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CHARACTERIZATIONS OF RANDOM APPROXIMATIONS

ABDUL RAHIM KHAN AND NAWAB HUSSAIN

Abstract. Some characterizations of random approximations are obtained
in a locally convex space through duality theory.

1. Introduction and preliminaries

Random approximation theory has received much attention after the publica-
tion of survey paper by Bharucha-Reid [3] in 1976. The interested reader is referred
to recent papers in normed space framework by Tan and Yaun [11], Sehgal and
Singh [10], Papageorgiou [7], Lin [5], Beg and Shahzad [2] and Beg [1]. The inter-
play between random approximation and random fixed point results is interesting
and valuable (see for example [5], [7] and [11]). The applications of this closely
related concept to random differential equations and integral equations in the con-
text of Banach spaces may be found in Itoh [4] and O’Regan [6] respectively. So
random approximations are needed in the study of random equations. Recently,
Beg [1] obtained a characterization of random approximations in a normed space
by employing the Hahn-Banach separation theorem. Characterization theorems
of best approximation in the locally convex space setting have been considered in
[8]. In this paper, we establish the characterizations concerning existence of ran-
dom approximation in locally convex spaces by using the Hahn Banach extension
theorem and a result of Tukey [13] about separation of convex sets; in particular
Theorem 1 provides a random version of Theorem 2.1 of Rao and Elumalai [8] and
Theorem 2 sets an analogue for metrizable locally convex spaces of the theorem
due to Beg [1].

We now fix our terminology. Let (Ω, Σ) be a measurable space where Σ is a
sigma algebra of subsets of Ω and M a subset of a locally convex space E over the
field F of real or complex numbers. A map T : Ω × M → E is called a random
operator if for each fixed x ∈ M , the map T (·, x) : Ω → E is measurable. Let
(E, d) be a metrizable locally convex space.
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(i) The ball with radius r and centre at x is defined as Br(x) = {z ∈ E :
d(z, x) ≤ r}; in particular the ball Br(0) has centre at 0.

(ii) d(x, M) = inf
u∈M

d(x, u).

(iii) PM (x) = {y ∈ M : d(x, y) = d(x, M)} (set of best approximations of x from
M).

(iv) For a ball Br(0) in (E, d), the set {z ∈ E : d(z, 0) = r} is called metric
boundary of Br(0). In general, the topological boundary of Br(0) is con-
tained in its metric boundary. In case metric and topological boundaries of
Br(0) coincide, we say Br(0) is bounding (cf. [12]).

In this note, cl, int, E∗ and E\M denote the closure, interior, dual of E and
difference of sets E and M , respectively.

2. Results

Theorem 1. Let E be a separable locallay convex space with family P of semi-
norms and M a subspace of E. Suppose T : Ω×M → E is a random operator and
ξ : Ω → M a measurable map such that T (ω, ξ(ω)) ∈ E\M . Then ξ is a random
best approximation for T (i.e., p(ξ(ω) − T (ω, ξ(ω))) = dp(T (ω, ξ(ω)), M) for each
p ∈ P ) if and only if for every p ∈ P there exists fp ∈ E∗ such that

(a) fp(g) = 0 for all g ∈ M .
(b) |fp(T (ω, ξ(ω)) − ξ(ω))| = p(T (ω, ξ(ω)) − ξ(ω)).
(c) |fp(T (ω, ξ(ω)) − g| ≤ p(T (ω, ξ(ω)) − g) for all g ∈ M .

Proof. Suppose that ξ is a random approximation for T. Then for each p ∈ P
and g ∈ M ,

p(T (ω, ξ(ω)) − ξ(ω)) ≤ p(T (ω, ξ(ω)) − g) .

In particular, for any 0 6= α ∈ F and g ∈ M ,

p(T (ω, ξ(ω)) − ξ(ω)) ≤ p
(

T (ω, ξ(ω)) −
(

ξ(ω) −
g

α

))

.(i)

Let B = {g + α(T (ω, ξ(ω)) − ξ(ω)) : α ∈ F}.

Define fp
0 on B by fp

0 (g + α[T (ω, ξ(ω))− ξ(ω)]) = αp(T (ω, ξ(ω))− ξ(ω)) for all
g ∈ M . Then fp

0 (g) = 0 for all g ∈ M and

fp
0 (T (ω, ξ(ω)) − ξ(ω)) = p(T (ω, ξ(ω)) − ξ(ω)) .

For any α 6= 0 and g ∈ M , we have

|fp
0 (g + α[T (ω, ξ(ω)) − ξ(ω)])| = |α|p(T (ω, ξ(ω)) − ξ(ω))

≤ |α|p
(

T (ω, ξ(ω)) − ξ(ω) +
g

α

)

(by (i))

= p(g + α[T (ω, ξ(ω)) − ξ(ω)]) .

For α = 0 and g ∈ M this inequality obviously holds.
Hence for each z ∈ B and for each p ∈ P ,

|fp
0 (z)| ≤ p(z) .
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Thus by the Hahn-Banach theorem, fp
0 can be extended to a continuous linear

functional fp on E such that |fp(x)| ≤ p(x) for every x ∈ E and

|fp(z)| = |fp
0 (z)| for each z ∈ M .

The results (a)–(c) are now evident.
Conversely let the conditions (a)–(c) be satisfied. Then from (b) we get for all

p ∈ P and g ∈ M ,

p(T (ω, ξ(ω)) − ξ(ω)) = |fp(T (ω, ξ(ω)) − ξ(ω))|

= |fp(T (ω, ξ(ω)) − g) + fp(g − ξ(ω))|

= |fp(T (ω, ξ(ω)) − g)| (by (a))

≤ p(T (ω, ξ(ω)) − g) (by (c)).

Hence p(T (ω, ξ(ω)) − ξ(ω)) = dp(T (ω, ξ(ω)), M) for all p ∈ P .

We shall follow the argument used in the proof of Theorem 2.3 of Thaheem [12]
to prove the following:

Theorem 2. Let (E, d) be a separable metrizable locally convex space with d as
invariant metric. Assume that the ball Br(0) is convex and bounding and M a
convex subset of E. Let T : Ω × M → E be a random operator and ξ : Ω →
M a measurable map such that T (ω, ξ(ω)) 6∈ cl(M). Then ξ is a random best
approximation for T if and only if there exists a real continuous linear functional
f ∈ E∗

R
(R is the set of real numbers) such that

(a) f(T (ω, ξ(ω)) − ξ(ω)) = d(T (ω, ξ(ω)), ξ(ω)) = r(w) = r (say; for notational
simplicity).

(b) f(y − ξ(ω)) ≤ 0 for all y in M .
(c) ‖f‖r = sup{|f(z)| : z ∈ Br(0)} = r.

Proof. Assume that d(ξ(ω), T (ω, ξ(ω))) = d(T (ω, ξ(ω)), M). Then M and
int(Br(T (ω, ξ(ω)))), where r = d(T (ω, ξ(ω)), M), are disjoint convex sets. By
a result of Tukey [13] (see also Rudin [9]), there is a nonzero continuous real linear
functional fξ(ω) ∈ E∗

R and a real number c such that

fξ(ω)(T (ω, ξ(ω)) − y) ≥ c for all y ∈ M ,(ii)

and

fξ(ω)(T (ω, ξ(ω)) − z) < c for all z ∈ int(Br(T (ω, ξ(ω)))) .

The continuity of fξ(ω) implies that

fξ(ω)(T (ω, ξ(ω)) − z) ≤ c for all z ∈ Br(T (ω, ξ(ω))) .

Since ξ(ω) ∈ M ∩ Br(T (ω, ξ(ω))), it follows that

fξ(ω)(T (ω, ξ(ω)) − ξ(ω)) = c .(iii)

Obviously c is nonzero otherwise we get the contradiction that fξ(ω) is identically
zero.
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Put f = (1/c)rfξ(ω). This implies by (iii) that

f(T (ω, ξ(ω)) − ξ(ω)) = (1/c)rfξ(ω)(T (ω, ξ(ω)) − ξ(ω)) = r

f(y − ξ(ω)) = f(y − T (ω, ξ(ω))) + f(T (ω, ξ(ω)) − ξ(ω)) (y ∈ M)

= (1/c)rfξ(ω)(y − T (ω, ξ(ω))) + (1/c)rfξ(ω)(T (ω, ξ(ω)) − ξ(ω))

≤ 0 (by (ii) and (iii)).

It is easy to get by linearity of f that ‖f‖r = r.
Conversely suppose that there is a real continuous linear functional f satisfying

the conditions (a)–(c).
If the conclusion is false, then for some x in M, we have

d(T (ω, ξ(ω)), x) < d(T (ω, ξ(ω)), ξ(ω)) .(iv)

The continuity of scalar multiplication implies that for any ǫ > 0, there is β > 0
such that

d(0, βT (ω, ξ(ω)) − βx) < ǫ .(v)

Consider

d(0, (1 + β)(T (ω, ξ(ω)) − x))

≤ d(0, T (ω, ξ(ω)) − x) + d(T (ω, ξ(ω)) − x, (1 + β)(T (ω, ξ(ω)) − x))

= d(0, T (ω, ξ(ω)) − x) + d(0, βT (ω, ξ(ω)) − βx) (by invariance of d)

< d(0, T (ω, ξ(ω)) − x) + ǫ (by (v))

≤ d(T (ω, ξ(ω)), ξ(ω)) (by (iv)).

The above inequality and the fact f(ξ(ω) − x) ≥ 0 lead to:

f((1 + β)(T (ω, ξ(ω)) − x)) = (1 + β)f(T (ω, ξ(ω)) − x)

≥ (1 + β)f(T (ω, ξ(ω)) − ξ(ω)).

This implies that f(T (ω, ξ(ω))− ξ(ω)) is not the supremum of f over Br(0). This
contradiction proves the result.

In case M is a subspace we have the following:

Corollary. Let (E, d) be a separable metrizable locally convex space with invariant
metric d and M a subspace of E. Assume that the ball Br(0) is convex and
bounding. Suppose that T : Ω × M → E is a random operator and ξ : Ω →
M a measurable map such that T (ω, ξ(ω)) 6∈ cl(M). Then ξ is a random best
approximation for T if and only if there exists a real continuous linear functional
f ∈ E∗

R such that

(a) f(T (ω, ξ(ω)) − ξ(ω)) = d(T (ω, ξ(ω)), ξ(ω)) = r(w) = r (say).

(b) f(y) = 0 for all y in M .

(c) ‖f‖r = r.
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