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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 37 (2001), 257 – 271

ON CONVERGENCE OF QUADRATURE-DIFFERENCES
METHOD FOR LINEAR SINGULAR INTEGRO-DIFFERENTIAL

EQUATIONS ON THE INTERVAL

A. I. FEDOTOV

Abstract. Here we propose and justify the quadrature-differences method

for the full linear singular integro-differential equations with Cauchy kernel
on the interval (−1,1). We consider equations of zero, positive and negative

indices. It is shown, that the method converges to exact solution and the
error estimate depends on the sharpness of derivative approximation and the

smoothness of the coefficients and the right-hand side of the equation.

Introduction

In the papers [4] - [7] the quadrature-differences methods for the various classes
of the periodic singular integro-differential equations with Hilbert kernels were
justified. The convergence of the methods was proved and the errors estimates
were obtained. Here we propose and justify the same method for the full linear
singular integro-differential equations with Cauchy kernel on the interval (−1, 1).

It is known (see e.g. [3], [8], [15]), that the theories of the singular integral
equations in periodic (with Hilbert kernel) and non-periodic (with Cauchy kernel)
cases differ a lot due to the discontinuity of the contour in the latter case. Therefore
the calculation schemes and the justifications of the method in this cases have
essential distinctions. Thus, if for the equations with Hilbert kernels the same
uniform grid is used both for the approximation of the derivatives and integrals
and as collocation nodes, then for the equations with Cauchy kernel we have to use
two different grids - the roots of the special polynomials. For the first class of the
equations the problem is stated in Hölder space and therefore the usual technique
of the compact approximation [18] for the justification is used and the rate of
convergence grows up with the growing of the smoothness of the coefficients and
the right-hand side of the equation infinitely. For the second class of the equations
the derivative of the desired function has in general integrable singularities at the
end points of the contour, therefore the problem is stated in the spaces of weighted
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quadratically integrable functions, so called “second kind” [18] of the theory of the
approximation methods is used and the rate of convergence is restricted by the
order of smoothness of the desired function, coefficients and the right-hand side of
the equation.

In the paper equations of zero, positive and negative indices are considered, the
covergence of the method is proved and the rate of convergence is obtained.

1. Formulation of the problem

Consider linear singular integro-differential equation of the form
1∑
ν=0

(aν(t)x(ν)(t) + bν(t)(Sx(ν))(t) + (Thνx(ν))(t)) = f(t) , −1 < t < 1 ,(1)

with initial condition

x(ξ0) = 0, −1 ≤ ξ0 ≤ 1,(2)

where x(t) is desired unknown and aν(t), bν(t), hν(t, τ ), ν = 0, 1, f(t) are given
continuous functions of their arguments t, τ ∈ [−1, 1], b1(t) is a polynomial of some
order n0 ≥ 0, singular integrals

(Sx(ν))(t) =
1
π

∫ 1

−1

x(ν)(τ )dτ
τ − t , ν = 0, 1 ,

are to be interpreted as the Cauchy-Lebesgues principal value and

(Thνx(ν))(t) =
1
π

∫ 1

−1

hν(t, τ )x(ν)(τ )dτ , ν = 0, 1 ,

are regular integrals.
First we consider in details zero index equation (κ = 0) and then point out the

changes in the calculation scheme and justification for the cases of positive (κ > 0)
and negative (κ < 0) indices.

2. Calculation scheme

Let’s define, following Muskhelishvili [15], the index and the canonical func-
tion of the equation (1). To do this denote by θ(t) = π−1 arg(a1(t) + ib1(t)),
t ∈ [−1, 1], some continuous and one-valued branch of the multi-valued function
π−1 arg(a1(t) + ib1(t)). Then the canonical function of the equation (1) will be

Z(t) = (1 − t)γ1(1 + t)γ2 exp(−
∫ 1

−1

θ(τ )dτ
τ − t ) , t ∈ (−1, 1) ,

where γ1 = λ1 − θ(1), γ2 = λ2 + θ(−1), and λ1, λ2 are the integers subordinate
to the conditions γ1, γ2 ∈ (−1, 1). The integer κ = −(λ1 + λ2) is called the index
of the equation (1) and the numbers γ1 and γ2 determine the class of possible
solutions of the problem (1), (2) (see [15], [8]).

Now we will define two weight-functions

ρ(t) = Z(t)(a2
1(t) + b21(t))−1/2
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and
ρ̄(t) = Z−1(t)(a2

1(t) + b21(t))−1/2 , (a2
1(t) + b21(t))1/2 > 0 ,

and two sequences of polynomials {φn(t)}∞n=0 and {ψn(t)}∞n=0 with the following
properties: ∫ 1

−1

ρ(τ )φk(τ )φl(τ )dτ = σkδk,l , k ≥ l ,∫ 1

−1

ρ̄(τ )ψk(τ )ψl(τ )dτ = ζkδk,l , k ≥ l ,

(3)

a1(t)ρ(t)φn+1(t) + b1(t)(Sρφn+1)(t) = (−1)κ
σn+1βn+1−κ
ζn+1−καn+1

ψn+1−κ(t) ,(4)

where αn+1 > 0 and βn+1−κ > 0 are the senior coefficients of the polynomials
φn+1(t) and ψn+1−κ(t) correspondently, and δk,l is Kronecker symbol. The exis-
tence of the polynomials satisfying (3), due to the positiveness and integrability
of the weight-functions ρ(t) and ρ̄(t), was shown in [17]. Moreover, it was shown
there that each of the polynomials {φn(t)}∞n=0, {ψn(t)}∞n=0 has just n real sim-
ple roots on the interval (−1, 1). Identity (4), which plays the crucial role in the
following account, was obtained by Elliott [3].

Let

{τk | φn+1(τk) = 0 , k = 0, 1, . . ., n} ,(5)

{tj | ψn+1−κ(tj) = 0 , j = 0, 1, . . . , n− κ} ,(6)

be the grids on [−1, 1]. By

{τk | k = −1, 0, . . . , n} .(7)

we denote the grid (5) with the node τ−1 = −1 added.
We’ll seek an approximate solution of the equation (1) as a vector

xn = (x−1, . . . , xn)(8)

of values of unknown function in the nodes of the grid (7). Derivatives and values
of the unknown function in the nodes of the grids (5), (6) and for the initial
condition in the point ξ0 we’ll approximate by any numerical formulas

x
′
(τk) ∼ [D(1)

n xn]τk , k = 0, 1, . . . , n ,

x(tj) ∼ [D(0)
n xn]tj , j = 0, 1, . . . , n− κ ,

x(ξ0) ∼ [D(0)
n xn]ξ0 .

which use only the nodes (7) and the components of the vector (8).
Singular integral (Sx)(t) is to be approximated by the quadrature. To do this

we’ll integrate polynomial

(Qn−κD(0)
n xn)(τ ) =

n−κ∑
j=0

[D(0)
n xn]tj lj(τ ) ,
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lj(τ ) =
ψn+1−κ(τ )

(τ − tj)ψ′n+1−κ(tj)
, j = 0, 1, . . . , n− κ ,

(SQn−κD(0)
n xn)(t) =

n−κ∑
j=0

[D(0)
n xn]tj(Slj )(t) ,(9)

(Slj )(t) =
(Sψn+1−κ)(t)− (Sψn+1−κ)(tj)

(t− tj)ψ′n+1−κ(tj)
, j = 0, 1, . . . , n− κ .

To approximate regular integral (Th0x)(t) we’ll integrate polynomial

(Qn−κh0D
(0)
n xn)(t, τ ) =

n−κ∑
j=0

[D(0)
n xn]tjh0(t, tj)lj(τ ) ,

(TQn−κh0D
(0)
n xn)(t) =

n−κ∑
j=0

[D(0)
n xn]tjh0(t, tj)T lj ,(10)

T lj = (Sψn+1−κ)(tj)/ψ′n+1−κ(tj) , j = 0, 1, . . ., n− κ .
Coefficients of the quadrature formulas (9), (10) depend on the integrals
(Sψn+1−κ)(t), which, according to the relations 1

(S1)(t) =
1
π

ln
∣∣∣∣1− t1 + t

∣∣∣∣ ,
(Sτk)(t) =

tk

π
ln
∣∣∣∣1− t1 + t

∣∣∣∣+
2
π

[k−1
2 ]∑
j=0

tk−(2j+1)

2j + 1
, k = 1, 2, . . . ,

could be calculated explicitly for all fixed n.
To approximate the dominant part of the equation (1)

(Ux
′
)(t) = a1(t)x

′
(t) + b1(t)(Sx

′
)(t)

we’ll applicate the operator U to the polynomial

(Pnρ−1D(1)
n xn)(τ ) =

n∑
k=0

ρ−1(τk)[D(1)
n xn]τk l̄k(τ ) ,

l̄k(τ ) =
φn+1(τ )

(τ − τk)φ′n+1(τk)
, k = 0, 1, . . ., n ,

multiplied to the weight-function ρ(τ ),

(UρPnρ−1D(1)
n xn)(t) =

n∑
k=0

ρ−1(τk)[D(1)
n xn]τk(Uρl̄k)(t) ,(11)

where, using (4),

(Uρl̄k)(t) = (−1)κ
σn+1βn+1−κ(ψn+1−κ(t)− ψn+1−κ(τk))

ζn+1−καn+1(t − τk)φ′n+1(τk)
,(12)

1[ k−1
2

] denotes the largest integer not exceeding k−1
2

.
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for k = 0, 1, . . ., n. To approximate the regular integral (Th1x
′
)(t) we’ll integrate

the polynomial

(Pnρ−1h1D
(1)
n xn)(t, τ ) =

n∑
k=0

ρ−1(τk)[D(1)
n xn]τkh1(t, τk)l̄k(τ ) ,

also multiplied to weight-function ρ(τ ),

(TρPnρ−1h1D
(1)
n xn)(t) =

n∑
k=0

ρ−1(τk)[D(1)
n xn]τkh1(t, τk)Tρl̄k ,(13)

where Tρl̄k, k = 0, 1, . . ., n, are coefficients of the Gauss type quadrature for-
mula and for τk, which are not the roots of the polynomial b1(t), the following
relationship is valid:

Tρl̄k = (−1)κ
σn+1βn+1−κψn+1−κ(τk)

ζn+1−καn+1b1(τk)φ′n+1(τk)
.

Substituting the numerical derivative formulas, the values of the quadratures
(9)-(11),(13) and the right-hand side in the nodes of the grid (6) in the equation
(1) and the numerical formula for the point ξ0 in the initial condition (2), we’ll
obtain the system of linear algebraic equations

n∑
k=0

ρ−1(τk)[D(1)xn]τk(Uρl̄k)(tm) + a0(tm)[D(0)
n xn]tm

+ b0(tm)
n−κ∑
j=0

[D(0)
n xn]tm(Slj )(tm) +

n−κ∑
j=0

[D(0)
n xn]tmh0(tm, tj)T lj

+
n∑
k=0

ρ−1(τk)[D(1)
n xn]τkh1(tm, τk)Tρl̄k = f(tm) ,

(14)

for m = 0, 1, . . . , n− κ,

[D(0)
n xn]ξ0 = 0 ,(15)

of the quadrature-differences method.

3. Justification

Let’s denote by W1
2,ρ (W 0

2,ρ = L2,ρ) the set of absolutely continuous on [−1, 1]
functions, which have quadratically integrable with the weight-function ρ(τ ) deriva-
tives and let’s define the following couples of spaces X,Xn; Y, Yn; Z,Zn−κ:

X = {x ∈W 1
2,ρ−1 | x(ξ0) = 0} , Y = L2,ρ−1 , Z = L2,ρ̄ ,

with the norms

‖x‖X =
(∫ 1

−1

ρ−1(τ )|x
′
(τ )|2 dτ

)1/2

, x ∈ X ,
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‖y‖Y =
(∫ 1

−1

ρ−1(τ )|y(τ )|2 dτ
)1/2

, y ∈ Y ,

‖z‖Z =
(∫ 1

−1

ρ̄(τ )|z(τ )|2 dτ
)1/2

, z ∈ Z ;

Xn = {xn} - the set of n+ 2-components vectors of the form (8) satisfying to the
condition

[D(0)
n xn]ξ0 = 0 ,

Yn = {yn} - the set of n + 1-components vectors, Zn−κ = {zn−κ} - the set of
n+ 1− κ-components vectors with the norms

‖xn‖Xn =
(∫ 1

−1

ρ(τ )|(Pnρ−1D̄(1)
n xn)(τ )|2 dτ

)1/2

, xn ∈ Xn ,

‖yn‖Yn =
(∫ 1

−1

ρ(τ )|(Pnρ−1yn)(τ )|2 dτ
)1/2

, yn ∈ Yn ,

‖zn−κ‖Zn−κ =
(∫ 1

−1

ρ̄(τ )|(Qn−κzn−κ)(τ )|2 dτ
)1/2

, zn−κ ∈ Zn−κ ,

where operator D̄(1)
n : Xn → Yn is defined by the formula

[D̄(1)
n xn]τk =

xk − xk−1

τk − τk−1
, k = 0, 1, . . . , n .

Here and further the product of vector and function is equal to vector, components
of which are the products of vector components and function values in the same
nodes and

(Pnyn)(τ ) =
n∑
k=0

[yn]τk l̄k(τ ) , l̄k(τ ) =
φn+1(τ )

(τ − τk)φ′n+1(τk)
, k = 0, 1, . . ., n ,

(Qn−κzn−κ)(t) =
n−κ∑
j=0

[zn−κ]tj lj(t) , lj(t) =
ψn+1−κ(t)

(t − tj)ψ′n+1−κ(tj)
, j = 0, 1, . . . , n−κ ,

are Lagrange interpolative operators. We’ll need also the following operators

p1
n : X → Xn , p1

nx = (x(τ−1), x(τ0), . . . , x(τn)) ,

pn : Y → Yn , pny = (y(τ0), y(τ1), . . . , y(τn)) ,

qn−κ : Z → Zn−κ , qn−κz = (z(t0), z(t1), . . . , z(tn−κ)) .

Theorem 1. Let for κ = 0 the problem (1), (2) and the calculation scheme (5) -
(15) of the method satisfy the following conditions:

A.1) functions aν(t), bν(t), hν(t, τ ), ν = 0, 1, and f(t) by t, τ ∈ [−1, 1] belong
to Hölder space Hµ, 0 < µ ≤ 1;

A.2) a2
1(t) + b21(t) 6= 0 on [−1, 1];

A.3) b1(t) is a polynomial of some order n0 ≥ 0;
A.4) b0(±) = 0;
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A.5) the problem (1), (2) has a unique solution x∗(t) for any right-hand side
f(t) ∈ Z;

B.1) all formulas of numerical differentiation used in calculation scheme (5)-
(15) converge to the exact values of the approximated functions and their deriva-
tives in the nodes of corresponding grids;

B.2) discrete Cauchy problem

[D(1)
n xn]τk = [yn]τk , k = 0, 1, . . . , n , [xn]τ−1 = 0 ,

has a unique solution xn for any yn ∈ Yn and 2

‖xn‖Xn ≤ C‖yn‖Yn .
Then for n large enough the system of equations (14), (15) is uniquely solvable

and approximate solutions x∗n converge to the exact solution x∗(τ ) ∈ X of the
problem (1), (2) with the error estimate

‖x∗n − p1
nx
∗‖Xn ≤ C(n−γ + εn(x∗)) ,

where
γ = min{µ, 1 + γ1, 1 + γ2} ,

εn(x∗) = max
{

max
σ∈{tj}n−κj=0 ∪{ξ0}

|[D(0)
n p1

nx
∗]σ − x∗(σ)|,

max
σ∈{τk}nk=0

|ρ−1(σ)[D(1)
n p1

nx
∗]σ − ρ−1(σ)x∗

′
(σ)|

}
.

Proof. It’s known (see e.g. [3], [8], [15]) that if the right-hand side of the equation
(1) belongs to Hµ or L2,ρ̄, the derivative of the solution of the problem (1), (2)
has the form x∗

′
(t) = ρ(t)ω(t), where ω(t) ∈ Hµ or ω(t) ∈ L2,ρ correspondently,

i.e. x∗(t) ∈W 1
2,ρ−1 . Thus we’ll consider the problem (1), (2) as operator equation

Kx ≡ UD(1)x+ V x = f , K : X → Z ,(16)

where

Uy = a1y + b1Sy , U : Y → Z , V x =
1∑
ν=0

AνD
(ν)x , V : X → Z ,

A0D
(0)x = a0D

(0)x+ b0SD
(0)x+ Th0D

(0)x ,

A1D
(1)x = Th1D

(1)x , D(1)x = x′ , D(0)x = x .

Here, as it was shown in [3], [8], [15] and [9], K : X → Z is a linear bounded
operator, V : X → Z is a compact operator and U : Y → Z is continuously
invertible.

Let’s consider η an arbitrary constant, which is not an eigenvalue of the problem

D(1)x+ ηρx = 0 , x(ξ0) = 0 ,

and make a substitution

z = U (D(1)x+ ηρx)(17)

2Here and further C denotes generic constants, independent from n.
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in the equation (16). Due to invertibility of the operator U : Y → Z

x = GU−1z , D(1)x = U−1z − ηρGU−1z ,(18)

where G : Y → X is the inverse to

Fx = D(1)x+ ηρx , F : X → Y ,

the equation (16) will take the form

Bz ≡ z + V GU−1z − ηUρGU−1z = f , B : Z → Z ,(19)

being still equivalent to the original one. The equivalence here means, that solv-
ability of one of them yields solvability of another and their solutions are joined
by the relationships (17), (18).

Now let’s rewrite the system of equations (14), (15) as an operator equation

Kn−κxn ≡ Un−κD
(1)
n xn + Vn−κxn = fn−κ , Kn−κ : Xn → Zn−κ ,(20)

where
Un−κyn = qn−κUρPnρ

−1yn , Un−κ : Yn → Zn−κ ,

Vn−κxn = qn−κ

1∑
ν=0

AνnD
(ν)
n xn , Vn−κ : Xn → Zn−κ ,

A0nD
(0)
n xn = a0Qn−κD

(0)
n xn + b0SQn−κD

(0)
n xn + TQn−κh0D

(0)
n xn ,

A1nD
(1)
n xn =TρPnρ

−1h1D
(1)
n xn , fn−κ = qn−κf ,

and make a substitution

zn−κ = Un−κFnxn ,(21)

where

[Fnxn]τk = [D(1)
n xn]τk + ηρ(τk)[xn]τk , k = 0, 1, . . . , n, Fn : Xn → Yn .

The operator Un−κ : Yn → Zn−κ is invertible explicitly for all n, beginning from
some n1, n1 ≥ max{n0, κ} (see [3]) and

xn = GnU
−1
n−κzn−κ, D

(1)
n xn = U−1

n−κzn−κ − ηρGnU−1
n−κzn−κ ,

where Gn : Yn → Xn is the inverse to Fn. The invertibility of Fn for all n
beginning from some n2, n2 ≥ n1 follows from the conditions B.1), B.2) of the
Theorem 1 and the choice of η (see [18]). Moreover, for any y(t) = ρ(t)ω(t), ω(t) ∈
Hµ

‖p1
nGy − Gnpny‖Xn ≤ C εn(Gy) .(22)

So by the substitution (21) we’ll get an equation

Bn−κzn−κ ≡ zn−κ + Vn−κGnU
−1
n−κzn−κ − ηUn−κρGnU−1

n−κzn−κ

= fn−κ , Bn−κ : Zn−κ → Zn−κ .
(23)

which is equivalent to (20).
Now to prove the unique solvability of the equation (23), we have to establish,

according to the Theorem 6.1 [18], the following:
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a) ‖Qn−κfn−κ − f‖Z → 0 for n→∞;
b) the sequence of operators (Bn−κ) approximates operator B compactly;
c) B : Z → Z is invertible.
The validity of a) follows immediately from the estimations [16]

‖Qn−κfn−κ − f‖Z ≤ CEn−κ(f),(24)

En−κ(f) ≤ C(n− κ)−µ , f(t) ∈ Hµ , n > κ ,(25)

where En−κ(f) is the best uniform approximation of the function f(t) by the
polynomials of order not higher than n− κ on [−1, 1].

To check b) we’ll show first that the sequence (Bn−κ) approximates the operator
B with respect to Qn−κ. For arbitrary zn−κ ∈ Zn−κ, we’ll write

‖Qn−κBn−κzn−κ −BQn−κzn−κ‖Z
≤ ‖Qn−κVn−κGnU−1

n−κzn−κ − V GU−1Qn−κzn−κ‖Z
+ |η| ‖Qn−κUn−κρGnU−1

n−κzn−κ − UρGU−1Qn−κzn−κ‖Z
(26)

and estimate each summand of the right-hand side independently.
To estimate the first summand we’ll use the partial uniform best approximation

Eτn(h) (Etn(h)) of the function h(t, τ ) by the variable τ (t)

Eτn(h) = ‖En(h)‖Z , (Etn(h) = ‖En(h)‖Z) .

Here, inside the norm symbol, we take first the best approximation by the variable
τ (t) and then take norm by the other variable. Using boundness of the operator
S : Z → Z [9], the equivalence

U−1
n−κzn−κ = pnU

−1Qn−κzn−κ(27)

and the estimations (24), (22) we’ll obtain

‖Qn−κVn−κGnU−1
n−κzn−κ − V GU−1Qn−κzn−κ‖Z

≤ C
(
εn(GU−1Qn−κzn−κ) +Eτn(ρ−1h1D

(1)GU−1Qn−κzn−κ) + Etn−κ(h1)

+ En−κ(a0GU
−1Qn−κzn−κ) + En−κ(b0SQn−κD(0)

n GnpnU
−1Qn−κzn−κ)

+ En−κ(GU−1Qn−κzn−κ) +Eτn−κ(h0GU
−1 Qn−κzn−κ) +Etn−κ(h0)

)
.

For the second summand, using once more (27), (22), (24) and the boundness
of the operator U : Y → Z, we’ll have

|η| ‖Qn−κUn−κρGnU−1
n−κzn−κ − UρGU−1Qn−κzn−κ‖Z

≤C(εn(GU−1Qn−κzn−κ) +En(GU−1Qn−κzn−κ)) .

Finally, using the conditions A.1), A.4) of the Theorem 1 and the estimation (25)
we’ll obtain

‖Qn−κBn−κzn−κ −BQn−κzn−κ‖Z ≤ C(εn(GU−1Qn−κzn−κ) + (n − κ)−γ) ,

γ = min{µ, 1 + γ1, 1 + γ2} ,
which means the approximation of the operator B by the sequence of the operators
(Bn−κ) with respect to Qn−κ.
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Let’s assume now, that the sequence (zn−κ), zn−κ ∈ Zn−κ is bounded
‖zn−κ‖Zn−κ ≤ 1. As the functions

Qn−κVn−κGnU
−1
n−κzn−κ and ηQn−κUn−κρGnU

−1
n−κzn−κ

are polynomials and the derivatives of the functions

V GU−1Qn−κzn−κ and ηUρGU−1Qn−κzn−κ

are bounded in Z, then, according to Riesz theorem [11], the functions

Qn−κBn−κzn−κ −BQn−κzn−κ = Qn−κVn−κGnU
−1
n−κzn−κ

− ηQn−κUn−κρGnU
−1
n−κzn−κ − V GU−1Qn−κzn−κ + ηUρGU−1Qn−κzn−κ

form compact sequence in Z and thus the condition b) is valid. The validity of the
condition c) follows from the condition A.5) of the Theorem 1 and the equivalence
of the equations (16) and (19).

Therefore, according to the Theorem 6.1 [18], for all n, beginning from some
n3, n3 ≥ n2, operators Bn−κ : Zn−κ → Zn−κ and thus operators Kn−κ : Xn →
Zn−κ are invertible and their inverses are bounded collectively and the approxi-
mate solutions x∗n = GnU

−1
n−κz

∗
n−κ of the system of equations (14), (15) converge

to the exact solution x∗ = GU−1z∗ of the problem (1), (2) with a rate

‖x∗n − p1
nx
∗‖Xn ≤C‖qn−κKx∗ −Kn−κp

1
nx
∗‖Zn−κ

≤C
(
‖qn−κUx∗

′− Un−κD(1)
n p1

nx
∗‖Zn−κ

+ ‖qn−κ(a0x
∗ − a0Qn−κD

(0)
n p1

nx
∗)‖Zn−κ

+ ‖qn−κ(b0Sx∗ − b0SQn−κD(0)
n p1

nx
∗)‖Zn−κ

+ ‖qn−κ(Th0x
∗ − TQn−κh0D

(0)
n p1

nx
∗)‖Zn−κ

+ ‖qn−κ(Th1x
∗′ − TρPnρ−1h1D

(1)
n p1

nx
∗)‖Zn−κ

)
.

(28)

Using once more the boundness of the operators U : Y → Z, S : Z → Z, estima-
tion (24), Hölder inequality and the error estimate of the Gauss type quadrature
formula we’ll find

‖qn−κUx∗
′
− Un−κD(1)

n p1
nx
∗‖Zn−κ ≤C(En−κ(Ux∗

′
) + En(ρ−1x∗

′
) + εn(x∗)) ,

‖qn−κ(a0x
∗ − a0Qn−κD

(0)
n p1

nx
∗)‖Zn−κ ≤Cεn(x∗) ,

‖qn−κ(b0Sx∗ − b0SQn−κD(0)
n p1

nx
∗)‖Zn−κ ≤ (En−κ(b0Sx∗) +En−κ(x∗)

+ ε(x∗) +En−κ(b0SQn−κqn−κx∗)) ,

‖qn−κ(Th0x
∗ − TQn−κh0D

(0)
n p1

nx
∗)‖Zn−κ ≤C(Etn−κ(h0) +Eτn−κ(h0) + ε(x∗)) ,

‖qn−κ(Th1x
∗′ − TρPnρ−1h1D

(1)
n p1

nx
∗)‖Zn−κ

≤C(Etn−κ(h1) + Eτn(ρ−1h1D
(1)x∗) + εn(x∗)) .
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Thus, taking into account the smoothness of the functions in the right-hand side,
the estimation (25) and the obvious inequality 3 (n − κ)−γ ≤ Cn−γ, we’ll obtain
the requested estimation

‖x∗n − p1
nx
∗‖Xn ≤ C(n−γ + εn(x∗)) , γ = min{µ, 1 + γ1, 1 + γ2} .

Theorem 1 is proved. 2

4. Equations of non-zero indices

It is known [15], that for the unique solvability of the problem (1), (2), in case,
when κ > 0, the equations∫ 1

−1

τ jx
′
(τ ) dτ = 0, j = 0, 1, . . . , κ− 1 ,(29)

should be added. So the equations
n∑
k=0

ρ−1(τk)[D(1)
n xn]τk

∫ 1

−1

τ jρ(τ )l̄k(τ ) dτ = 0 , j = 0, 1, . . . , κ− 1 .(30)

should be added to the system of equations (14), (15). The justification of the
method in this case is similar to the justification in κ = 0 case, except the def-
initions of the spaces X and Xn, where the conditions (29) and (30) should be
added.

Theorem 2. Let for κ > 0 the problem (1), (2), (29), and the calculation scheme
(5) - (15), (30) of the method satisfy to the conditions A.1) - A.5), B.1), B.2) of
the Theorem 1. Then, for n large ehough, the system of equations (14), (15), (30)
is uniquely solvable and approximate solutions x∗n converge to the exact solution
x∗(τ ) ∈ X of the problem (1), (2), (29) with the error estimate

‖x∗n − p1
nx
∗‖Xn ≤ C(n−γ + εn(x∗)) .

The case, when κ < 0 is more complicate, because the operator U : Y → Z
and therefore the operator K : X → Z in this case are in general uninvertible
and the condition A.5) of the Theorem 1 will not be satisfied. We may assume
instead only the solvability of the concrete equation with the fixed coefficients and
the right-hand side. Moreover, the system of equations (14), (15) in this case will
contain n + 2 unknown variables, but consist of n + 2 − κ equations. So it will
be overdetermined and thus, in general, unsolvable. It means, that the previously
used proof can’t be applied here. Nevertheless, we may reduce this case to the
general one by a simple technique firstly used by V.V.Ivanov [10] and later by
many authors (see e.g. [2], [12], [13]).

Instead of the equation (1) we’ll consider equation

UD(1)x+ V x+ w = f ,(31)

3Here C depends on γ and n3.
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containing in the left-hand side polynomial

w(t) =
−κ∑
j=1

χjt
j−1

with the coefficients χj , j = 1, . . . ,−κ, ought to be determined. Equations (1)
and (31) are closely connected. Indeed, if x∗(τ ) is the solution of the problem (1),
(2), then the couple (x∗, w), w(t) ≡ 0 will be the solution of the problem (31),
(2). On the other hand, if the problem (1), (2) will be solvable for only one fixed
right-hand side, then the corresponding problem (31), (2) will be solvable for any
right-hand side f(t) ∈ Z, because to satisfy the conditions of solvability (see [15],
[8]) one needs to find out only the coefficients χj, j = 1, . . . ,−κ of the polynomial
w(t) satisfying the equations∫ 1

−1

ρ̄(t)tj−1(f(t) − (V x)(t)− w(t)) dt = 0 , j = 1, . . . ,−κ ,

and thus the proof of the Theorem 1 will be valid also for this case.
The system of the equations (14), (15) also should be slightly changed. We’ll

add the summands wn(tj), j = 0, 1, . . . , n− κ - the values of the approximating
polynomial

wn(t) =
−κ∑
j=1

χjnt
j−1

in the nodes of the grid (6) to the left-hand sides of the equations of the system
(14). In the operator form the system of the equations will take the following form

Un−κD
(1)
n xn + Vn−κxn + wn−κ = fn−κ ,

wn−κ = (wn(t0), . . . , wn(tn−κ)) .
(32)

Now the number of the unknown variables is n+2−κ, so it is equal to the number
of equations. These changes now allow us to use the proof, like the one of the
Theorem 1.

Theorem 3. Let for κ < 0 the problem (1), (2) and the calculation scheme (5)
- (13), (32) of the method satisfy to the conditions A.1) - A.4), B.1), B.2) of the
Theorem 1. Let’s assume also, that the problem (1), (2) has a unique solution
x∗(t). Then for n, large enough, the system of equations (32) is uniquely solvable
and the approximate solutions x̄∗n = (x∗n, χ∗1n, . . . , χ

∗
−κn) converge to the exact

solution x̄∗ = (x∗, 0) of the equation (31) with the error estimate

‖x̄∗n − p̄1
nx̄
∗‖X̄n = ‖x∗n − p1

nx
∗‖Xn + max

1≤j≤−κ
|χjn| ≤ C(n−γ + εn(x∗)) ,

p̄1
nx̄
∗ = (p1

nx
∗, χ∗1, . . . , χ

∗
−κ) , X̄n = Xn×R−κ , ‖x̄n‖X̄n = ‖xn‖Xn + max

1≤j≤−κ
|χjn| .

The proof of the Theorem 3 is, in general, similar to the proof of the Theorem 1,
so we’ll give it briefly, paying attention only to the major differences.

Let’s rewrite the equation (31) in operator form

K̄x̄ ≡ Ū (D(1)x,w) + V x = f, K̄ : X̄ → Z ,(33)
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where
X̄ = {x̄ | x̄ = (x,w), x ∈ X}, ‖x̄‖X̄ = ‖x‖X + max

1≤j≤−κ
|χj| ,

Ȳ = {ȳ | ȳ = (y, w), y ∈ Y } , ‖ȳ‖Ȳ = ‖y‖Y + max
1≤j≤−κ

|χj| ,

Ū (y, w) = Uy + w , Ū : Ȳ → Z .

The operator Ū is invertible and

Ū−1z = (U−1(z − w), w) ,

where w(t) is a polynomial, which coefficients can be found from the equations∫ 1

−1

ρ̄(t)tj−1(z(t)− w(t))dt = 0 , j = 1, . . . ,−κ .

Thus the substitution

z = Ū (D(1)x+ ηρx,w)(34)

allows us to reduce the equation (33) to the equivalent equation

B̄z ≡ z + V GŪ−1z − ηUρGŪ−1z = f , B̄ : Z → Z .(35)

Let’s rewrite the equation (32) in the same way

K̄n−κx̄n ≡ Ūn−κ(D(1)
n xn,wn−κ) + Vn−κxn = fn−κ , K̄n−κ : X̄n → Zn−κ ,

(36)

where
X̄n = Xn ×R−κ , ‖x̄n‖X̄n = ‖xn‖Xn + max

1≤j≤−κ
|χjn| ,

Ȳn = Yn × R−κ , ‖ȳn‖Ȳn = ‖yn‖Yn + max
1≤j≤−κ

|χjn| ,

Ūn−κ(yn,wn−κ) = Un−κyn + wn−κ , Ūn−κ : Ȳn → Zn−κ ,

with wn−κ = (wn(t0), . . . , wn(tn−κ)) - be a vector of the values of the polynomial
wn(t), which coefficients can be found from the equations∫ 1

−1

ρ̄(t)tj−1(Qn−κzn−κ − wn(t))dt = 0 , j = 1, . . . ,−κ .(37)

Now we’ll use the substitution

zn−κ = Ūn−κ(D(1)
n xn + ηρxn,wn−κ)

which allows us to reduce the equation (36) to the equivalent equation

B̄n−κzn−κ ≡ zn−κ + Vn−κGnŪ
−1
n−κzn−κ − ηUn−κρGnŪ−1

n−κzn−κ
= fn−κ , B̄n−κ : Zn−κ → Zn−κ .

(38)

Besides, according to the proof of the Theorem 1, we have to check that the
conditions a) - c) are satisfied. The condition a) may be checked like the one in
the proof of the Theorem 1. In order to check b), we have previously to calculate
wn−κ for the chosen zn−κ according to the formula (37) and then to follow the
proof of the Theorem 1 taking zn−κ − wn−κ instead of zn−κ. The validity of
the condition c) follows from the invertability of the operator K̄. Indeed, for the
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given right-hand side of the equation (35) we’ll obtain the right-hand side of the
equation (33). Then, due to the invertability of K̄, we’ll find the couple (x,w) and
via (34) will obtain z.

The error estimate

‖x̄∗n− p̄1
nx̄
∗‖X̄n = ‖x∗n−p1

nx
∗‖Xn + max

1≤j≤−κ
|χjn| ≤ C‖qn−κK̄x̄∗− K̄n−κp̄

1
nx̄
∗‖Zn−κ

= C‖qn−κKx∗ −Kn−κp
1
nx
∗‖Zn−κ ≤ C(n−γ + εn(x∗)) ,

obtained just as in the proof of the Theorem 1, finishes the proof in this case.

Remark 1. The Theorems 1 - 3 might be extended to the case of the mostly
general boundary condition [18]

u(x) ≡
∫ 1

−1

x(ν)(τ ) dζ(τ ) = 0 ,

where ζ(τ ) is a given function of the bounded variation and integral is interpreted
as Stieltjes one. This boundary condition might be approximated by any differ-
ences condition

un(xn) = 0 ,

satisfying un(p1
nx) → u(x) for n → ∞ for any x ∈ X. The Theorems 1 - 3

will remain valid, but the value |un(p1
nx
∗)| should substitute |[D(0)

n p1
nx
∗]ξ0 | in the

definition of εn(x∗).

Remark 2. The condition A.3) of the Theorem 1 is only sufficient and, as it was
shown in [1], [13], [14], can be reduced.
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[11] Kantorovič, L. V. and Akilov, G. P., Functional analysis in normed spaces , Macmillan, New

York 1964.

[12] Karpenko, L. N., Approximate solution of a singular integral equations by means of Jacobi
polynomials , J. Appl. Math. Mech. 30 (1966), 668–675.

[13] Lifanov, I. K., The method of singular integral equations and a numerical experiment in

mathematical physics, aerodynamics and the theory of elasticity and wave diffraction ,
Moscow 1995 (in Russian).

[14] Matveev, A. F.,On the construction of approximate solutions of singular integral equations

of the second kind , Doklady Akad. Nauk 307 (1989), N5, 1046–1050 (in Russian).

[15] Muskhelishvili, N. I., Singular integral equations , Noordhoff, Groningen, Holland 1953.

[16] Natanson, I. G., Construction theory of functions , Moscow 1959 (in Russian).
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