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EXISTENCE THEORY FOR SINGLE AND MULTIPLE

SOLUTIONS TO SINGULAR POSITONE DISCRETE

DIRICHLET BOUNDARY VALUE PROBLEMS TO THE

ONE-DIMENSION p-LAPLACIAN

DAQING JIANG1, LILI ZHANG1, DONAL O’REGAN2 AND RAVI P. AGARWAL3

Abstract. In this paper we establish the existence of single and multiple
solutions to the positone discrete Dirichlet boundary value problem

{

∆
[

φ(∆u(t − 1))
]

+ q(t)f(t, u(t)) = 0 , t ∈ {1, 2, . . . , T}

u(0) = u(T + 1) = 0 ,

where φ(s) = |s|p−2s, p > 1 and our nonlinear term f(t, u) may be singular
at u = 0.

1. Introduction

In this paper we establish the existence of single and multiple solutions to the
positone discrete Dirichlet boundary value problem

{

∆
[

φ(∆u(t− 1))
]

+ q(t)f(t, u(t)) = 0 , t ∈ N = {1, 2, . . . , T}

u(0) = u(T + 1) = 0 ,
(1.1)

where φ(s) = |s|p−2s, p > 1 and T ∈ {1, 2, . . .}, N+ = {0, 1, . . . , T + 1} and
u : N+ → [0,∞). Throughout this paper we will assume f : N × (0,∞) → (0,∞)
is continuous. As a result our nonlinearity f(t, u) may be singular at u = 0.

Remark 1.1. Recall a map f : N × (0,∞) → (0,∞) is continuous if it is con-
tinuous as a map of the topological space N × (0,∞) into the topological space
(0,∞). Throughout this paper the topology on N will be the discrete topology.

We will let C(N+,R) denote the class of maps u continuous on N+ (discrete
topology), with norm ‖u‖ = maxt∈N+ |u(t)|. By a solution to (1.1) we mean a
u ∈ C(N+, [0,∞)) such that u satisfies (1.1) for t ∈ N and u satisfies the boundary
(Dirichlet) conditions.
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It is of interest to note here that the existence of single and multiple solutions
to singular positone boundary value problems in the continuous case have been
studied in great detail in the literature [5, 6, 7, 8, 12] (p = 2). However, for
the discrete case almost all papers in the literature [1, 3, 10, 11] (p = 2) are
devoted to the existence of one solution for singular positone problems, and only
recently in [13] has the existence of one solution for singular discrete problems to
the one-dimension p-Laplacian been discussed.

This paper discusses the existence of single and multiple solutions for singular
positone discrete problems. Existence principles for nonsingular discrete Dirichlet
problem to the one-dimension p-Laplacian are presented in Section 2. Some general
existence theorems will be presented in Section 3 and there we will show, for
example, that the discrete boundary value problem

{

∆(φ(∆u(t − 1))) + σ([u(t)]−α + [u(t)]β + 1) = 0 , t ∈ N ,

u(0) = 0, u(T + 1) = 0 , α > 0 , β > 1 , σ > 0 small,

has two nonnegative solutions. Existence in this paper will be established using a
Leray-Schauder alternative [14] and a general cone fixed point theorem in [5, 9].

In this paper we only consider discrete Dirichlet boundary data. It is worth re-
marking here that we could consider Sturm Liouville boundary data also; however
since the arguments are essentially the same (in fact easier if not Dirichlet data)
we will leave the details to the reader.

2. Existence principles

Consider the discrete Dirichlet boundary value problem

(2.1)

{

∆
[

φ(∆u(t− 1))
]

+ f(t, u(t)) = 0 , for t ∈ N = {1, 2, . . . , T},
u(0) = A , u(T + 1) = B ,

where A and B are given real numbers, φ(s) = |s|p−2s, p > 1. Suppose the
following two conditions are satisfied:

(A1) f(t, u) : N × R → R is continuous;
(A2) for each r > 0 there exists hr ∈ C(N, [0,∞)) such that |u| ≤ r implies

|f(t, u)| ≤ hr(t) for t ∈ N .
Suppose that D ⊂ E := C(N+,R) is a bounded set, and there exists a constant

r > 0 such that ‖u‖ ≤ r for u ∈ D̄. Thus |F
(

t, u(t)
)

| ≤ hr(t) for u ∈ D̄.
For each fixed u ∈ D, we consider the discrete boundary value problem

(2.2)

{

∆
[

φ(∆w(t − 1))
]

+ f(t, u(t)) = 0 , t ∈ N ,

w(0) = A , w(T + 1) = B .

Then (2.2) is equivalent to

(2.3) w(t) = (Φu)(t) =











A , t = 0 ,

B +
∑T

s=t φ
−1

(

τ +
∑s

r=1 f(r, u(r))
)

, t ∈ N ,

B , t = T + 1 ,
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where τ = −φ(∆w(0)) is a solution of the equation

(2.4) Z(τ) := φ−1(τ) +

T
∑

s=1

φ−1
(

τ +

s
∑

r=1

f(r, u(r))
)

= A−B .

Lemma 2.1. For each fixed u ∈ D, Eq. (2.4) has a unique solution τ ∈ R, and

|τ | ≤ Cr ,

where Cr is a positive constant independent of u ∈ D.

Proof. Let u ∈ D be fixed. Then we have, by the definition of Z(τ),

(2.5) (T + 1)φ−1
(

τ −

T
∑

t=1

hr(t)
)

≤ Z(τ) ≤ (T + 1)φ−1
(

τ +

T
∑

t=1

hr(t)
)

,

∀τ ∈ R, where hr is defined by (A2). Because φ−1 is a continuous, strictly
increasing function on R with φ−1(R) = R, so is Z (for each fixed u ∈ D). Thus,
there exists an unique τ ∈ R satisfying Eq (2.4). By (2.4) and (2.5), we have

τ ≤ φ

(

A−B

T + 1

)

+

T
∑

t=1

hr(t), τ ≥ φ

(

A−B

T + 1

)

−

T
∑

t=1

hr(t) ,

i.e.,

|τ | ≤ φ

(

|A−B|

T + 1

)

+

T
∑

t=1

hr(t) =: Cr .

The Lemma is thus proved.

From Lemma 2.1, we conclude that Φ : D → E is well defined. Concerning the
mapping Φ, the following Lemma holds.

Lemma 2.2. Φ : D̄ → E is bounded and continuous.

Proof. Let u ∈ D̄ be fixed and τ ∈ R is the unique solution of (2.4) corresponding
to u. Then by (2.3), (2.4) and (2.5), we have

(2.6) ‖Φu‖ ≤Mr ,

where Mr is a positive constant independent of u ∈ D̄. This shows that Φ(D̄) is
a bounded subset of E.

Now assume that u0, un ∈ D̄ and un → u0 in D̄. Then we have

(2.3)n (Φun)(t) =











A , t = 0 ,

B +
∑T

s=t φ
−1

(

τn +
∑s

r=1 f(r, un(r))
)

, t ∈ N ,

B , t = T + 1 ,

where τn, n = 0, 1, 2, . . . , satisfies the condition

(2.4)n φ−1(τn) +
T

∑

s=1

φ−1
(

τn +
s

∑

r=1

f(r, un(r))
)

= A−B .
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From Lemma 2.1, we know that |τn| ≤ Cr, n = 0, 1, 2, . . . , where Cr is independent
of un. Suppose that τ∗ ∈ [−Cr, Cr] is an accumulation point of {τn}. Then there
is a subsequence of {τn}, {τn(j)} which converge to τ∗. It follows from (2.4)n(j)

that

φ−1(τ∗) +
T

∑

s=1

φ−1
(

τ∗ +
s

∑

r=1

f(r, u0(r))
)

= A−B .

This shows that τ∗ = τ0, by Lemma 2.1. Thus {τn} has a unique accumulation,
and hence τn → τ0. Thus, from (2.3)n and (2.4)n, we have

lim
n→∞

(Φun)(t) = (Φu0)(t) , t ∈ N+ .

This shows that Φ is continuous (and bounded) from D̄ to E. The proof of the
Lemma is complete.

Since D is an arbitrary bounded subset in E, we have

Lemma 2.3. Φ : E → E is completely continuous.

We obtain the following general existence principles for (2.1) by using Schauder
fixed point theorem and a nonlinear alternative of Leray-Schauder type.

Theorem 2.1. Suppose (A1) and (A2) hold. In addition suppose there is a con-

stant M > |A| + |B|, independent of λ with

(2.7) ‖u‖ = max
t∈N+

|u(t)| 6= M

for any solution u ∈ C(N+,R) to

(2.8)λ

{

∆
(

φ(∆u(t− 1))
)

+ λp−1f
(

t, u(t)
)

= 0 , t ∈ N ,

u(0) = λA , u(T + 1) = λB ,

for each λ ∈ (0, 1). Then (2.1) has a solution u with ‖u‖ ≤M .

Proof. (2.8)λ is equivalent to the fixed point problem

(2.9)λ u(t) = λ(Φu)(t) , t ∈ N+ ,

where Φ is as in (2.3). Set

U = {u ∈ C(N+,R) , ‖u‖ < M} .

Since Φ : C(N+,R) → C(N+,R) is continuous and completely continuous, the
nonlinear alterative [14] guarantees that Φ has a fixed point i.e., (2.9)1 has a
solution in Ū .

Theorem 2.2. Suppose (A1) and (A2) hold. In addition suppose there is a con-

stant M > |A| + |B|, independent of λ with

‖u‖ = max
t∈N+

|u(t)| 6= M
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for any solution u ∈ C(N+,R) to

(2.10)λ

{

∆
(

φ(∆u(t− 1) − (1 − λ)(B−A
T+1 ))

)

+ λp−1f(t, u(t)) = 0 , t ∈ N ,

u(0) = A , u(T + 1) = B ,

for each λ ∈ (0, 1). Then (2.1) has a solution u with ‖u‖ ≤M .

Proof. (2.10)λ is equivalent to the fixed point problem

(2.11)λ u = (1 − λ)Q+ λΦu where Q = A+
B −A

T + 1
t .

Set

U = {u ∈ C(N+,R) , ‖u‖ < M} .

Since Φ : C(N+,R) → C(N+,R) is continuous and completely continuous, the
nonlinear alterative [14] guarantees that Φ has a fixed point i.e., (2.11)1 has a
solution in Ū .

Theorem 2.3. Suppose that (A1) holds, and there exists h ∈ C
(

N, [0,∞)
)

with

|F (t, u)| ≤ h(t) for t ∈ N . Then (2.1) has a solution u.

Proof. Solving (2.1) is equivalent to the fixed point problem u = Φu. Since
Φ : C(N+,R) → C(N+,R) is continuous and compact, the result follows from
Schauder’s fixed point theorem.

3. Singular discrete boundary value problems

In this section we examine the singular Dirichlet boundary value problem

(3.1)

{

∆(φ(∆u(t − 1))) + q(t)f(t, u(t)) = 0 , t ∈ N ,

u(0) = 0 , u(T + 1) = 0 ,

where φ(s) = |s|p−2s, p > 1, and nonlinearity f may be singular at u = 0. We
begin by showing that (3.1) has a solution. To do so we first establish, via Theorem
2.2, the existence of a solution, for each sufficiently large n, to the “modified”
problem

(3.1)n







∆
(

φ(∆u(t − 1))
)

+ q(t)f
(

t, u(t)
)

= 0 , t ∈ N ,

u(0) = 1
n
, u(T + 1) =

1

n
.

To show that (3.1) has a solution we let n → ∞; the key idea in this step is
Arzela-Ascoli theorem.

Before we prove our main results we first state one well known result [4].

Lemma 3.1 ([4]). Let y ∈ C(N+,R) satisfy y(t) ≥ 0 for t ∈ N+. If u ∈
C(N+,R) satisfies

{

∆2u(t− 1) + y(t) = 0 , t ∈ N ,

u(0) = u(T + 1) = 0 ,
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then

u(t) ≥ µ(t)‖u‖ for t ∈ N+;

here

µ(t) = min{
T + 1 − t

T + 1
,
t

T
}.

Theorem 3.1. Suppose the following conditions are satisfied:

(H1) q : N → (0,∞) is continuous;

(H2) f : N × (0,∞) → (0,∞) is continuous;

(H3) f(t, u) ≤ g(u) + h(u) on N × (0,∞) with g > 0 continuous and nonin-

creasing on (0,∞), h ≥ 0 continuous on [0,∞), and h
g

nondecreasing on (0,∞);

(H4) for each constant H > 0 there exists a function ψH continuous on N+ and

positive on N such that f(t, u) ≥ ψH(t) on N × (0, H ];
(H5) there exists a constant r > 0 such that

(3.2)
1

φ−1

(

1 + h(r)
g(r)

)

∫ r

0

dy

φ−1(g(y))
> b0,

where

b0 = max
t∈N

( t
∑

s=1

φ−1(

t
∑

r=s

q(r)) ,

T
∑

s=t

φ−1
(

s
∑

r=t

q(r)
)

)

.

Then (3.1) has a solution u ∈ C
(

N+, [0,∞)
)

with u > 0 on N and ‖u‖ < r.

Proof. Choose ǫ > 0, ǫ < r with

(3.3)
1

φ−1

(

1 + h(r)
g(r)

)

∫ r

ǫ

dy

φ−1(g(y))
> b0 .

Let n0 ∈ {1, 2, . . . } be chosen so that 1
n0

< ǫ and let Z+ = {n0, n0 + 1, . . . }. To

show (3.1)n, n ∈ Z+, has a solution we examine

(3.4)n

{

∆
(

φ(∆u(t − 1))
)

+ q(t)F
(

t, u(t)
)

= 0 , t ∈ N ,

u(0) = 1
n
, u(T + 1) = 1

n
, n ∈ Z+ ,

where

F (t, u) =

{

f(t, u) , u ≥ 1
n
,

f(t, 1
n
) , u ≤ 1

n
.

To show that (3.4)n has a solution for n ∈ Z+, we will apply Theorem 2.2. Consider
the family of problems

(3.5)n
λ

{

−∆
(

φ(∆u(t− 1))
)

= λp−1q(t)F (t, u(t)) , t ∈ N ,

u(0) = 1
n
, u(T + 1) = 1

n
, n ∈ Z+ ,

where λ ∈ (0, 1). Let u be a solution of (3.5)n
λ. Since ∆[φ(∆u(t − 1))] ≤ 0 on

N implies ∆2u(t − 1) ≤ 0 on N , then u(t) ≥ 1
n

on N+ and there exists t0 ∈ N

with ∆u(t) ≥ 0 on [0, t0) = {0, 1, . . . , t0 − 1} and ∆u(t) ≤ 0 on [t0, T + 1) =
{t0, t0 + 1, . . . , T}, and u(t0) = ‖u‖.
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Also notice that

F (t, u(t)) = f(t, u(t)) ≤ g(u(t)) + h(u(t)) , t ∈ N ,

so for z ∈ N , we have

(3.6) −∆
(

φ(∆u(z − 1))
)

≤ g
(

u(z)
)

(

1 +
h(u(t0))

g(u(t0))

)

q(z) .

We sum the equation (3.6) from s+ 1(0 ≤ s < t0) to t0 to obtain

φ
[

∆u(t0)
]

≥ φ[∆u(s)] −

(

1 +
h(u(t0))

g(u(t0))

) t0
∑

z=s+1

g(u(z))q(z) .

Since ∆u(t0) ≤ 0, and u(z) ≥ u(s+ 1) when s+ 1 ≤ z ≤ t0, then we have

φ
[

∆u(s)
]

≤ φ
[

∆u(t0)
]

+

(

1 +
h(u(t0))

g(u(t0))

) t0
∑

z=s+1

g(u(z))q(z)

≤ g(u(s+ 1))

(

1 +
h(u(t0))

g(u(t0))

) t0
∑

z=s+1

q(z) , s < t0 ,

i.e.,

(3.7)
∆u(s)

φ−1(g(u(s+ 1)))
≤ φ−1

(

1 +
h(u(t0))

g(u(t0))

)

φ−1
(

t0
∑

z=s+1

q(z)
)

, s < t0 .

Since g(u(s+ 1)) ≤ g(u) ≤ g(u(s)) for u(s) ≤ u ≤ u(s+ 1) when s < t0, then we
have

(3.8)

∫ u(s+1)

u(s)

du

φ−1(g(u))
≤

∆u(s)

φ−1(g(u(s+ 1)))
, s < t0 .

It follows from (3.7) and (3.8) that

∫ u(s+1)

u(s)

du

φ−1(g(u))
≤ φ−1

(

1 +
h(u(t0))

g(u(t0))

)

φ−1
(

t0
∑

z=s+1

q(z)
)

, s < t0 ,

and then we sum the above from 0 to t0 − 1 to obtain

∫ u(t0)

1
n

du

φ−1(g(u))
≤ φ−1

(

1 +
h(u(t0))

g(u(t0))

) t0−1
∑

s=0

φ−1
(

t0
∑

z=s+1

q(z)
)

= φ−1

(

1 +
h(u(t0))

g(u(t0))

) t0
∑

s=1

φ−1
(

t0
∑

z=s

q(z)
)

.

(3.9)

Similarly, we sum the equation (3.6) from t0 to s(t0 ≤ s < T + 1) to obtain

φ
[

∆u(s)
]

≥ φ[∆u(t0 − 1)] −

(

1 +
h(u(t0))

g(u(t0))

) s
∑

z=t0

g(u(z))q(z) , s ≥ t0 .
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Since ∆u(t0 − 1) ≥ 0, then we have

−φ
[

∆u(s)
]

≤ −φ[∆u(t0 − 1)] +

(

1 +
h(u(t0))

g(u(t0))

) s
∑

z=t0

g(u(z))q(z)

≤ g(u(s))

(

1 +
h(u(t0))

g(u(t0))

) s
∑

z=t0

q(z) , s ≥ t0 ,

i.e.,

−∆u(s)

φ−1(g(u(s)))
≤ φ−1

(

1 +
h(u(t0))

g(u(t0))

)

φ−1
(

s
∑

z=t0

q(z)
)

, s ≥ t0 .

So we have
∫ u(s)

u(s+1)

du

φ−1(g(u))
≤

−∆u(s)

φ−1(g(u(s)))
≤ φ−1

(

1+
h(u(t0))

g(u(t0))

)

φ−1
(

s
∑

z=t0

q(z)
)

, s ≥ t0 ,

and then we sum the above from t0 to T to obtain

(3.10)

∫ u(t0)

1
n

du

φ−1(g(u))
≤ φ−1

(

1 +
h(u(t0))

g(u(t0))

) T
∑

s=t0

φ−1
(

s
∑

z=t0

q(z)
)

.

Now (3.9) and (3.10) imply
∫ u(t0)

ε

du

φ−1(g(u))
≤

∫ u(t0)

1
n

du

φ−1(g(u))
≤ b0φ

−1

(

1 +
h(u(t0))

g(u(t0))

)

.

This together with (3.3) implies ‖u‖ = u(t0) 6= r. Then Theorem 2.2 implies that
(3.4)n has a solution un with ||un|| ≤ r. In fact ( as above)

1

n
≤ un(t) < r , for t ∈ N+ .

Thus un(t) is a solution of (3.1)n also.
Next we obtain a sharper lower bound on un, namely we will show that there

exists a constant k > 0, independent of n, with

(3.11) un(t) ≥ kµ(t) , for t ∈ N+ ,

where µ is as in Lemma 3.1.
To see this notice (H4) guarantees the existence of a function ψr(t) continuous

on N+ and positive on N with f(t, u) ≥ ψr(t) for (t, u) ∈ N × (0, r]. Let yr(t) ∈
C(N+, R) be a unique solution to the problem

(3.12)

{

∆
(

φ(∆yr(t− 1))
)

+ q(t)ψr(t) = 0 , t ∈ N ,

yr(0) = 0 , yr(T + 1) = 0 .

Since ∆
(

φ(∆yr(t−1))
)

≤ 0 on N , with yr(0) = yr(T+1) = 0, then ∆2yr(t−1) ≤ 0
on N , and so Lemma 3.1 implies,

(3.13) yr(t) ≥ µ(t)‖yr‖ , t ∈ N+ .

Since f(t, u) ≥ ψr(t) for (t, u) ∈ N × (0, r], we claim that

(3.14) un(t) ≥ yr(t) , t ∈ N+ .
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Suppose (3.14) is false i.e. assume un(t) < yr(t) for some t ∈ N+. Since un(0) >
yr(0) = 0, un(T +1) > yr(T +1) = 0, the function V (t) = yr(t)−un(t) would have
a positive maximum at a point t0 ∈ N . Hence ∆V (t0 − 1) ≥ 0, i.e., ∆yr(t0 − 1) ≥
∆un(t0 − 1). Notice that

∆
(

φ(∆yr(t−1))
)

−∆
(

φ(∆un(t−1))
)

= −q(t)ψr(t)+q(t)f(t, un(t)) ≥ 0 , ∀ t ∈ N .

Sum both sides of the above inequality from t0 to t ∈ [t0, T + 1) = {t0, . . . , T} to
get

φ
(

∆yr(t)
)

− φ
(

∆yr(t0 − 1)
)

≥ φ
(

∆un(t)
)

− φ
(

∆un(t0 − 1)
)

,

for all t ∈ [t0, T + 1), and so

φ
(

∆yr(t)
)

− φ
(

∆un(t)
)

≥ φ
(

∆yr(t0 − 1)
)

− φ
(

∆un(t0 − 1)
)

≥ 0 ,

for all t ∈ [t0, T + 1). That is

∆V (t) = ∆yr(t) − ∆un(t) ≥ 0 ,

for all t ∈ [t0, T + 1), and so V (t0) ≤ V (T + 1) < 0, a contradiction.

Now (3.14) together with (3.13) implies (3.11) holds for k = ‖yr‖.

The Arzela-Ascoli theorem guarantees the existence of a subsequence Z0 ⊂ Z+

and a function u ∈ C(N+,R) with un → u in C(N+,R) as n → ∞ through
Z0. Also u(0) = u(T + 1) = 0, ‖u‖ ≤ r for t ∈ N+. In particular u(t) ≥ kµ(t) ≥

k
T+1 on N . Fix t ∈ N , and we obtain

∆
[

φ(∆un(t− 1))
]

= φ
(

∆un(t)
)

− φ
(

∆un(t− 1)
)

= φ
(

un(t+ 1) − un(t)
)

− φ
(

un(t) − un(t− 1)
)

→ ∆
(

φ(∆u(t− 1))
)

, t ∈ N, n ∈ Z0, n→ ∞ ,

and
f
(

t, un(t)
)

→ f
(

t, u(t)
)

, t ∈ N, n ∈ Z0, n→ ∞ .

Thus ∆(φ(∆u(t− 1))) + q(t)f(t, u(t)) = 0 for t ∈ N , u(0) = u(T + 1) = 0. Finally
it is easy to see that ‖u‖ < r (note if ‖u‖ = r, then following essentially the same
argument from (3.6)–(3.10) will yield a contradiction).

This complete the proof of Theorem 3.1.

Example 3.1. Consider the singular boundary value problem

(3.15)

{

∆
(

φ(∆u(t− 1))
)

+ σ([u(t)]−α + [u(t)]β) = 0 , t ∈ N

u(0) = 0 , u(T + 1) = 0 ,

with α > 0, β ≥ 0, σ > 0 is such that

(3.16) σ <

[

p− 1

b1(α + p− 1)

]p−1

sup
c∈(0,∞)

cα+p−1

1 + cα+β
;

here

(3.17) b1 = max
t∈N

( t
∑

s=1

(t− s+ 1)
1

p−1 ,

T
∑

s=t

(s− t+ 1)
1

p−1

)

=
T

∑

t=1

t
1

p−1 .
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Then (3.15) has a solutions u with u(t) > 0 for t ∈ N .
To see this we will apply Theorem 3.1 with

q(s) = σ , g(u) = u−α , h(u) = uβ .

Clearly (H1)–(H4) hold. Also notice

t
∑

s=1

φ−1(

t
∑

r=s

σ) = σ
1

p−1

t
∑

s=1

(t− s+ 1)
1

p−1 ,

T
∑

s=t

φ−1(

s
∑

r=t

σ) = σ
1

p−1

T
∑

s=t

(s− t+ 1)
1

p−1 ,

and so

b0 = max
t∈N

(

σ
1

p−1

t
∑

s=1

(t− s+ 1)
1

p−1 , σ
1

p−1

T
∑

s=t

(s− t+ 1)
1

p−1

)

= σ
1

p−1 b1 .

Consequently (H5) holds since (3.16) implies there exists r > 0 such that

σ <

[

p− 1

b1(α+ p− 1)

]p−1
rα+p−1

1 + rα+β
,

and so

1

φ−1(1 + h(r)
g(r) )

∫ r

0

dy

φ−1(g(y))
=

p− 1

p− 1 + α
φ−1

(

rα+p−1

1 + rα+β

)

> b0 .

Thus all the conditions of Theorem 3.1 are satisfied so existence is guaranteed.

Remark 3.1. If β < p− 1 then (3.16) is automatically satisfied.

Next we establish the existence of two positive solutions to (3.1). First we state
the fixed point result we will use to establish multiplicity.

Lemma 3.2 ([5]). Let E = (E, ‖ · ‖) be a Banach space and let K ⊂ E be a

cone in E, and let ‖ · ‖ be increasing with respect to K. Also, r,R are constants

with 0 < r < R. Suppose Φ : Ω̄R ∩K → K( here ΩR = {x ∈ E, ‖x‖ < R}) is a

continuous, compact map and assume the conditions

(3.18) x 6= λΦ(x) , for λ ∈ [0, 1) and x ∈ ∂Ωr ∩K

and

(3.19) ‖Φx‖ > ‖x‖ , for x ∈ ∂ΩR ∩K

hold. Then Φ has a fixed point in K ∩ {x ∈ E : r ≤ ‖x‖ ≤ R}.

Remark 3.2. In Lemma 3.2 if (3.18) and (3.19) are replaced by

(3.18)∗ x 6= λΦ(x) , for λ ∈ [0, 1) and x ∈ ∂ΩR ∩K

and

(3.19)∗ ‖Φx‖ > ‖x‖ , for x ∈ ∂Ωr ∩K .

Then Φ has a fixed point in K ∩ {x ∈ E : r ≤ ‖x‖ ≤ R}.
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Let K be the cone in E = C(N+,R) given by

K := {u ∈ C(N+,R) : u(t) ≥ µ(t)‖u‖ , t ∈ N+} .

Theorem 3.2. Assume that (H1), (H2), (H3) and (H5) hold. In addition suppose

that

(3.20) (H6)























there exists a nonincreasing continuous function

g1 : (0,∞) → (0,∞), and a continuous function

h1 : [0,∞) → (0,∞) with h1

g1
nondecreasing on (0,∞)

and with f(t, u) ≥ g1(u) + h1(u) for (t, u) ∈ N × (0,∞);

(H7) there exists R > r with

(3.21)
R

φ−1

(

g1(R)
[

1 +
h1( R

T+1
)

g1( R
T+1

)

]

) < ‖v‖,

where v satisfies

(3.22)

{

∆
(

φ(∆v(t− 1))
)

+ q(t) = 0 , t ∈ N ,

v(0) = v(T + 1) = 0 .

Then (3.1) has a solution u ∈ C(N+,R) with u > 0 on N and r < ‖u‖ ≤ R.

Proof. To show the existence of the solution described in the statement of Theorem
3.2, we will apply Lemma 3.2. First we choose ǫ > 0(ǫ < r) with

(3.23)
1

φ−1

(

1 + h(r)
g(r)

)

∫ r

ǫ

dy

φ−1(g(y))
> b0 .

Let n0 ∈ {1, 2, · · · } be chosen so that 1
n0

< ǫ
2 and 1

n0
< r

T+1 and let Z+ =

{n0, n0 + 1, . . . }.
First we will show that

(3.24)n

{

∆
(

φ(∆u(t− 1))
)

+ q(t)f(t, u(t)) = 0 , t ∈ N ,

u(0) = 1
n
, u(T + 1) = 1

n
, n ∈ Z+ ,

has a solution un for each n ∈ Z+ with un(t) > 1
n

on N and r < ‖un‖ ≤ R. To
show (3.24)n has such a solution for each n ∈ Z+, we will deal with the modified
boundary value problem

(3.25)n

{

∆
(

φ(∆u(t − 1))
)

+ q(t)f∗(t, u(t)) = 0 , t ∈ N ,

u(0) = 1
n
, u(T + 1) = 1

n
, n ∈ Z+ ,

with

f∗(t, u(t)) =

{

f(t, u(t)) , u ≥ 1
n
,

f(t, 1
n
) , 0 ≤ u ≤ 1

n
.
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Fix n ∈ Z+. Let Φ : K → C(N+,R) be defined by

(3.26) w(t) := (Φu)(t) =







1
n
, t = 0 or t = T + 1 ,

1
n

+
∑T

s=t φ
−1

(

τ +
∑s

z=1 f
∗(z, u(z))

)

, t ∈ N ,

where τ is a solution of the equation

(3.27) φ−1(τ) +

T
∑

s=1

φ−1
(

τ +

s
∑

z=1

f∗(z, u(z))
)

= 0 .

From section 2, Φ : K → C(N+,R) is completely continuous. Moreover, we have

(3.28)

{

∆
(

φ(∆w(t − 1))
)

+ q(t)f∗
(

t, u(t)
)

= 0 , t ∈ N ,

w(0) = 1
n
, w(T + 1) = 1

n
, n ∈ Z+ .

This implies that ∆
(

φ(∆w(t − 1))
)

≤ 0, t ∈ N . Thus ∆2w(t − 1) ≤ 0, t ∈ N ,

and w(t) ≥ 1
n
. Consequently, w(t) − 1

n
≥ µ(t)‖w − 1

n
‖ (from Lemma 3.1), thus

w(t) ≥ 1
n

+ µ(t)(‖w‖ − 1
n
) ≥ µ(t)‖w‖, t ∈ N+, and so Φ : K → K.

We first show

(3.29) u 6= λΦu for λ ∈ [0, 1) , u ∈ ∂Ωr ∩K ,

where Ωr is defined above.
Suppose this is false i.e., suppose there exists u ∈ ∂Ωr and λ ∈ [0, 1) with

u = λΦu. We can assume λ 6= 0. Now since u = λΦu we have

(3.30)

{

−∆
(

φ(∆u(t− 1))
)

= λp−1q(t)f∗
(

t, u(t)
)

, t ∈ N ,

u(0) = λ
n
, u(T + 1) = λ

n
, n ∈ Z+ .

Clearly there exists t0 ∈ N with ∆u(t) ≥ 0 on [0, t0) = {0, 1, . . . , t0−1}, ∆u(t) ≤ 0
on [t0, T + 1) = {t0, t0 + 1, . . . , T} and u(t0) = ‖u‖ = r (note u ∈ ∂Ωr ∩K). Also
notice u(t) ≥ µ(t)‖u‖ = µ(t)r ≥ r

T+1 >
1

n0
for t ∈ N , and so

f∗
(

t, u(t)
)

= f
(

t, u(t)
)

≤ g
(

u(t)
)

+ h
(

u(t)
)

, t ∈ N .

Fix z ∈ N , and we have

(3.31) −∆(φ(∆u(z − 1))) ≤ g(u(z))

{

1 +
h(u(t0))

g(u(t0))

}

q(z) .

The reasoning used to obtain (3.9) and (3.10) in Theorem 3.1, yield:

(3.32)

∫ u(t0)

λ
n

du

φ−1(g(u))
≤ φ−1

(

1 +
h(u(t0))

g(u(t0))

) t0
∑

s=1

φ−1
(

t0
∑

z=s

q(z)
)

,

and

(3.33)

∫ u(t0)

λ
n

du

φ−1(g(u))
≤ φ−1

(

1 +
h(u(t0))

g(u(t0))

) T
∑

s=t0

φ−1
(

s
∑

z=t0

q(z)
)

.
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Now (3.32) and (3.33) imply

(3.34)

∫ r

ε

du

φ−1(g(u))
≤ b0φ

−1

(

1 +
h(u(r))

g(u(r))

)

.

This contradicts (3.23) and consequently (3.29) is true.
Next we show

‖w‖ = ‖Φu‖ > ‖u‖ , ∀ u ∈ ∂ΩR ∩K .

To see this let u ∈ ∂ΩR ∩K such that ‖u‖ = R. Also, since u ∈ K then u(t) ≥
µ(t)R ≥ R

T+1 >
1

n0
for t ∈ N . Thus, f∗(t, u(t)) = f(t, u(t)) ≥ g1(u) + h1(u) for

t ∈ N , so we have

−∆
(

φ(∆w(t − 1))
)

= q(t)f∗
(

t, u(t)
)

= q(t)f
(

t, u(t)
)

≥ g1
(

u(t)
)

(

1 +
h1

(

u(t)
)

g1
(

u(t)
)

)

q(t)(3.35)

≥ g1(R)

(

1 +
h1(

R
T+1 )

g1(
R

T+1 )

)

q(t) := C(R)q(t) .

Then we obtain

(3.36) −∆

(

φ

(

∆
w(t− 1)

φ−1(C(R))

))

≥ q(t) , w(0) = w(T + 1) =
λ

n
≥ 0 .

The argument used to get (3.11) yields

(3.37)
w(t)

φ−1(C(R))
≥ v(t) , t ∈ N+ .

Now (3.21) and (3.37) yield

‖w‖ ≥ ‖v‖φ−1(C(R)) > R ,

i.e.,

‖Φu‖ > ‖u‖ , ∀ u ∈ ∂ΩR ∩K .

This implies Φ has a fixed point un ∈ K ∩ (Ω̄R \ Ωr) i.e., r < ‖un‖ ≤ R. In fact
||un|| 6= r (note if ||un|| = r then following essentially the same argument from
(3.31)–(3.34) will yield a contradiction). Consequently (3.25)n (and also (3.24)n)
has a solution un(t) ∈ C(N+,R), un(t) ∈ K, with

(3.38) un(t) ≥ rµ(t) , t ∈ N , r < ‖un‖ ≤ R .

Essentially the same reasoning as before guarantees that there exists a subse-
quence Z0 of Z+, and a function u ∈ C(N+,R) with un(t) converging to u(t) as
n→ ∞ through Z0. It is easy to show that u(t) ∈ C(N+,R) is a solution of (3.1)
and r < ‖u‖ ≤ R.

Thus, the proof of Theorem 3.3 is complete.

Remark 3.3. If in (H7) we have R < r then (3.1) has a solution u(t) ∈ C(N+,R)
with u > 0 on N and R ≤ ‖u‖ < r. The argument is similar to that in Theorem
3.2 except here we use Remark 3.2.
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Theorem 3.3. Assume (H1)–(H7) hold. Then (3.1) has two solutions u1, u2 ∈
C(N+,R) with u1 > 0, u2 > 0 on N and 0 < ‖u1‖ < r < ‖u2‖ ≤ R.

Proof. The existence of u1 follows from Theorem 3.1, and the existence of u2

follows from Theorem 3.2.

Example 3.2. The singular boundary value problem

(3.39)

{

∆
(

φ(∆u(t− 1))
)

+ σ([u(t)]−α + [u(t)]β + 1) = 0 , t ∈ N ,

u(0) = 0 , u(T + 1) = 0 ,

has two solutions u1, u2 ∈ C(N+,R) with u1 > 0, u2 > 0 on N and ‖u1‖ < 1 <
‖u2‖. Here α > 0, β > p− 1, and

0 < σ <
1

3

(

p

b1(p− 1 + α)

)p−1

, b1 :=

T
∑

t=1

t
1

p−1 .

To see this we will apply Theorem 3.3 with

q(s) = σ , g(u) = g1(u) = u−α , h(u) = h1(u) = uβ + 1 .

Clearly (H1)–(H4), (H6) hold. Also notice (see Example 3.1)

b0 = max
t∈N

(

σ
1

p−1

t
∑

s=1

(t− s+ 1)
1

p−1 , σ
1

p−1

T
∑

s=t

(s− t+ 1)
1

p−1

)

= σ
1

p−1 b1 .

Consequently (H5) holds(with r = 1), since

1

φ−1(1 + h(r)
g(r) )

∫ r

0

dy

φ−1(g(y))
=

p− 1

p− 1 + α
φ−1

(

rα+p−1

1 + rα + rα+β

)

= (
1

3
)

1
p−1

p− 1

p− 1 + α
> b0 .

Finally notice that (since β > p− 1)

lim
R→∞

R

Φ−1(R−α[1 + ( R
T+1 )α+β + ( R

T+1 )α])

= lim
R→∞

R

(R−α + ( 1
T+1 )α+βRβ + ( 1

T+1 )α)
1

p−1

= 0 ,

so there exists R > 1 with (H7) holding. The result now follows from Theorem 3.3.
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