
Archivum Mathematicum

Partha Guha
A note on bidifferential calculi and bihamiltonian systems

Archivum Mathematicum, Vol. 40 (2004), No. 1, 17--22

Persistent URL: http://dml.cz/dmlcz/107886

Terms of use:
© Masaryk University, 2004

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/107886
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)

Tomus 40 (2004), 17 – 22

A NOTE ON BIDIFFERENTIAL CALCULI AND

BIHAMILTONIAN SYSTEMS

PARTHA GUHA

Abstract. In this note we discuss the geometrical relationship between bi-
Hamiltonian systems and bi-differential calculi, introduced by Dimakis and
Möller–Hoissen.

1. Introduction

It is known that practically all the classical integrable systems may be described
in terms of a pair of compatible Poisson structures on the phase space. Such
a pair is called a bihamiltonian structure. Several interesting features of integrable
systems can be described in terms of bihamiltonian structure.

In this note we will establish a link between the bi-differential calculi and bi-
Hamiltonian systems. The proximity between these subjects has long been leg-
endary, yet little has been written about this. Here I hope to shed some light on
this issue.

In a series of paper Dimakis and Müller–Hoissen [2,3] and the references therein,
have shown how to generate conservation laws in completely integrable systems
by using a bi-differential calculus. Their papers are quite interesting. But the
mathematical foundation of these papers are not clear, for example, they never
considered the geometry behind their bi-differential formalism. Some attempts
have been made by Crampin et. al [1]. They clarified the geometry behind the
formalism of Dimakis and Müller–Hoissen.

In this article, I further investigate the geometrical structure of the bidifferential
calculi and bicomplex formalism.

The paper is organized as follows. In next section we discuss about background
material. In section 3 we discuss about the bidifferential calculi and its connection
to bi-Hamiltonian systems [4].
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2. Background

Let M be a smooth manifold. The cotangent bundle of a manifold M is a vector
bundle T ∗M := (TM)∗, the (real) dual of the tangent bundle TM .

A differential form or an exterior form of degree k is a section of the vector
bundle ∧kT ∗M , the space of all k-forms, will be denoted by Ωk(M). We put
Ω0(M) = C∞(M,R), then the space

Ω(M) := ⊕n
k=0Ω

k(M)

is a graded commutative algebra. Let Derk Ω(M) the space of all (graded) deriva-
tion of degree k, so that D ∈ Derk Ω(M) satisfies D : Ω(M) −→ Ω(M) with
D(Ωl(M)) ⊂ Ωk+l(M). For k = 1 we obtain the ordinary exterior derivative d.

We consider the space Ω(M,TM) = ⊕m
k=0Ω

k(M,TM) of all tangent bundle
valued differential form on M . Also Ω(M,TM) is a graded Lie algebra with the
Frölicher-Nijenhuis bracket

[·, ·] : Ωk(M,TM)× Ωl(M,TM) −→ Ωk+l(M,TM) .(1)

The Frölicher-Nijenhuis operator δ is given by

δ : Ωk(M,TM) −→ Ωk+1(M,TM) .(2)

If d : Ωk(M) −→ Ωk+1(M) be the exterior derivative the operator δ(K) for
K ∈ Ωk(M,TM) can be expressed as

δ(K) := (−1)k−1dc(K) ∧A

where c is the contraction map

c : Ωk(M,TM) −→ Ωk−1(M) ,(3)

such that c(φ⊗X) = iXφ, and A ∈ Ω1(M,TM).

3. Bidifferential calculi and bihamiltonian structure

In this section we will address our recipe. We will build an inductive scheme
with the help of the exterior derivative d and another degree 1 derivation operator
dA, this is given below:
Construction of dA. : Let us consider an action of ∧A:

∧A : C∞(∧kT ∗M) −→ C∞(∧k+1T ∗M ⊗ TM).(4)

Combining (3) and (4) we define a new degree 0 operator

A(c) := c ◦ ∧A ,(5)

so that A(c) : C∞(∧kT ∗M) −→ C∞(∧kT ∗M).
Hence, we think A(c) as a homomorphism of the module of differential forms.

Also, from the definition A(c) can be identified with a tensor field of rank (1, 1).
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Definition 3.1.

dA := A(c)d .(6)

It is clear that dA is a degree 1 operator.

The basic step in the construction of Dimakis and Müller–Hoissen is to define
inductively a sequence of (l − 1)-th forms

{µk} k = 0, 1, 2, . . .

for which closed l-forms are exact by the rule given by

Lemma 3.2.

dµk+1(M) = dAµ
k(M) µk ∈ C∞(∧lT ∗M) .(7)

According to Frölicher-Nijenhuis theory, an operator dA associated to some
(1, 1) tensor A, anticommutes with d. The necessary and sufficient condition for
dA to satisfy d2

A = 0 is that the Nijenhuis tensor must be zero.

Claim 3.3.

d2 = dA
2 = 0 .

ddA + dAd = 0 .

It is easy to see that

ddAµ
k = −dAdµ

k = −dAdAµ
k+1 = −dA

2µk+1 = 0 .(8)

This scheme is consistent provided ddAµ
0 = −dAdµ

0 = 0.
Thus all the µks are defined on the space Ω(M)/B(M) of differential forms

modulo exact forms. These defined a generalized Poisson structure, the graded
Poisson bracket. In the case of one form, entire picture coincides with the Poisson
geometry.

3.1 Connection to the Poisson-Nijenhuis manifold

and bi-Hamiltonian systems.

In this section we will state the correspondence with the bi-Hamiltonian systems.
Let us consider a manifold M with symplectic structures ω0. Then ω0 induces a
nondegenerate Poisson structure from the following canonical identification:

ω0(Xf , Xg) = Λ0
−1(df, dg) .

Our basic structure (ω0, A(c)) induces a second Poisson structure on M . This
is given by

Λ1(df, dg) = Λ0(A(c)df, dg),(9)

where A(c) : T ∗M −→ T ∗M .
Given two vector bundle morphisms

JΛ0
, JΛ1

: T ∗M −→ TM ,

we can determine the mixed (1, 1) tensor (recursion operator)

A = JΛ0
J−1

Λ1
.
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By abusing notation, let us denote the adjoint of A(c) by A, it acts on the
vector fields.

Definition 3.4. Let A be a tensor field of type (1, 1) on a manifold M . The
Nijenhuis torsion of A is a tensor field N(A) of type (1, 2) given, for any pair
(X,Y ) of vector fields on M , by

N(A)(X,Y ) = [AX,AY ] −A([AX, Y ] + [X,AY ] −A[X,Y ]) ,(10)

N(A) = 1

2
[A,A] for the Frölicher-Nijenhuis bracket.

The tensor field A would be called Nijenhuis operator if its Nijenhuis torsion
N(A) vanishes.

The torsion of A vanishes as a consequence of the assumption that Λ0 and Λ1

are a pair compatible Poisson tensors.
Thus we obtain two Poisson bivectors Λ0(df, dg) and Λ1(df, dg), satisfying

[Λi,Λj] = 0, where [ , ] is the Schouten-Nijenhuis bracket. In this way we construct
a Poisson-Nijenhuis manifold. A Poisson-Nijenhuis manifold is a bihamiltonian
manifold.

Thus we define two symplectic structures

ω0(Xf , Xg) = Λ0
−1(df, dg) and ω1(Xf , Xg) = Λ1

−1(df, dg) on M.

We have the following exact sequence

0 −→ H0(M,R) −→ C∞(M,R)
H
−→ V(M)

γ
−→ H1(M,R) −→ 0(11)

Here γ(η) is the cohomology class of iηω, and V(M) consists of all vector fields ξ
with Lξω = 0.

Thus we have two Poisson structures.

{f, g}0 = Λ0(df, dg) ,

{f, g}1 = Λ1(df, dg) = Λ0(A
∗(df), dg)

= Λ0(df,A
∗(dg)) = −A(Xg)f = −dAf(Xg) .(12)

Hence, we say, a bi-differential calculus endows M with a Poisson-Nijenhuis
structure, and A plays the role of recursion tensor [5].

3.2 Graded Poisson Structure.

In our case all the µk-s are graded objects, differential forms. Now, if we replace
f by µk+1 in equation (11), then from the inductive definition of the function µk,
we obtain

{·, µk+1}1 = {·, µk}0 .(13)

The graded Poisson bracket for differential forms in the context of general-
ized Hamiltonian systems has been studied extensively by Peter Michor [6]. He
extended the Poisson exact sequence to

0 → H0(M,R) → Ω(M)/B(M)
H
−→ Ωω(M ;TM)

γ
−→ H∗+1(M,R) → 0 .(14)
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Theorem 3.5 (Michor). Let (M,Λ) be a Poisson manifold. Then the space

Ω(M)/B(M) of differential forms modulo exact forms there exists a unique graded

Poisson bracket {·, ·}gr, which is given the quotient modulo B(M) of

{φ, ψ}gr = iHφ
dψ ,

or

{f0df1 ∧ · · · ∧ dfk, g0dg1 ∧ · · · ∧ dgl}gr

=
∑

i,j

(−1)i+j{fi, gj}df0 ∧ · · · d̂fi · · · ∧ dfk ∧ dg0 ∧ · · · d̂gj · · · ∧ dgk ,(15)

such that H : Ω(M)/B(M) −→ Ω(M ;TM) is a homomorphism of graded Lie

algebras.

The functions µk form a Lenard scheme.
There is an alternative bihamiltonian approach to dynamical systems. In this

approach one starts with two compatible Poisson brackets {., .}1 and {., .}2 on
M . The two Poisson brackets are compatible if the bracket λ1{., .}1 + λ2{., .}2 is
Poisson for λ1 and λ2. One can construct based on these brackets a dynamical
systems which is Hamiltonian with respect to any one of these brackets. The
construction of dynamical systems based on the brackets is called Lenard Scheme.
It provides a family of function in involution (w.r.t. any linear combination of the
brackets).

Proposition 3.6. The functions µk which obey the Lenard scheme are in involu-

tion with respect to both Poisson brackets.

Proof. By using repeatedly the recursion relation we obtain,

{µj, µk}1 = {µj, µk−1}0

= −{µk−1, µj}0

= −{µk−1, µj+1}1

= {µj+1, µk−1}1 = · · · = {µj+k+1, µ−1}1 = 0 .

Hence their property of being in involutions then follows from the general ar-
gument (explained in the third lecture in [5]).
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