (xi). Since the set F̃(E) of projectable functions
is endowed with a real subalgebra structure of F(E), it is isomorphic with the real
algebra F(M ).

A vector field A ∈ T 1(E) is called projectable if for every projectable function
f̃ , the function A(f̃ ) is projectable.

Proposition 3.1. A vector field A ∈ T 1(E) is projectable iff it satisfies one of
the following equivalent conditions:

1. in the local expression A = Ai∂i +Aa∂a, the functions Ai are projectable;
2. there is X ∈ T 1(M ) so that Tπ(A) = X;
3. for every Bv ∈ V T 1(E) it follows that [A,Bv] ∈ V T 1(E).

Notice that condition 3) is equivalent with p(LBvA) = 0, (∀)Bv ∈ V T 1(E),
where LBv is the Lie derivation with respect of Bv. It follows that the set P1(E)
of projectable fields is a submodule of T 1(E) over F(M ), it has V T 1(E) as a
submodule over F(M ) and it is a Lie subalgebra of T 1(E) which has V T 1(E) as
an ideal.
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A differential 1-form α ∈ T1(E) is called projectable if for every projectable
vector field A the function α(A) is projectable.

Proposition 3.2. A differential 1-form α ∈ T1(E) is projectable iff it satisfies
one of the following equivalent conditions:

1. in the local expression α = αid
i +αad

a, the functions αi are projectable and
αa = 0;

2. there is a differential 1-form ω ∈ T1(M ) so that α = T∗π(ω);
3. dα(A,Bv) = 0, (∀)A ∈ P1(E), Bv ∈ V T 1(E), α ∈ T 1(E).

A tensor field T ∈ T uv (E), u, v ≥ 0, is projectable if for every projectable 1-forms
α1, . . . , αu and projectable vector fields A1, . . . , Av, the function T (α1, . . . ,αu,
A1, . . . , Av) is projectable.

Using Propositions 3.1 and 3.2, the following result holds:

Proposition 3.3. A tensor field T ∈ T uv (E), u, v ≥ 0, is projectable iff it satisfies
one of the following equivalent conditions:

1. in the local expression T = T
i1···ipa1···ar
j1···jqb1···bs ∂i1 ⊗ · · ·∂a1 ⊗ · · ·dj1 ⊗ · · ·db1 ⊗ · · ·⊗

dbs, p + r = u, q + s = v, the local functions Ti1···iuj1···jv are projectable and
T i1···iuj1···jv−1bv

= 0, . . . , T i1···iub1···bv = 0;
2. there is a tensor field t ∈ T uv (M ) such that

T (α1, . . . , αu, A1, . . . , Av) = t (ω1, . . . , ωu, X1, . . . , Xv) ◦ π ,(12)

(∀)ωi ∈ T1(M ), Xj ∈ T 1(M ), αi ∈ P1(E), Aj ∈ P1(E), so that αi = T ∗ωi
and Tπ(Aj) = Xj , i = 1, . . . , u, j = 1, . . . , v.

Particularly, a tensor field T ∈ T u0 (E) is projectable iff the local components
T i1···iu are projectable.

As immediate properties of projectable tensor fields we can state:

Proposition 3.4. The set P(E) of projectable tensor fields on E is a subalgebra
of T (E) over F(M ). The map which associate with every projectable tensor field
T ∈ P(E) its projection t ∈ T (M ) is an F(M )-morphism of algebras; restricted
to P1(E), it takes values in T 1(M ) and it is a Lie algebra morphism.

A derivation D of algebra Der T (E) is called projectable if for every projectable
vector field A ∈ P1(E), the vector field DA is also projectable.

Proposition 3.5. A derivation D of algebra Der T (E) is projectable iff it satisfies
one of the following equivalent conditions:

1. in the local expression of D, the functions Di and Dkj are projectable and
Dk
b = 0;

2. there is a derivation D̃ ∈ Der T (M ) so that

Tπ(DA) = D̃X

(∀)A∈P1(E) and X∈T 1(M ) which satisfies the condition Tπ(A)=X .
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Remarks.
1. According to Proposition 2.1, a projectable derivation induces a derivation

in algebra T (E).
2. The set of projectable derivations is an F(M )-submodule and a real Lie

subalgebra of Der T (E), homomorphic with the Lie algebra Der T (M ).
3. The Lie derivation LA is projectable iff A is projectable.
4. The derivation defined by a tensor S ∈ T 1

1 (E) is projectable iff S is pro-
jectable.

A linear connection D on E is called projectable if for every projectable vector
field A the derivation D = DA is projectable.

Proposition 3.6. A linear connection D on E is projectable iff it satisfies one of
the following equivalent conditions:

1. the local functions Γijk are projectable and Γkaj = Γkib = Γkab = 0;
2. for every projectable vector fields A,B ∈ P1(E), the vector field DAB is also

projectable;
3. there is a connection D̃ on M (called the projected connection) so that

Tπ (DAB) = D̃Tπ(A)Tπ(B) , (∀)A,B ∈ P1(E) .(13)

Remark. According to Proposition 2.2, a projectable connection induces a deriva-
tion law in the four graded algebra T (E).

Proposition 3.7. The torsion T of a projectable connection D on E is a pro-
jectable tensor field and its projection on M is the torsion T̃ of the projected
connection D̃:

Tπ (T (A,B)) = T̃ (Tπ(A), Tπ(B)) , (∀)A,B ∈ P1(E) .(14)

Since the bracket of two projectable vector fields on E is also a projectable
vector field, the following result holds:

Proposition 3.8. The curvature R of a projectable connection D on E is a pro-
jectable tensor field and its projection on M is the curvature R̃ of the projected
connection D̃:

Tπ (R (A,B)C) = R̃ (Tπ(A), Tπ(B)) Tπ(C) ,
(∀)A,B,C ∈ P1(E) .

(15)

Remark. The set of projectable linear connections on E is an affine F(M )-
submodule [4] of the module of linear connections on E, which is homomorphic
with the F(M )-module of linear connections on M .

4. Normalizations of the vertical foliation

Since the total space E has a vertical foliation V E, we can consider for its
study a normalization of this foliation, i.e. a distribution HE on E which is
supplementary to V E. The distribution HE is called the horizontal distribution.
We denote also by HE the horizontal subbundle. A such normalization can be
defined by a right or a left splitting of the exact sequences (5) or (6).
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A right splitting of the exact sequence (5) is a map N : WE → TE which
satisfies the conditions that N is an E-morphism of vector bundles and p ◦N =
IWE . Denoting as HE = N (WE), it is a subbundle of TE which is supplementary
to V E, thus we obtain a normalization on E with HE the suitable horizontal
bundle. In local coordinates, we can consider

δi = N
(
∂̂i
)

= ∂i −Na
i ∂a , i = 1, . . . , n ,(16)

which is a local basis (δi) of the sections of HE. The change rule when the local
coordinates change is:

δi′ =
∂xi

∂xi′
δi , i, i

′ = 1, . . . , n .(17)

It follows that the change rule for the coefficients {Nai (x, y)} of the normaliza-
tion is:

Na′

i′ =
∂xi

∂xi
′

(
Na
i

∂ya
′

∂ya
− ∂ya

′

∂xi

)
.(18)

Conversely, if we assume that on the domain of every local chart on E, adapted
to the fibred structure on E, the local functions Nai (x, y) are given, such that the
change rule (18) on the intersection of two domains holds, then the map N given
by relation (16) is a normalization of E. The normalizationN gives an embedding
of WE in TE and a decomposition of TE in the direct Whitney sum

TE = HE ⊕ V E .(19)

Denoting as H and V the horizontal and vertical projectors and as F the almost
product structure canonically associated with the normalization, we have:

H = N ◦ p, V = ITE −H , F = H − V .(20)

Locally, for a vector field A = Ai∂i +Aa∂a on E, from (16) we obtain:

A = Aiδi +
(
Aa +Na

i A
i
)
∂a , HA = Aiδi = Ai∂i −Na

i A
i∂a ,(21)

V A =
(
Aa +Na

i A
i
)
∂a .

A horizontal vector field on E with respect to the normalization N is a section
of the horizontal subbundle. Locally, a horizontal vector field has the form A =
Ai(x, y)δi. The relations (16) and (21) imply that A ∈ T 1(E) is projectable iff HA
is projectable. As for A = Ai(x)δi its projection is X = Ai∂i, it follows that the
restriction of Tπ to the F(M )-module HP1(E) of horizontal projectable vector
fields is an F(M )-isomorphism.

The horizontal lift of the vector field X ∈ T 1(M ) is the horizontal projectable
vector field A which projects on X. We denote A = Xh. Using local coordinates,
if X = Xi∂i, then Xh = Xi(x)δi.

A left splitting of the exact sequence (5) is a map Ñ : TE → V E which satisfies
the conditions that Ñ is a morphism of vector bundles over the base E and Ñ ◦i =
IV E .
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Proposition 4.1. If N is a normalization on E given by a right splitting of the
exact sequence (5), then the formula Ñ (A)z = (V A)z, (∀)A ∈ T 1(E) defines a left
splitting of the exact sequence (5). Locally, it means:

Ñ (∂i) = −Na
i ∂a , Ñ (∂a) = ∂a , i = 1, . . . ,m , a = 1, . . . , n .(22)

A right splitting of the exact sequence (6) is a map N⊥ : W⊥E → T ∗E which
satisfies the conditions that N⊥ is a morphism of vector bundles over the base E
and q ◦N⊥ = IW⊥E .

Proposition 4.2. If N is a normalization on E given by a right splitting of the
exact sequence (5), then the formula

N⊥ (ω̂)
(
N
(
X̂
))

= 0 , (∀)ω̂ ∈ X
(
W⊥E

)
, X̂ ∈ X (WE)(23)

defines a right splitting of the exact sequence (6).

We denote as H⊥E = N⊥
(
W⊥E

)
. Notice that it is a subbundle of T∗E, sup-

plementary to V ⊥E and which is the orthogonal dual of HE. In local coordinates,
the formula

δa = N⊥
(
d̂a
)

= da + Na
i d

i , a = 1, . . . , n ,(24)

defines a local base (δa) on H⊥E, which on the intersection of the domains of two
charts change according the rule:

δa
′

=
∂ya

′

∂ya
δa .(25)

The normalization N⊥ gives a direct sum decomposition of T ∗E as:

T ∗E = V ⊥E ⊕H⊥E .(26)

Denoting as V ⊥, H⊥ the vertical and horizontal projectors respectively and as
F⊥ the almost product structure defined by the normalization N⊥ on T ∗E, we
obtain:

H⊥ = N⊥ ◦ q , V ⊥ = IT∗E −H⊥ , F⊥ = H⊥ − V ⊥ .(27)

A vertical 1-form on E is a section of H⊥E. A vertical 1-form has a local
expression α = αa(x, y)δa and every horizontal vector field belongs to its kernel.

Remark. The normalizationN can be defined by one of the tensor fields V , H, F
or V ⊥, H⊥, F⊥ providing suitable conditions, or by the condition that for every

function f ∈ F(E) the local functions
δf

δxi
=

∂f

∂xi
−Na

i

∂f

∂ya
be the coordinates of

a d-field of co–vectors (or a d-1-form).

Proposition 4.3. If N is a normalization on E, then the formula

Ñ⊥ (α)z = (H⊥α)z , (∀)α ∈ T1 (E)(28)

defines a left splitting of the exact sequence (6).
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Using a local coordinates, we have:

Ñ⊥
(
di
)

= di , Ñ⊥ (da) = −Na
i d

i .(29)

Notice that it is easy to see that any one of the four splittings N , Ñ , N⊥, Ñ⊥

gives uniquely the other three and thus it defines a normalization on E.
From the above remarks it results that the following systems of local sections

(δi, ∂a) and (di, δa), i = 1, . . . ,m, a = 1, . . . , n are local dual bases adapted to the
normalization N and to the adapted coordinates on E and M . In the sequel we
call these bases as natural N -adapted bases.

Using a normalizationN and natural local N -adapted bases, the study of fibred
manifolds may be considerably improved. The structure equation of the normal-
ization N are:

[δi, δj] = −
(
δiN

c
j − δjN c

i

)
∂c , [δi, ∂b] = ∂bN

c
i ∂c , [∂a, ∂b] = 0 ,

d
(
di
)

= 0 , d (δa) (δi, δj) = δiN
a
j − δjNa

i ,

d (δa) (δi, ∂b) = −∂bNa
i , d (δa) (∂b, ∂c) = 0 .

(30)

Considering the Nijenhuis tensors NH , NV and NF of H, V and F respectively
we obtain:

NH
(
Xh, Y h

)
= V

[
Xh, Y h

]
, NH

(
Xh , Bv

)
= 0 ,

NH (Av, Bv) = 0 , NV = NH , NF = 4NH .
(31)

Using local coordinates we have:

NH (δi, δj) = V [δi, δj] = −
(
δiN

c
j − δjN c

i

)
∂c , NH (δi, ∂b) = 0, NH (∂a, ∂b) = 0 .

It follows the result:

Proposition 4.4. The horizontal distribution associated to the normalization N
is integrable iff NH = 0.

Coming back to the normalizationN on E, in the case of vector bundles [7, 11]
the tensor field Ω = −NH is called the curvature tensor of the nonlinear connection
N , since in the case when N is defined by a linear connection on M , it involves
in its expression the curvature tensor of the linear connection and it vanishes
simultaneously with the curvature. It was used in the paper [3] in the study of
the curvature of an infinitesimal connection on a principal bundle. The equations
(31) implies the useful relation:[

Xh, Y h
]

= [X,Y ]h −Ω
(
Xh, Y h

)
(32)

and thus the following result holds:

Proposition 4.5. The horizontal lift h : T 1(M ) → T 1(E) is a morphism of Lie
algebras iff Ω = 0.



194 V. CRUCEANU, M. POPESCU AND P. POPESCU

5. N -decomposable tensor fields

An N -decomposable tensor field (or N -tensor) of type
(
p r
q s

)
on the total space

E, according to the normalization N , is a section in the vector bundle:

⊗pHE ⊗r V E ⊗q V ⊥E ⊗p H⊥E .(33)

Using local coordinates and local N -adapted bases, a such N -tensor has the
local expression:

T̃ (z) = T̃
i1...ipa1...ar
j1...jqb1...bs

(z)δi1⊗· · ·⊗∂a1⊗· · ·dj1⊗· · · δb1⊗· · ·⊗δbs .(34)

We denote as T p,rq,s (E,N ) and T (E,N ) the F(E)-module of N -decomposable
tensor fields of type

(
p r
q s

)
and the corresponding four-graded F(E)-algebra. Con-

sidering a tensor field T̃ ∈ T p,rq,s (E,N ) as a multi-linear map T̃ : T1(E)p+r ×
T 1(E)q+s → F(E), we obtain:

Proposition 5.1. A tensor field T̃ ∈ T p+rq+s (E) is N -decomposable of type
(
p r
q s

)
iff

T̃ = T̃ ◦
((
H⊥
)p × (V ⊥)r ×Hq × V s

)
, i.e.(35)

T̃ (α1, . . .β1, . . . , X1, . . . , Y1, . . . )= T̃
(
H⊥α1, . . . , V

⊥β1, . . . , HX1, . . . , V Y1, . . .
)
.

Every tensor field T ∈ T uv (E) can be decomposed as a sum of 2u+v tensor fields
N -decomposable of type

(
p r
q s

)
with p + r = u and q + s = v and thus for every

u, v ∈ N we have:

T uv (E) = ⊕
p+ r = u
q + s = v

T p,rq,s (E,N ) ,(36)

thus the two-graded algebra T (E) can be replaced by the four-graded algebra
T (E,N ).

Given a normalization N on E, the N -lift with respect to N of a d-tensor field
T of type

(
p r
q s

)
given by relation (8) is the N -decomposable tensor field T̃ which

have the same type, given by relation (34), where

T̃
i1...ipa1...ar
j1...jqb1...bs

= T
i1...ipa1...ar
j1...jqb1...bs

.(37)

The N -lift is an F(E)-isomorphism of the tensor algebras T (E) and T (E,N ).
Notice that there are some distinguished subalgebras of T (E,N ), which are very
important ones:

The one-graded subalgebras generated by the N -tensor fields of types
(
p 0
0 0

)
,(

0 r
0 0

)
,
(

0 0
q 0

)
and

(
0 0
0 s

)
respectively; where p, q, r, s ∈ N;

The two-graded subalgebras generated by the N -tensor fields of types
(
p 0
q 0

)
,(

0 r
0 s

)
,
(

0 r
q 0

)
and

(
p 0
0 s

)
;

The two-graded contravariant subalgebra, generated by the N -tensor fields
of types

(
p r
0 0

)
and the two-graded covariant subalgebra, generated by the

N -tensor fields of types
(

0 0
q s

)
.
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We can give suitable names to these subalgebras. For example, the subalgebra
generated by N -decomposable tensor fields of type

(
p 0
q 0

)
can be called the horizontal

subalgebra. A horizontal N -tensor field has the local form T
i1...ip
j1...jq

δi1⊗· · · δip⊗dj1⊗
· · ·⊗ djq . For an arbitrary tensor T ∈ T pq (E), the tensor HT = T ◦ (H⊥)p ×Hq ∈
HT pq (E,N ) is called the horizontal projection of T .

Given a normalizationN on E, the N -horizontal lift of a tensor field t ∈ T pq (M )
is the tensor field th ∈ HT pq (E,N ) given by

th
(
ωh1 , . . . , ω

h
p , X

h
1 , . . . , X

h
q

)
= t (ω1, . . . , ωp, X1, . . . , Xq) ◦ π ,(38)

(∀)ωi ∈ T1(M ) , Xj ∈ T 1(M ).
An immediate consequence of the above Definition is:

Proposition 5.2. The N -horizontal lift h : T (M ) → HT (E,N ) is an F(M )-
morphism of two-graded tensor algebras and h = N ◦ d.

6. Derivations and derivation laws in the algebra of
N -decomposable tensor fields

Let N be a normalization on E and D = (D0, D1) be a derivation in the tensor
algebra of E, given in local N -adapted bases by:

D0

(
xi
)

= Di , D0 (ya) = Da ,
D1 (δj) = Dk

j δk + Dc
j∂c , D1 (∂b) = Dk

b δk + Dc
b∂c .

(39)

Given a normalizationN on E, an N -horizontal derivation is a derivation on E
which preserves the horizontal distribution (i.e. it sends a horizontal vector field
in a horizontal vector field).

Proposition 6.1. A derivation D is horizontal iff it satisfies one of the following
equivalent conditions:

(1) Using the local form (39) one has Daj = 0; (2) V ◦D ◦H = 0.

Proof. If the derivation D is horizontal then Daj = 0. The condition Da
j = 0

implies that V ◦ D ◦ H = 0, and it implies to its turn that the derivation D is
horizontal.

It is easy to see that an N -horizontal derivation D, restricted to the horizontal
bundle HE by the conditions:

D̃0 = D0 , D̃1 (δj) = Dk
j δk ,

defines a derivation D̃ on HE.

Remark. An N -horizontal derivation D induces also a derivation in the vector
subbundle H⊥E and thus a derivation in the subalgebra of N -tensors of type

(
p 0
0 s

)
,

p, s ∈ N.
Considering H and V as endomorphisms of the tensor algebra T (E), we obtain:

Proposition 6.2. If D is a derivation on E, then the formula D̃ = H ◦D ◦H
defines by restriction a derivation D̃ on HE.



196 V. CRUCEANU, M. POPESCU AND P. POPESCU

In fact we have D̃(fA) = H ◦ D ◦ H(fA) = H(D(f · HA)) = H(Df · HA +
f ·DHA) = D̃f ·HA+ fD̃A for every A ∈ T 1(E), i.e. we have an Otsuki quasi-
derivation on E. When restricted to HE we obtain a derivation on HE, since in
this case D̃(fA) = D̃f ·A+ fD̃A, (∀)A ∈ HT 1(E).

The horizontal lift of a derivation D on the base manifold M is the derivation
Dh on HE given by

Dh
0 = (D0)h , Dh

1

(
Xh
)

= (D1X)h ,(40)

where (D0)h is the N -horizontal lift of the vector field D0 ∈ T 1(M ). Using local
coordinates, if we denote as D(xi) = Di and D(∂j ) = Dk

j ∂k, one has:

Dh
0

(
xi
)

= Di (x) , Dh
0 (ya) = −Na

i D
i (x) , Dh

1 (∂j) = Dk
j (x) ∂k .

(41)

Given a normalization N on E, an N -vertical derivation is a derivation on E
which preserves the vertical distribution.

In the same manner as Proposition 6.1, we can prove:

Proposition 6.3. A derivation D is N -vertical iff it satisfies one of the following
equivalent conditions:

(1) Using the local form (39) one has Dka = 0; (2) H ◦D ◦ V = 0.

Remark. The N -vertical derivation D induces also, by restriction, a derivation
in the vertical subbundle V E. It induces a derivation in the subbundle V⊥E and
so a derivation in the subalgebra of N -tensors of type

(
0 r
q 0

)
, q, r ∈ N, i.e. the

semi-basic tensors.

Proposition 6.4. If D is a derivation on E, then the formula ˜̃
D = V ◦ D ◦ V

defines, by restriction, a derivation on V E.

A derivation on E is N -decomposable (or N -derivation) if it preserves the alge-
bra of N -decomposable tensor fields.

Proposition 6.5. A derivation D on E is an N -derivation iff it satisfies one of
the following equivalent conditions: (1) Using the local form (39) one has Dcj = 0,
Dk
a = 0; (2) DH = 0; (3) DV = 0; (4) DF = 0; (5) D is in the same time

an N -horizontal and an N -vertical derivation; (6) D induces, by restriction, the

derivations D̃ on HE and ˜̃D on V E respectively, such that:

D0 = D̃0 = ˜̃
D0 , D1 = D̃1 ◦H + ˜̃

D1 ◦ V .(42)

Proof. From (39) it follows that Ddi = −Dijdj −Di
bδ
b, Dδa = −Daj dj −Da

b δ
a.

Since D preserves the four-graded algebra T (E,N ) of N -decomposable tensor
fields, it preserves the tensors of type

(
1 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
and

(
0 0
0 1

)
respectively, thus

it satisfies condition 1). Conversely, if D satisfies the condition 1), then using
the local form of a N -decomposable tensor field, it follows that D preserves the
algebra T (E,N ). The other conditions are obviously equivalent with 1).
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Proposition 6.6. If D̃ is a derivation on M and Dv is a derivation in the vertical
subbundle V E, such that D̃h

0 = Dv
0 , then the formulas:

D0 = D̃h
0 = Dv

0 , D1X
h =

(
D̃1X

)h
, D1A

v = Dv
1A

v ,

(∀)X ∈ T 1(M ), Av ∈ V T 1(E) ,
(43)

define an N -derivation on E.

Proposition 6.7. If D is a derivation on E and F is the almost product structure
associated with the normalization N , then the formula

D̄ =
1
2

(D + F ◦D ◦ F )(44)

defines an N -decomposable derivation on E.

Proof. It is easy to see that Dc = F ◦D ◦ F is also a derivation on E, called in
[4] as the conjugate derivation of D with respect with F . By a direct computation
one get to D̄F = 0. It can be easy proved that:

D̄ = H ◦D ◦H + V ◦D ◦ V = D̃ ◦H + ˜̃
D ◦ V ,(45)

where D̃ and ˜̃
D are the derivations induced by D on HE and V E respectively.

Then one use 6) of Proposition 6.5.

The derivation given by one of the relations (44) or (45) is called the N -
derivation associated with D.

Proposition 6.8. The set of N -derivations in algebra T (E) is given by the deriva-
tions D which have the form:

D = ΦF
( ◦
D
)

+ ΩF (τ ) ,(46)

where
◦
D is an arbitrary, but otherwise fixed derivation of the algebra T (E), τ is

an arbitrary tensor field from T 1
1 (E), and ΦF , ΩF are operators in DerT (E) and

T 1
1 (E) respectively, defined by the formulas:

ΦF (D) =
1
2

(D + F ◦D ◦ F ) , ΩF (τ ) =
1
2

(τ + F ◦ τ ◦ F ) .(47)

Proof. Let D and D̄ be two derivations in algebra T (E). If we put D̄ = D + τ ,
it follows that τ ∈ T 1

1 (E). Then we have D̄F = DF − 2F ◦Ω∗(τ ), where Ω∗ is the
operator on T 1

1 (E) given by Ω∗(τ ) = 1
2 (τ−F ◦τ◦F ). Thus ifDF = 0, then D̄F = 0

iff Ω∗(τ ) = 0. So, in order to get to an arbitrary D̄ it suffices to consider an N -
derivation and an arbitrary tensor field τ ∈ ker Ω∗. In conclusion, in order to obtain
all the N -derivations on E we consider an arbitrary derivation

◦
D onE, we fix it and

we consider also its associated N -derivation D = 1
2

( ◦
D +F◦

◦
D ◦F

)
= ΦF

( ◦
D
)

.

Since Ω and Ω∗ are supplementary projectors on T 1
1 (E) (as it can be easy proved),

we have ker Ω∗ = imΩ and thus τ ∈ ker Ω iff there is τ′ ∈ T 1
1 (E) such that

τ = Ω(τ ′). Thus omitting the accent for τ ′ we obtain for an arbitrary derivation
on E the general form (46).
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Consider now a normalizationN and a connection D on E. In local coordinates
which are N -adapted, we denote:

Dδiδj = Γkijδk + Γcij∂c, D∂aδj = Γkajδk + Γcaj∂c ,

Dδi∂b = Γkibδk + Γcib∂c, D∂a∂b = Γkabδk + Γcab∂c .
(48)

Let us take as derivation D = DA, with A ∈ T 1(E).
Given a normalization N , an N -horizontal connection D on E is a linear con-

nection on E which preserves by parallelism the horizontal distribution.

Proposition 6.9. A linear connection D on E is an N -horizontal connection iff
it satisfies one of the following equivalent conditions:

1. using the local expressions (48), we have Γcij = 0, Γcaj = 0;
2. V ◦ DA ◦H = 0, (∀)A ∈ T 1(E).

An N -horizontal connection induces, by restriction, a linear connection D̃ on the
horizontal subbundle. It induces also a linear connection in the vector subbundle
H⊥E and thus a derivation law in the subalgebra of N -tensor fields of type

(
p 0
0 s

)
,

with p, s ∈ N. Using local coordinates, we have:

Dδiδj = Γkijδk , D∂aδj = Γkajδk ,
Dδiδb = −Γbicδc , D∂aδb = −Γbacδc .

(49)

Given a normalization N , the N -horizontal lift of a linear connection ∇ on the
base manifold M is the connection ∇h on the horizontal vector subbundle HE,
given by:

∇h
Xh
Y h = (∇XY )h , ∇hAvY h = 0 ,

(∀)X,Y ∈ T 1(M ) , Av ∈ V T 1(E) .
(50)

Using local coordinates, adapted to the normalization N , ∇h has the form:

∇hδiδj = Γkij(x)δk , ∇h∂aδj = 0 .(51)

Proposition 6.10. If D is a linear connection on E, then the formula
D̃A = H ◦ DA ◦H defines, by restriction, a linear connection on HE.

In fact (H, D̃) is an Otsuki quasi-connection on E, since for A,B ∈ T 1(E) and
f ∈ F(E) we have D̃A(fB) = A(f) ·HB + fD̃AB.

Given a normalization N on E, an N -vertical connection D on E is a linear
connection on E which preserves by parallelism the vertical distribution.

Proposition 6.11. A linear connection D on E is an N -vertical connection iff it
satisfies one of the following equivalent conditions:

1. using the local expressions (48), we have Γkib = 0, Γkab = 0;
2. H ◦ DA ◦ V = 0, (∀)A ∈ T 1(E).

An N -vertical connection induces, by restriction, a linear connection ˜̃D on the
vertical subbundle. It induces also a linear connection in the vector subbundle
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V ⊥E, thus a derivation law in the subalgebra of N -tensors of type
(

0 r
q 0

)
, q, r ∈ N.

Using local coordinates, we have:

Dδi∂b = Γcib∂c , D∂a∂b = Γcab∂c ,
Dδidj = −Γjikd

k , D∂adj = −Γjakd
k .

(52)

According to [13], a linear R-connection (or a Wong quasi-connection) on the
vertical bundle V E is a map D : Γ(V E) × Γ(V E) → Γ(V E), D(A,B) not.= Dv

AB,
which enjoys the properties that it is F(E)-linear in the first argument, additive
in the second argument and DA(fB) = A(f) · B + f · DAB, (∀)A,B ∈ Γ(V E),
f ∈ F(E). Since restricted to each leaf of the vertical foliation it induces a linear
connection on that leaf, we call an R-linear connection on V E as a connection on
E along the vertical leaves.

If N is a normalization on the fibred manifold E, the N -vertical lift of a linear
connection D along the vertical leaves (given locally by Dvsasb = Γcab(x, y)sc) is
the linear connection Dv on the vertical subbundle V E, given by:

Dv
XhB

v =
[
Xh, Bv

]
, Dv

AvB
v = DAvB

v ,
(∀)X ∈ T 1(M ) , Av, Bv ∈ V T 1(E) .(53)

Using N -adapted local coordinates, Dv has the form:

Dv
δi∂b = ∂bN

c
i ∂c , Dv

∂a∂b = Γcab∂c .(54)

Proposition 6.12. If D is a connection on E, then the formula˜̃DA = V ◦ DA ◦ V defines, by restriction, a linear connection on V E.

A linear connection D on E is called N -decomposable (or N -connection) if it
induces a derivation law in algebra T (E,N ) of N -decomposable tensor fields.

Proposition 6.13. A linear connection D on E is N -decomposable iff it satisfies
one of the following equivalent conditions: (1) Using the local form (48) one has
Γcij = 0, Γcaj = 0, Γkib = 0; Γkab = 0; (2) DH = 0; (3) DV = 0; (4) DF = 0;
(5) D is in the same time an N -horizontal and an N -vertical connection; (6)

There are the linear connections D̃ on HE and ˜̃D on V E respectively, such that:

D = D̃1 ◦H + ˜̃D ◦ V.
Proposition 6.14. Consider a fibred manifold E, ∇ a linear connection on the
base M and D a linear connection on E along the vertical leaves.

Then the formulas:

DXhY h = (∇XY )h , DAvY h = 0 ,
DXhBv =

[
Xh, Bv

]
, DAvBv = Dv

AvB
v(55)

(∀)X,Y ∈ T 1(M ), Av, Bv ∈ V T 1(E), defines an N -connection on E, which we
call the N -lift or the diagonal lift of the pair (∇, D).

Proposition 6.15. If D is a linear connection on E, then the formula

DA =
1
2

(DA + F ◦ DA ◦ F ) , (∀)A ∈ T 1(E) ,(56)
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defines an N -connection on E and the following formula also holds:

DA = H ◦ DA ◦H + V ◦ DA ◦ V = D̃A ◦H + ˜̃DA ◦ V ,
(∀)A ∈ T 1(E) .

(57)

We call D the N -connection associated with D.

Taking D = DA in Proposition 6.8 we obtain:

Proposition 6.16. The set of N -connections (or N -decomposable connections)
on E is given by the linear connections D which have the form:

D =ΦF
( ◦
D
)

+ ΩF (τ ) ,(58)

where
◦
D is an arbitrary, but otherwise fixed linear connection on E, τ is an ar-

bitrary tensor field from T 1
2 (E) and ΦF , ΩF are operators defined on the set of

linear connections on E and on T 1
2 (E) respectively, by the formulas:

ΦF (D)A = 1
2 (DA + F ◦ DA ◦ F ) , ΩF (τ )A = 1

2 (τA + F ◦ τA ◦ F ) ,
(∀)A ∈ T 1 (E) .(59)

Remark. See [4] concerning the geometrical structure of the set of connections
and the simple method which follows it in order to determine the set of connec-
tions which are compatible with an almost product structure and thus with the
normalization N .

If D is an N -connection on E, thus it satisfies the conditionDF = 0, then, using
local coordinates and local N - adapted bases, we have the following formula:

Dδiδj = Γkijδk , D∂aδj = Γkajδk , Dδi∂b = Γcib∂c , D∂a∂b = Γcab∂c .
(60)

Remark. An N -connection on a fibred manifold is called a linear d- connection
in [12].

Using adapted coordinates and N -adapted bases the local functions {Γkij, Γkaj ,
Γcib, Γcab} change according the formulas:

Γi
′

j′k′(x
i′ , ya

′
)
∂xj

′

∂xj
∂xk

′

∂xk
= Γijk(xi, ya)

∂xi
′

∂xi
− ∂2xi

′

∂xj∂xk
(61)

Γa
′

j′c′(x
i′ , yd

′
)
∂xj

′

∂xj
∂yc

′

∂yc
= Γajc(x

i, yd)
∂ya

′

∂ya
− δ∂ya

′

δxj∂yc
(62)

Γi
′

b′k′(x
i′ , ya

′
)
∂yb

′

∂yb
∂xk

′

∂xk
= Γibk(xi, ya)

∂xi
′

∂xi
(63)

Γa
′

b′c′(x
i′ , yd

′
)
∂yb

′

∂yb
∂yc

′

∂yc
= Γabc(x

i, yd)
∂ya

′

∂ya
− ∂2ya

′

∂yb∂yc
,(64)

(see [12], using different notations).
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In [12] are also given the structure equations of the linear N -connection D,
using the local N -adapted bases {dxi, δya}. So, consider:

ωik = µik + θik , µik = Γijkdx
j , θik = Γibkδy

b(65)

ω̄ac = µ̄ac + θ̄ac , µ̄ac = Γajcdx
j , θac = Γabcδy

b .(66)

The curvature forms involved by the structure equations of D, are: {Rik, R̄ac , P ik,

P̄ ac , Sik, S̄ac }, where Rik =
1
2
Rikjldx

j∧dxl, R̄ac = 1
2R

a
cjldx

j∧dxl, P ik = Rikjbdx
j∧δyb,

P̄ ac = Racjbdx
j∧δyb, Sik = 1

2R
i
kbδδy

b∧δyδ and S̄ac = 1
2R

a
cbδδy

b∧δyδ . Notice that all
these local forms have a change rule as tensors on the intersection of two charts.

Proposition 6.17. [12] Using N -adapted bases, the structure equations of the
linear N -connection D have the form:

Rik + P ik + Sik = d
(
µik + θik

)
+
(
µij + θij

)
∧
(
µjk + θjk

)
R̄ac + P̄ ac + S̄ac = d

(
µ̄ac + θ̄ac

)
+
(
µ̄ab + θ̄ab

)
∧
(
µ̄bc + θ̄bc

)
.

We deal now with the problem to find uniquely a linear N -connection from
some suitable conditions.

If we impose the supplementary condition T ◦ (H × V ) = 0, where T is the
torsion field of D, then we obtain:

Γkaj = 0 , Γcib = ∂bN
c
i(67)

and the coefficients Γkij and Γcab remain to be determined.. In order to determine
the coefficients Γkij we can give a linear connection ∇ on the base M and then
take its horizontal lift ∇h, thus Γkij = Γkij(x). Or we can take a metric g on M , its
Levi Civita linear connection ∇ and the horizontal lift ∇h. In order to determine
the coefficients Γcab we can take a linear connection on E along the vertical leaves,
or the corresponding Levi-Civita R-connection of a metric γv on the fibers of the
vertical bundle.

Proposition 6.18. Consider a fibred manifold E with a normalization N , a linear
connection ∇ on the base M and a linear connection Dv on E along the leaves
of the vertical subbundle. Then the diagonal lift of the pair (∇, Dv) is the unique
linear N -connection D on E which satisfies the conditions:

DXhY h = (∇XY )h , DAvBv = Dv
AvB

v , H ◦ DAv ◦ V = 0 ,
V ◦ DXh ◦H = 0 , T ◦ (H × V ) = 0 ,(68)

(∀)X,Y ∈ T 1(M ), Av, Bv ∈ V T 1(E).

In fact, from here it follows that DAvXh = 0, DXhBv = [Xh, Bv] and all the
conditions (55) are satisfied.

According to [12] we say that the fibred manifold E, with the canonical pro-
jection π, has a vertical induced bundle, if there is a vector bundle F0 which has
the same base M as E, such that the vertical vector bundle V E of E is isomor-
phic with the induced vector bundle π∗F0. A remarkable example of a such fibred
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manifold is Osck(M ), the osculator bundle of order k of a manifold M (see [10]).
Notice that a tensor of type (1, 2) on F0 defines uniquely a linear connection along
the vertical leaves.

Proposition 6.19. Consider a fibred manifold E with a vertical induced bundle,
where V E = π∗F0 and ∇ a linear connection on the base M . Then there is a
unique linear N -connection on E which satisfies the conditions:

DXhY h = (∇XY )h , DAvBv = 0 , H ◦ DAv ◦ V = 0 ,
V ◦ DXh ◦H = 0 , T ◦ (H × V ) = 0 ,(69)

(∀)X,Y ∈ T 1(M ), Av, Bv ∈ V T 1(E).

It follows from here DAvXh = 0, DXhBv = [Xh, Bv] and also DF = 0.

Remark. In the case when E is a vector bundle the N -connection given by the
above proposition gives the Berwald connection when it is restricted to V E.

Taking a metric on M and a metric on the fibers of the vertical bundle, one
get:

Proposition 6.20. Given a normalization N on a fibred manifold E, a metric
g on M and a metric γv on the fibers of the vertical bundle V E, then there is a
unique N -connection D on E which satisfies the conditions:

DXhY h = (∇gXY )h , DAvBv = DγvAvBv , H ◦ DAv ◦ V = 0 ,
V ◦ DXh ◦H = 0 , T ◦ (H × V ) = 0 ,

(70)

(∀)X,Y ∈ T 1(M ), Av, Bv ∈ V T 1(E), where ∇g is the Levi-Civita connection on
M and ∇γv is the Levi-Civita R-connection on the fibers of V E respectively.

In fact from here it follows DAvXh = 0, DXhBv = [Xh, Bv], then DF = 0. We
have also Dgh = 0, H ◦ T ◦ (H ×H) = 0, Dγv = 0, V ◦ T ◦ (V × V ) = 0.

Remarks. 1. Using the notations in Proposition 6.20, then G = gh + γv (where
gh is the horizontal lift of g) is a metric on E, which generalizes the Sasaki metric
and has the local form:

G = gij(x)di ⊗ dj + γab(x, y)δa ⊗ δb .(71)

We also have:

DXhG
(
Y h, Zh

)
= (∇gXg) (Y, Z) ◦ π , DXhG

(
Y h, Bv

)
= 0 ,

DXhG (Bv, Cv) = LXhγ
v (Bv, Cv) , DAvG

(
Y h, Zh

)
= 0 ,

DAvG
(
Y h, Cv

)
= 0 , DAvG (Bv, Cv) =

(
∇γ

v

Avγ
v
)

(Bv, Cv) = 0 .

(72)

2. The Levi-Civita connection of an R-connection is obtained using the same
formula as for the Levi-Civita connection on the tangent bundle, but using on the
vertical bundle the new bracket (which is the restriction on the vertical bundle of
the Lie bracket defined on the tangent bundle) instead of the Lie bracket.

Proposition 6.21. Using the notation from Proposition 6.20, the metric given by
(71) satisfies the condition DG = 0 iff Xh is a Killing vector field for the metric



ON PROJECTABLE OBJECTS ON FIBRED MANIFOLDS 203

γv, for every X ∈ T 1(M ). The connection DA = 1
2

(
DA + G−1 ◦ DA ◦G

)
satisfies

the condition DG = 0.

The proof of the second statement can be obtained using [4].

7. N -projectable geometrical objects on E

Consider now the endomorphism H defined on the tensor algebra of E by:
Hf = f ; HA = HA; Hα = α ◦H;
(HT ) (α1, . . . , αu, A1, . . . , Av) = T (H (α1) , . . . , H (αu) , H (A1) , . . . , H (Av)),
(∀)f ∈ F(E), A,Ai ∈ T 1(E), α, αj ∈ T1(E), T ∈ T uv (E).
It is easy to see that the values of the endomorphism H are in the horizontal

algebra. Locally, we have:

H (δi) = δi , H
(
dj
)

= dj , H (∂a) = 0 , H
(
δb
)

= 0 .

A tensor field T ∈ T uv (E) is N -projectable if the N -horizontal tensor field HT
is projectable.

Since for every vector field A on E we have locally, in N -adapted bases A =
Aiδi + Aa∂a and HA = Ai(∂i −Na

i ∂a), we obtain from Proposition 3.1:

Proposition 7.1. A vector field A on E is N -projectable iff it satisfies one of the
following equivalent conditions:

1. A is projectable;
2. using local adapted bases, the local functions Ai are projectable;
3. there is a vector field X ∈ T 1(M ) such that HA = Xh (i.e. the associated

horizontal vector field is the horizontal lift of X).

A differential 1-form α ∈ T1(E) has locally, in N -adapted bases, the form
α = αid

i + αaδ
a and have Hα = αid

i. From Proposition 3.2 it results:

Proposition 7.2. A differential 1-form α ∈ T1(E) is N -projectable iff it satisfies
one of the following equivalent conditions:

1. using local N -adapted bases, the local functions αi are projectable;
2. there is a differential 1-form ω ∈ T1(M ) such that Hα = ωh.

Consider now a tensor field T ∈ T uv (E), which has in local N -adapted bases
the form T = T i1...iuj1...jv

δi1 ⊗ · · · ⊗ δiu ⊗ dj1 ⊗ · · · ⊗ djv + · · · + T a1...au
b1...bv

∂a1 ⊗ · · · ⊗
∂au ⊗ δb1 ⊗ · · · ⊗ δbv . We obtain HT = T i1...iuj1...jv

δi1 ⊗ · · · ⊗ δiu ⊗ dj1 ⊗ · · · ⊗ djv .
Replacing δiα = ∂iα − Na

iα
∂a, α = 1, u one obtains: HT = T i1...iuj1...jv

∂i1 ⊗ · · ·⊗
∂iu ⊗ dj1 ⊗ · · ·⊗ djv − T i1...iuj1...jv

Na1
i1
∂a1 ⊗ ∂i2 · · · ⊗∂iu ⊗ dj1 ⊗ · · ·⊗ djv + · · · +

(−1)uT i1...iuj1...jv
Na1
i1
· · ·N au

iu
∂a1 ⊗ · · · ⊗∂au ⊗ dj1 ⊗ · · ·⊗ djv . Hence, considering HT

as a tensor onE and using natural local bases (∂i, ∂a), (dj , db), it has as coordinates
(HT )i1...iuj1...jv

= T i1...iuj1...jv
, (HT )i1...iub1j2...jv

= 0, ..., (HT )i1...iub1...bv
= 0. It follows that HT

is projectable iff, using local N -adapted bases (δi, ∂a), (dj , δb), the coordinates
T i1...iuj1...jv

of T are projectable. Thus from Proposition 3.3 we have:
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Proposition 7.3. A tensor field T ∈ T pq (E) is N -projectable iff it satisfies one of
the following equivalent conditions:

1. in natural local N -adapted bases, the functions Ti1...iuj1...jv
are projectable;

2. for all systems {α1, . . . , αu} and {A1, . . .Av} of horizontal projectable dif-
ferentiable 1-forms and horizontal projectable vector fields respectively, the
function T (α1, . . . , αu, A1, . . .Av) is projectable, too;

3. for every vector field Av ∈ V T 1(E) one has (H ◦ LAv ◦H)T = 0;
4. there is a tensor field t ∈ T pq (M ) such that HT = th.

In the proof one uses the definition of the horizontal lift, the fact that the Lie
derivation with respect with a vertical field Av satisfies the condition LAvXh =
[Av, Xh] is a vertical field and LAvωh = 0.

Remarks. 1. A contravariant tensor field T ∈ T u0 (E) is N -projectable iff it is
projectable.

2. A covariant tensor field T ∈ T 0
v (E) is N -projectable iff (LAv ◦ H)T = 0,

(∀)Av ∈ V T 1(E).
A derivation D in the tensor algebra T (E) is called N -projectable if for every

projectable horizontal vector field D, the vector field DA is projectable, too.
Taking into account of the local form (39), a) of D, in a natural N -adapted

base, we obtain:

Proposition 7.4. A derivation D in tensor algebra T (E) is N -projectable iff it
satisfies one of the following equivalent conditions:

1. in local N -adapted bases, the functions Di and Dij are projectable;
2. for every N -projectable horizontal 1-form α and N -projectable horizontal

vector field A, the function α(DA) is projectable;
3. there is a derivation D̃ in tensor algebra T (M ) such that H(DXh) = (D̃X)h,

(∀)X ∈ T 1(M ).

Remarks. 1. The derivation D = LA, A ∈ T 1(E), is N -projectable iff A is
projectable.

2. The derivation i(S) on E, induced by S ∈ T 1
1 (E), is N -projectable iff S is

N -projectable.
If we consider a linear connection on E and we associate the derivation D = DA

with every vector field A ∈ T 1(E), then we have:
A linear connection D on E is N -projectable if for every projectable horizontal

vector field A the derivation DA is N -projectable.

Proposition 7.5. A linear connection D on E is N -projectable iff it satisfies one
of the following equivalent conditions:

1. using natural N -adapted local bases, the local coefficients Γkij are projectable;
2. for every N -projectable horizontal vector fields A and B, the vector field
DAB is N -projectable;

3. there is a linear connection ∇ on M such that H(DXhY h) = (∇XY )h,
(∀)X,Y ∈ T 1(M ).
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Remark. If the linear connection D is N -projectable, then its torsion T is N -
projectable and we have (HT )(Xh , Y h) = t(X,Y )h.

Concerning the curvature of an N -projectable linear connection, we have:

Proposition 7.6. If D is an N -projectable linear connection, then the curvature
tensor field R of D is an N -projectable tensor field iff DA(VDBC)−DB(VDAC)−
D[A,B]C is an N -projectable vector field, for every horizontal N -projectable vector
fields A,B,C on E.

Proof. Since R(A,B)C = DADBC − DBDAC − D[A,B]C, using Propositions 7.5
2) and 7.3 the conclusion follows.

If A and B are horizontal N -projectable vector fields, then H[A,B] is an hor-
izontal N -projectable vector field and V [A,B] = −NH(A,B) (= −Ω(A,B)). It
follows the following result:

Proposition 7.7. If D is an N -projectable linear connection, then the curvature
tensor field R of D is an N -projectable tensor field iff DA(VDBC)−DB(VDAC)+
DΩ(A,B)C is an N -projectable vector field, for every horizontal N -projectable vector
fields A, B, C on E.

Remark. If D is an N -projectable linear N -connection, then the curvature ten-
sor field R of D is an N -projectable tensor field iff D[A,B]C (or, equivalently,
DΩ(A,B)C) is an N -projectable vector field, for every horizontal N -projectable
vector fields A,B,C on E. Particularly, if Ω = 0 (i.e. the horizontal distribution
HE is integrable), then the curvature tensor field R of an N -projectable linear
N -connection D is an N -projectable tensor field.
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