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HOW TO CHARACTERIZE COMMUTATIVITY EQUALITIES

FOR DRAZIN INVERSES OF MATRICES

YONGGE TIAN

Abstract. Necessary and sufficient conditions are presented for the com-
mutativity equalities A∗AD = ADA∗, A†AD = ADA†, A†AAD = ADAA†,
AADA∗ = A∗ADA and so on to hold by using rank equalities of matrices.
Some related topics are also examined.

1. Introduction

The Drazin inverse of a complex square matrix A is defined as a solution X of
the following three equations

(1) AkXA = Ak , (2) XAX = X , (3) AX = XA ,

which uniquely exists and is often denoted by X = AD, where k is the index of A,
i.e., the smallest nonnegative integer k such that r(Ak) = r(Ak+1). In particular,
when IndA = 1, the Drazin inverse of matrix A is called the group inverse of A,
and is often denoted by A#. The Moore-Penrose inverse A† of a complex matrix
A is defined by the four Penrose equations

(1) AA†A = A , (2) A†AA† = A† , (3) (AA†)∗ = AA† , (4) (A†A)∗ = A†A ,

where (·)∗ denotes the conjugate transpose of a complex matrix. A well-known
result asserts that if A is square, then AD = Ak(A2k+1)†Ak (see, e.g., [3]), which
implies that all problems for Drazin inverses of square matrices can be transformed
into the problems related to Moore-Penrose inverses of matrices.

The purpose of this paper is to examine commutativity of the Drazin inverse
AD of a matrix A with A∗ and A†, such as, A∗AD = ADA∗, A†AD = ADA†,
AADA∗ = A∗ADA and so on. There have been many results in the literature re-
lated to commutativity of generalized inverses of matrices, one of the well-known
results is concerning the commutativity equality AA† = A†A for the Moore-
Penrose inverse and EP matrix, see, e.g., [1–3, 6–8, 11, 12]. In addition, the
commutativity equalities A∗A† = A†A∗, AA∗A†A = AA†A∗A, AkA† = A†Ak and
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so on were also studied, see [7, 11].

An effective method in the investigation of equalities for generalized inverses of
matrices is to establish rank formulas associated with the corresponding matrix
expressions. In [11], the author shows that

rank (AA† − A†A) = 2rank [A, A∗] − 2rank (A),

rank (AkA† − A†Ak) = rank

[

Ak

A∗

]

+ rank [Ak, A∗] − 2rank (A),

rank (A∗A† − A†A∗) = rank (AA∗A†A − AA†A∗A) = rank (AA∗A2 − A2A∗A)

and so on. From the rank equalities one can immediately find necessary and
sufficient conditions for the commutativity equalities AA† = A†A, A∗A† = A†A∗,
AkA† = A†Ak, AA∗A†A = AA†A∗A and so on to hold. These results and the
equality AD = Ak(A2k+1)†Ak motivate us to find various possible rank formulas
for expressions that involve the Drazin inverse of a matrix and then use them to
characterize the commutativity of the Drazin inverse of matrix A with A∗, A† and
so on.

The matrices considered in this paper are over the field C of complex numbers.
For A ∈ Cm×n, we use A∗, r(A) and R(A) to stand for the conjugate transpose,
the rank and the range (column space) of A, respectively.

Lemma 1.1 [11]. Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈ Cl×k. Then

(1.1) r(D − CA†B) = r

[

A∗AA∗ A∗B

CA∗ D

]

− r(A) .

In particular, if R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗), then

(1.2) r(D − CA†B) = r

[

A B

C D

]

− r(A) .

Let

C = [C1, C2] , B =

[

B1

B2

]

and A =

[

A1 0
0 A2

]

.

Then (1.1) becomes

r(D − C1A
†
1B1 − C2A

†
2B2) = r





A∗
1A1A

∗
1 0 A∗

1B1

0 A∗
2A2A

∗
2 A∗

2B2

C1A
∗
1 C2A

∗
2 D



(1.3)

− r(A1) − r(A2) .

In particular, if R(B1) ⊆ R(A1), R(C∗
1 ) ⊆ R(A∗

1), R(B2) ⊆ R(A2) and R(C∗
2 ) ⊆

R(A∗
2), then

(1.4) r(D − C1A
†
1B1 − C2A

†
2B2) = r





A1 0 B1

0 A2 B2

C1 C2 D



− r(A1) − r(A2) .
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Lemma 1.2 [9] (Rank cancellation rules). Let A ∈ Cm×n, B ∈ Cm×k and C ∈
Cl×n be given, and suppose that R(AQ) = R(A) and R[(PA)∗] = R(A∗). Then

r[AQ, B] = r[ A, B ] , r

[

PA

C

]

= r

[

A

C

]

.

In addition, we shall also use in the sequel the following several basic rank
formulas.

Lemma 1.3 [11]. Let A ∈ Cm×n be given, P ∈ Cm×m and Q ∈ Cn×n be two

idempotent matrices. Then PA − AQ satisfies the rank equality

(1.6) r(PA − AQ) = r

[

PA

Q

]

+ r[AQ, P ] − r(P ) − r(Q) .

In particular, if P and Q are of the same size, then

(1.7) r(P − Q) = r

[

P

Q

]

+ r[Q, P ] − r(P ) − r(Q) .

Notice that if a matrix A is idempotent, then so is A∗. Thus we also find from
(1.6) and (1.7) that for an idempotent matrix A,

(1.8) r(A − A∗) = r(AA∗ − A∗A) = 2r[A, A∗] − 2r(A)

holds.

2. Main Results

Theorem 2.1. Let A ∈ Cm×m with Ind (A) = k. Then

(a) r(A†AD − ADA†) = r

[

Ak

A∗

]

+ r[Ak, A∗] − 2r(A).

(b) r(A†AADA − AADAA†) = r

[

Ak

A∗

]

+ r[Ak, A∗] − 2r(A).

(c) r(A†AAD − ADAA†) = r

[

Ak

A∗

]

+ r[Ak, A∗] − 2r(A).

(d) r(A†A# − A#A†) = 2r[A, A∗] − 2r(A), if Ind (A) = 1.

(e) r(A†AA# − A#AA†) = 2r[A, A∗] − 2r(A), if Ind (A) = 1.
In particular,

(f) A†AD = ADA† ⇔ A†(AADA) = (AADA)A† ⇔ A†(AAD) = (ADA)A† ⇔
R(Ak) ⊆ R(A∗) and R[(Ak)∗] ⊆ R(A).

(g) A†A# = A#A† ⇔ A†(AA#) = (AA#)A† ⇔ R(A∗) = R(A), i.e., A is EP.
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Proof. Applying (1.3), block Gaussian elimination, R(AD) = R(ADA∗) =
R(Ak), and Lemma 1.2, we find that

r(A†AD − ADA†) = r





A∗AA∗ 0 A∗AD

0 −A∗AA∗ A∗

A∗ ADA∗ 0



− 2r(A)

= r





A∗AA∗ A∗ADAA∗ A∗AD

0 0 A∗

A∗ ADA∗ 0



− 2r(A)

= r





0 0 A∗AD

0 0 A∗

A∗ ADA∗ 0



− 2r(A)

= r

[

AD

A∗

]

+ r[ AD, A∗ ] − 2r(A)

= r

[

Ak

A∗

]

+ r[ Ak, A∗ ] − 2r(A),

as required for (a). Note that AAD = ADA and both AA† and A†A are idempo-
tent. We get by (1.6), R(AADAA†) = R(Ak), R(A†A) = R(A∗), and Lemma 1.2
that

r(A†AADA − AADAA† ) = r

[

A†AADA

AA†

]

+ r[ AADAA†, A†A ] − 2r(A)

= r

[

Ak

A∗

]

+ r[ Ak, A∗ ] − 2r(A).

Similarly we can find (c). (d)–(g) are direct consequences of (a)–(c) of the theorem.
2

Theorem 2.2. Let A ∈ Cm×m with Ind (A) = k. Then

(a) r[(AA†)AD − AD(AA†)] = r

[

Ak

A∗

]

− r(A).

(b) r[(A†A)AD − AD(A†A)] = r[Ak, A∗] − r(A).
(c) r(A†AD − ADA†) = r[(AA†)AD − AD(AA†)] + r[(A†A)AD − AD(A†A)].
(d) r[(AA†)A# − A#(AA†)] = r[(A†A)A# − A#(A†A)] = r[A, A∗]− r(A), if

Ind (A) = 1.
(e) AD commutes with AA† ⇔ R[(Ak)∗] ⊆ R(A).
(f) AD commutes with A†A ⇔ R(Ak) ⊆ R(A∗).
(g) A†AD = ADA† ⇔ (AA†)AD = AD(AA†) and (A†A)AD = AD(A†A) ⇔

R(Ak) ⊆ R(A∗) and R(Ak) ⊆ R(A∗).
(h) A†A# = A#A† ⇔ A#(AA†) = (AA†)A# ⇔ A#(A†A) = (A†A)A# ⇔

R(A∗) = R(A), i.e., A is EP.

Proof. Note that both AA† and A†A are idempotent. Thus (a) and (b) can easily
be established through (1.6). Contrasting (a) and (b) with Theorem 2.9(a) yields
(c). (d)–(h) are direct consequences of (a), (b) and (c) of the theorem. 2

Theorem 2.3. Let A ∈ Cm×m with Ind (A) = k. Then
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(a) r(A∗AD − ADA∗) = r





Ak(AA∗ − A∗A)Ak 0 AkA∗

0 0 Ak

A∗Ak Ak 0



− 2r(Ak).

(b) r(A∗A# − A#A∗) =r





A(AA∗ − A∗A)A 0 AA∗

0 0 A

A∗A A 0



− 2r(A),

if Ind (A) = 1.

(c) r(A∗AD −ADA∗) = r(Ak+1A∗Ak −AkA∗Ak+1), if R(A∗Ak) ⊆ R(Ak) and

R[A(Ak)∗] ⊆ R[(Ak)∗].

(d) r(A∗AD −ADA∗) = r

[

AkA∗

Ak

]

+ r[Ak, A∗Ak]− 2r(Ak), if Ak+1A∗Ak =

AkA∗Ak+1.

(e) A∗AD = ADA∗ ⇔ R(A∗Ak) ⊆ R(Ak), R[A(Ak)∗] ⊆ R[(Ak)∗] and

Ak+1A∗Ak = AkA∗Ak+1.

(f) r(A∗A# − A#A∗) = r(A2A∗A − AA∗A2), if R(A∗) = R(A).
(g) A∗A# = A#A∗ ⇔ A2A∗A = AA∗A2 and R(A∗) = R(A).

Proof. Applying (1.4) and then block Gaussian elimination to A∗AD − ADA∗

yields

r(A∗AD − ADA∗) = r[A∗Ak(A2k+1)†Ak − Ak(A2k+1)†AkA∗]

= r





−A2k+1 0 Ak

0 A2k+1 AkA∗

A∗Ak Ak 0



− 2r(A2k+1)

= r





−A2k+1 0 Ak

−Ak+1A∗Ak 0 AkA∗

A∗Ak Ak 0



− 2r(Ak)

= r





0 0 Ak

AkA∗Ak+1 − Ak+1A∗Ak 0 AkA∗

A∗Ak Ak 0



− 2r(Ak)

= r





Ak(AA∗ − A∗A)Ak 0 AkA∗

0 0 Ak

A∗Ak Ak 0



− 2r(Ak) ,

as required for (a) of the theorem. (b), (c) and (d) are special cases of (a). (e),
(f) and (g) follow from (a) and (b) of the theorem. 2

Similarly we can also establish the following four theorems, which proofs are
omitted.

Theorem 2.4. Let A ∈ Cm×m with Ind (A) = k. Then

(a) r(AA∗AD−ADA∗A) = r





Ak(A2A∗ − A∗A2)Ak 0 AkA∗A

0 0 Ak

AA∗Ak Ak 0



−2r(Ak).

(b) r(AkA∗AD − ADA∗Ak) = r(A2k+1A∗Ak − AkA∗A2k+1).
(c) r(AA∗A# − A#A∗A) = r(A3A∗A − AA∗A3), if Ind (A) = 1.
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(d) AA∗AD = ADA∗A ⇔ R(AA∗Ak) = R(Ak), R[(AkA∗A)∗] = R[(Ak)∗]
and Ak+2A∗Ak = AkA∗Ak+2.

(e) AkA∗AD = ADA∗Ak ⇔ Ak+1(AkA∗Ak) = (AkA∗Ak)Ak+1.

(f) AA∗A# = A#A∗A ⇔ A3A∗A = AA∗A3.

Theorem 2.5. Let A ∈ Cm×m with Ind (A) = k. Then

(a) r(AADA∗ − A∗ADA) = r

[

Ak

AkA∗

]

+ r[Ak, A∗Ak] − 2r(Ak).

(b) r(AA#A∗ − A∗A#A) = 2r[A, A∗] − 2r(A), if Ind (A) = 1.
(c) AADA∗ = A∗ADA ⇔ A(Ak)† = (Ak)†A ⇔ R(A∗Ak) = R(Ak) and

R[A(Ak)∗] = R[(Ak)∗].
(d) AA#A∗ = A∗A#A ⇔ R(A∗) = R(A).

Theorem 2.6. Let A ∈ Cm×m with Ind (A) = k. Then

(a) r[AAD(A∗)k − (A∗)kADA] = 2r[Ak, (Ak)∗] − 2r(Ak).
(b) AAD(A∗)k = (A∗)kADA ⇔ R[(Ak)∗] = R(Ak).

Theorem 2.7. Let A ∈ Cm×m with Ind (A) = 1 and λ is a nonzero complex

number. Then

(a) r[AA#(AA∗ + λA∗A) − (AA∗ + λA∗A)A#A] = 2r[A, A∗] − 2r(A).
(b) AA# commutes with AA∗ + λA∗A ⇔ R(A∗) = R(A), i.e., A is EP.

Theorem 2.8. Let A ∈ Cm×m with Ind (A) = k. Then

(a) r[(AAD)∗A† − A†(AAD)∗] = r

[

AkA∗A

Ak

]

+ r[AA∗Ak, Ak] − 2r(Ak).

(b) (AAD)∗A† = A†(AAD)∗ ⇔ R(AA∗Ak) = R(Ak) and R[(AkA∗A)∗] =
R[(Ak)∗].

(c) (AA#)∗A† = A†(AA#)∗, if Ind (A) = 1.

Proof. Apply (1.6) and Lemma 1.2 to (AAD)∗A† − A†(AAD)∗ to yield

r[(AAD)∗A†− A†(AAD)∗] = r

[

(AAD)∗A†

(AAD)∗

]

+ r[A†(AAD)∗, (AAD)∗]− 2r(AAD)

= r

[

(Ak)∗A†

(Ak)∗

]

+ r[A†(Ak)∗, (Ak)∗] − 2r(Ak) .

Next applying (1.1), we can also find that

r

[

(Ak)∗A†

(Ak)∗

]

= r[AA∗Ak, Ak] and r[A†(Ak)∗, (Ak)∗] = r

[

AkA∗A

Ak

]

.

Thus we get (a) and then (b) and (c) of the theorem. 2

Theorem 2.9. Let A ∈ C
m×m with Ind (A) = k. Then

(a) r[AAD − (AAD)∗] = 2r[Ak, (Ak)∗] − 2r(Ak).
(b) r[(AAD)(AAD)∗ − (AAD)∗(AAD)] = 2r[Ak, (Ak)∗] − 2r(Ak).
(c) r[AA#−(AA#)∗] = r[(AA#)(AA#)∗−(AA#)∗(AA#)] = 2r[A, A∗]−2r(A),

if Ind (A) = 1.
(d) AAD = (AAD)∗ ⇔ (AAD)(AAD)∗ = (AAD)∗(AAD) ⇔ R(Ak) = R[(Ak)∗],

i.e., Ak is EP.
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(e) AA# = (AA#)∗ ⇔ (AA#)(AA#)∗ = (AA#)∗(AA#) ⇔ R(A∗) = R(A),
i.e., A is EP.

Proof. Note that both AAD and (AAD)∗ are idempotent. It follows from (1.7)
that

r[AAD − (AAD)∗] = r

[

AAD

(AAD)∗

]

+ r[AAD , (AAD)∗] − r(AAD) − r[(AAD)∗]

= 2r[AAD, (AAD)∗] − 2r(AD)

= 2r[Ak, (Ak)∗] − 2r(Ak) ,

as required for (a). The rank equality in (b) follows from (a) and (1.8). The results
in (c), (d) and (e) follow immediately from (a) of the theorem. 2

Finally we present a rank equality for the difference of AAD − BBD.

Theorem 2.10. Let A, B ∈ Cm×m with Ind (A) = k and Ind (B) = l. Then

(a) r(AAD − BBD) = r

[

Ak

Bl

]

+ r[ Ak, Bl] − r(Ak) − r(Bl).

(b) r(AA#−BB#) = r

[

A

B

]

+r[A, B]−r(A)−r(B), if Ind (A) = Ind (B) = 1.

(c) AAD = BBD ⇔ R(Ak) = R(Bl) and R[(Ak)∗] = R[(Bl)∗].
(d) AA# = BB# ⇔ R(A) = R(B) and R(A∗) = R(B∗).

(e) In particular, if Ind

[

A B

0 D

]

= 1, then

r

(

[

A B

0 D

][

A B

0 D

]#

−

[

AA# 0
0 DD#

]

)

= r[A, B] + r

[

B

D

]

− r

[

A B

0 D

]

.

Proof. Note that both AAD and BBD are idempotent, and R(AAD) = R(Ak),
R[(AAD)∗] = R[(Ak)∗], R(BBD) = R(Bk) and R[(BBD)∗] = R[(Bk)∗]. Then it
follows from (1.7) that

r(AAD − BBD ) = r

[

AAD

BBD

]

+ r[AAD, BBD] − r(AAD) − r(BBD)

= r

[

Ak

Bl

]

+ r[Ak, Bl] − r(Ak) − r(Bl),

as required for (a). The results in (b)–(e) follow immediately from (a) of the
theorem. 2

In a recent paper [5] by Castro, Koliha and Wei, some other equivalent state-
ments for the equality AAD = BBD to hold are presented, one of which is

(2.1) AAD = BBD ⇐⇒ BD − AD = AD(A − B)BD .

In fact, noting that

R( Im − AAD ) ∩R(AD) = {0} and R[(Im − AAD )∗] ∩R[(AD)∗] = {0},
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and using the two rank formulas (cf. [9])

r[ A, B ] = r(A) + r[(Im − AA− )B] and r

[

A

C

]

= r(A) + r[C(Im − A−A )] ,

we find that

r[BD − AD − AD(A − B)BD] = r[(Im − AAD)BD − AD(Im − BBD)]

= r[(Im − AAD)BD] + r[AD(Im − BBD)]

= r

[

AD

BD

]

+ r[AD , BD] − r(AD) − r(BD)

= r

[

Ak

Bl

]

+ r[Ak, Bl] − r(Ak) − r(Bl)

= r(AAD − BBD) .

Thus the equivalence (2.1) follows.

Remarks. In this paper, we have presented a method for establishing rank for-
mulas for matrix expressions that involve Drazin inverses of matrices. Using the
rank formulas obtained, one can characterize various matrix equalities for Drazin
inverses of matrices. Besides the results shown in the paper, one can also es-
tablish various rank formulas for the differences (AB)D −BDAD, (AB)D −B†A†,
(AB)D−B†(A†ABB†)DA†, (AB)D−BD(ADABBD)DAD, (ABC)D−CDBDAD,
(ABC)D − CD(ADABCCD)DAD, (ABC)D − C†BDA† and so on, and then find
from them necessary and sufficient conditions for the corresponding reverse order
laws for products of Drazin inverses to hold. We shall present the corresponding
results in another paper. In addition, it is also worth considering how to partially
extend the work in the paper to Drazin inverses of bounded linear operators over
a Banach space and elements in C∗-algebras, some similar work can be found in
[4, 5, 8].
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