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ON NATURAL METRICS ON TANGENT BUNDLES

OF RIEMANNIAN MANIFOLDS

MOHAMED TAHAR KADAOUI ABBASSI AND MAÂTI SARIH

Abstract. There is a class of metrics on the tangent bundle TM of a Rie-
mannian manifold (M, g) (oriented , or non-oriented, respectively), which are
’naturally constructed’ from the base metric g [15]. We call them “g-natural
metrics” on TM . To our knowledge, the geometric properties of these general
metrics have not been studied yet. In this paper, generalizing a process of
Musso-Tricerri (cf. [18]) of finding Riemannian metrics on TM from some
quadratic forms on OM ×R

m to find metrics (not necessary Riemannian) on
TM , we prove that all g-natural metrics on TM can be obtained by Musso-
Tricerri’s generalized scheme. We calculate also the Levi-Civita connection
of Riemannian g-natural metrics on TM . As application, we sort out all
Riemannian g-natural metrics with the following properties, respectively: 1)
The fibers of TM are totally geodesic. 2) The geodesic flow on TM is incom-
pressible. We shall limit ourselves to the non-oriented situation.

Introduction

Geometry of the tangent bundle TM of an m-dimensional Riemannian manifold
(M, g) with Sasaki metric has been extensively studied since the 60’s. Nevertheless,
the rigidity of this metric (cf. [3], [18] and [22]) has incited some geometers to tackle
the problem of the construction and the study of other metrics on TM . The
Cheeger-Gromoll metric (cf. [8]) has appeared as a nicely fitted one to overcome
this rigidity, and has been, thus, studied by many authors (see [2], [3] and [22]).
Using the concept of naturality, O. Kowalski and M. Sekizawa [15] have given a
full classification of metrics which are ‘naturally constructed’ from a metric g on
the base M , supposing that M is oriented. Other presentations of the basic results
from [15] (involving also the non-oriented case and something more) can be found
in [13] or [17]. We call these metrics g-natural metrics on TM . To our knowledge,
the geometric properties of these general metrics on TM have not been studied
yet (see also [16]).
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In this paper, we deal with g-natural metrics on TM in the case when the
orientation of M is not taken into account. In fact, in the non-oriented case we
only lose some special g-natural metrics over Riemannian manifolds of dimensions
2 and 3; in dimensions m > 3, the oriented case and the non-oriented case coincide.
In § 2, we sort out from g-natural metrics on TM (which may even be degenerate)
those which are regular and those which are Riemannian.

In § 3, we generalize, to the non Riemannian case, the process of construction
of Riemannian metrics on TM from symmetric basic tensor fields of type (2, 0) on
OM ×R

m, presented in [18] by E. Musso and F. Tricerri, where OM is the bundle
of orthonormal frames. We show then that all g-natural metrics can be obtained
by the generalized Musso-Tricerri’s process.

In § 4, we give explicit formulas of the Levi-Civita connection ∇̄ of a g-natural
metric on TM and we provide necessary and sufficient conditions on G to have
the fibers of TM totally geodesic.

On the other hand, it is well known that with respect to Sasaki metric and
Cheeger-Gromoll metric on TM , the geodesic flow of TM is incompressible (cf.
[2] and [21]). In § 5, we give necessary and sufficient conditions on Riemannian
g-natural metrics which let the geodesic flow of TM incompressible. As a conse-
quence, it is particularly worth mentioning that some g-natural metrics present
a kind of rigidity related to the geodesic flow. For instance, Let R3 denote the
vector space of all g-natural metrics of the form G = a ·gs +b ·gh +c ·gv (i.e., linear
combinations with constant coefficients of the three classical lifts gs, gh and gv

of g). Define C as the 2-dimensional cone in R3 characterized by the inequalities
a > 0, c > 0 and b2 − a(a + c) < 0. Then C is just the subset of all Riemannian
metrics in R3. Now, we can prove that, for every G from C with b 6= 0, the geo-
desic flow on TM is incompressible, with respect to G, if and only if (M, g) is an
Einstein space with vanishing scalar curvature.

Authors would like to thank Professor O. Kowalski for his valuable comments
on a preliminary version of this paper.

1. Preliminaries

Let ∇ be the Levi-Civita connection of g. Then the tangent space of TM at any
point (x, u) ∈ TM splits into the horizontal and vertical subspaces with respect
to ∇:

(TM)(x,u) = H(x,u) ⊕ V(x,u) .

If (x, u) ∈ TM is given then, for any vector X ∈ Mx, there exists a unique
vector Xh ∈ H(x,u) such that p∗X

h = X , where p : TM → M is the natural

projection. We call Xh the horizontal lift of X to the point (x, u) ∈ TM . The
vertical lift of a vector X ∈ Mx to (x, u) ∈ TM is a vector Xv ∈ V(x,u) such
that Xv(df) = Xf , for all functions f on M . Here we consider 1-forms df on
M as functions on TM (i.e. (df)(x, u) = uf). Note that the map X → Xh is
an isomorphism between the vector spaces Mx and H(x,u). Similarly, the map
X → Xv is an isomorphism between the vector spaces Mx and V(x,u). Obviously,
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each tangent vector Z̃ ∈ (TM)(x,u) can be written in the form Z̃ = Xh + Y v,
where X, Y ∈ Mx are uniquely determined vectors.

If ϕ is a smooth function on M , then

Xh(ϕ ◦ p) = (Xϕ) ◦ p and Xv(ϕ ◦ p) = 0(1.1)

hold for every vector field X on M .
A system of local coordinates {(U ; xi, i = 1, . . . , m)} in M induces on TM a

system of local coordinates {(p−1(U); xi, ui, i = 1, . . . , m)}. Let X =
∑

i X i ∂
∂xi be

the local expression in U of a vector field X on M . Then, the horizontal lift Xh

and the vectical lift Xv of X are given, with respect to the induced coordinates,
by:

Xh =
∑

X i ∂

∂xi
−

∑

Γi
jkujXk ∂

∂ui
,(1.2)

and

Xv =
∑

X i ∂

∂ui
,(1.3)

where (Γi
jk) denote the Christoffel’s symbols of g.

Now, let r be the norm of a vector u. Then, for any function f of R to R, we
get

Xh
(x,u)(f(r2)) = 0,(1.4)

Xv
(x,u)(f(r2)) = 2f ′(r2)gx(Xx, u),(1.5)

and in particular, we have

Xh
(x,u)(r

2) = 0 ,(1.6)

and

Xv
(x,u)(r

2) = 2gx(Xx, u) .(1.7)

Let X , Y and Z be any vector fields on M . If FY is the function on TM defined
by FY (x, u) = gx(Yx, u), for all (x, u) ∈ TM , then we have

Xh
(x,u)(FY ) = gx((∇XY )x, u) = F∇XY (x, u) ,(1.8)

Xv
(x,u)(FY ) = gx(X, Y ),(1.9)

Xh
(x,u)(g(Y, Z) ◦ p) = Xx(g(Y, Z)) ,(1.10)

Xv
(x,u)(g(Y, Z) ◦ p) = 0 .(1.11)

The formulas (1.4)–(1.9) follow from (1.1) and

Xhui = −
∑

XλuµΓi
λµ and Xvui = X i ,(1.12)

and the relations (1.10) and (1.11) follow easily from (1.1).
Next, we shall introduce some notations which will be used describing vectors

getting from lifted vectors by basic operations on TM . Let T be a tensor field of
type (1, s) on M . If X1, X2, . . . , Xs−1 ∈ Mx, then h{T (X1, . . . , u, . . . , Xs−1)}
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(resp.v{T (X1, . . . , u, . . . , Xs−1)}) is a horizontal (resp.vertical) vector at (x, u)
which is introduced by the formula

h{T (X1, . . . , u, . . . , Xs−1)} =
∑

uλ(T (X1, . . . , (
∂

∂xλ
)x, . . . , Xs−1))

h

(

resp. v{T (X1, . . . , u, . . . , Xs−1)} =
∑

uλ(T (X1, . . . , (
∂

∂xλ
)x, . . . , Xs−1))

v
)

.

In particular, if T is the identity tensor of type (1, 1), then we obtain the geodesic
flow vector field at (x, u), ξ(x,u) =

∑
uλ( ∂

∂xλ )h
(x,u), and the canonical vertical vec-

tor at (x, u), U(x,u) =
∑

uλ( ∂
∂xλ )v

(x,u). Moreover h{T (X1, . . . , u, . . . , u, . . . , Xs−1)}
and v{T (X1, . . . , u, . . . , u, . . . , Xs−1)} are introduced by similar way. Also we make
the conventions h{T (X1, . . . , Xs−1)} = (T (X1, . . . , Xs−1))

h and v{T (X1, . . . , Xs−1)} =
(T (X1, . . . , Xs−1))

v. Thus h{X} = Xh and v{X} = Xv, for each vector field X
on M .

The bracket operation of vector fields on the tangent bundle is given by

[Xh, Y h](x,u) = [X, Y ]h(x,u) − v{R(Xx, Yx)u} ,(1.13)

[Xh, Y v](x,u) = (∇XY )v
(x,u) ,(1.14)

[Xv, Y v](x,u) = 0 ,(1.15)

for all vector fields X and Y on M , where R is the Riemannian curvature of g
defined by

R(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ] .

Finally, the following Koszul formula holds

g(∇XY, Z) = X(g(Y, Z)) + Y (g(Z, X)) − Z(g(X, Y ))

+ g([X, Y ], Z) + g([Z, X ], Y ) − g([Y, Z], X) ,
(1.16)

for all vector fields X , Y and Z on M .
Now, if we write pM : TM → M for the natural projection and F for the natural

bundle with FM = p∗M (T ∗⊗T ∗)M → M , Ff(Xx, gx) = (Tf ·Xx, (T ∗⊗T ∗)f · gx)
for all manifolds M , local diffeomorphisms f of M , Xx ∈ TxM and gx ∈ (T ∗ ⊗
T ∗)xM . The sections of the canonical projection FM → M are called F -metrics

in literature. So, if we denote by ⊕ the fibered product of fibered manifolds, then
the F -metrics are mappings TM ⊕TM ⊕TM → R which are linear in the second
and the third argument.

As generalization of the notion of F -metrics, we can define the notion of F -
tensor fields of any type on a manifold. For (p, q) ∈ N

2, we write pM : TM → M for
the natural projection and F for the natural bundle with FM = p∗M (T ∗ ⊗ · · · ⊗ T ∗

︸ ︷︷ ︸

p−times
⊗T ⊗ · · · ⊗ T

︸ ︷︷ ︸

q−times

)M → M , Ff(Xx, Sx) = (Tf ·Xx, (T ∗⊗· · ·⊗T ∗⊗T ⊗· · ·⊗T )f ·Sx)

for all manifolds M , local diffeomorphisms f of M , Xx ∈ TxM and Sx ∈ (T ∗ ⊗
· · · ⊗ T ∗ ⊗ T ⊗ · · · ⊗ T )xM . We call the sections of the canonical projection
FM → M F -tensor fields of type (p, q). So F -tensor fields are mappings A :
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TM ⊕ TM ⊕ · · · ⊕ TM
︸ ︷︷ ︸

q−times

→ ⊔

x∈M ⊗pMx which are linear in the last q summands

such that π2 ◦ A = π1, where π1 and π2 are the natural projections of the source
and target fiber bundles of A respectively. For p = 0 and q = 2, we obtain the
classical notion of F -metrics.

If we fix an F -metric δ on M , then there are three distinguished constructions
of metrics on the tangent bundle TM , which are given as follows [15]:

(a) If we suppose that δ is symmetric, then the Sasaki lift δs of δ is defined as
follows:

{

δs
(x,u)(X

h, Y h) = δ(u; X, Y ) , δs
(x,u)(X

h, Y v) = 0 ,

δs
(x,u)(X

v, Y h) = 0 , δs
(x,u)(X

v, Y v) = δ(u; X, Y ) ,

for all X , Y ∈ Mx. If δ is non degenerate and positive definite, then the same
holds for δs.

(b) The horizontal lift δh of δ is a pseudo-Riemannian metric on TM which is
given by:

{

δh
(x,u)(X

h, Y h) = 0 , δh
(x,u)(X

h, Y v) = δ(u; X, Y ) ,

δh
(x,u)(X

v, Y h) = δ(u; X, Y ) , δh
(x,u)(X

v, Y v) = 0 ,

for all X , Y ∈ Mx. If δ is positive definite, then δs is of signature (m, m).
(c) The vertical lift δv of δ is a degenerate metric on TM which is given by:

{

δv
(x,u)(X

h, Y h) = δ(u; X, Y ) , δv
(x,u)(X

h, Y v) = 0 ,

δv
(x,u)(X

v, Y h) = 0 , δv
(x,u)(X

v, Y v) = 0 ,

for all X , Y ∈ Mx. The rank of δv is exactly that of δ. If δ = g is a Riemannian
metric on M , then the three lifts of δ just constructed coincide with the three
well-known classical lifts of the metric g to TM .

2. Natural metrics on tangent bundles

Now, we shall describe all first order natural operators D : S2
+T ∗

 (S2T ∗)T
transforming Riemannian metrics on manifolds into metrics on their tangent bun-
dles, where S2

+T ∗ and S2T ∗ denote the bundle functors of all Riemannian metrics
and all symmetric two-forms over m-manifolds respectively. For the concept of
naturality and related notions, see [13] for more details.

Let us call every section G : TM → (S2T ∗)TM a (possibly degenerate) metric.
Then we can assert:

Proposition 2.1 ([15]). There is a bijective correspondence between the triples of

natural F -metrics (ζ1, ζ2, ζ3), where ζ1 and ζ3 are symmetric, and natural (possibly
degenerate) metrics G on the tangent bundles given by

G = ζs
1 + ζh

2 + ζv
3 .

Therefore, to find all first order natural operators S2
+T ∗

 (S2T ∗)T transform-
ing Riemannian metrics on manifolds into metrics on their tangent bundles, it
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suffices to describe all natural F -metrics, i.e. natural operators S2
+T ∗

 (T, F ).
In this sense, we can state

Proposition 2.2 ([1]). All first order natural F -metrics ζ in dimension m > 1
form a family parametrized by two arbitrary smooth functions α0, β0 : [0,∞) → R

in the following way: For every Riemannian manifold (M, g) and tangent vectors

u, X, Y ∈ Mx

ζ(M,g)(u)(X, Y ) = α0(g(u, u))g(X, Y ) + β0(g(u, u))g(u, X)g(u, Y ) .(2.1)

If m = 1, then the same assertion holds, but we can always choose β0 = 0.
In particular, all first order natural F -metrics are symmetric.

Definition 2.3. Let (M, g) be a Riemannian manifold. We shall call a metric G
on TM which comes from g by a first order natural operator S2

+T ∗
 (S2T ∗)T a

g-natural metric.

Thus, all g-natural metrics on the tangent bundle of a Riemannian manifold
(M, g) are completely determined by Propositions 2.1 and 2.2, as follows:

Corollary 2.4. Let (M, g) be a Riemannian manifold and G be a g-natural metric

on TM . Then there are functions αi, βi : [0,∞) → R, i = 1, 2, 3, such that for

every u, X, Y ∈ Mx, we have






G(x,u)(X
h, Y h) = (α1 + α3)(r

2)gx(X, Y )
+(β1 + β3)(r

2)gx(X, u)gx(Y, u) ,

G(x,u)(X
h, Y v) = α2(r

2)gx(X, Y ) + β2(r
2)gx(X, u)gx(Y, u) ,

G(x,u)(X
v, Y h) = α2(r

2)gx(X, Y ) + β2(r
2)gx(X, u)gx(Y, u) ,

G(x,u)(X
v, Y v) = α1(r

2)gx(X, Y ) + β1(r
2)gx(X, u)gx(Y, u) ,

(2.2)

where r2 = gx(u, u). For m = 1, the same holds with βi = 0, i = 1, 2, 3.

Remark 2.5. In [15], the last problem of classification of metrics on TM , was
stated differently, i.e. the question was to find all second order natural trans-
formations of Riemannian metrics on manifolds to metrics on tangent bundles.
Nevertheless, by virtue of Proposition 18.19 in [13], the two problems are equiva-
lent.

Notations 2.6. In the sequel, we shall use the following notations:

• φi(t) = αi(t) + tβi(t),

• α(t) = α1(t)(α1 + α3)(t) − α2
2(t),

• φ(t) = φ1(t)(φ1 + φ3)(t) − φ2
2(t),

for all t ∈ [0,∞).

Now, similar arguments as in [4] enables us to specify regular (i.e. non degen-
erate) and Riemannian g-natural metrics as follows:

Proposition 2.7. The necessary and sufficient conditions for a g-natural metric

G on the tangent bundle of a Riemannian manifold (M, g) to be regular are that

the functions of Proposition 2.4, defining G, satisfy α(t) 6= 0 and φ(t) 6= 0, for
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all t ∈ [0,∞). For m = 1 the two conditions reduce to one, i.e. α(t) 6= 0, for all

t ∈ [0,∞).

Proof. Let x ∈ M , u ∈ Mx \ {0x} and X1 = 1
r
.u, where r = ‖u‖.

For m = 1, the determinant of the matrix of G(x,u), with respect to the basis

{Xh
1 , Xv

1 } of (TM)(x,u), is given by α(t).φ(t).
For m > 1, choosing vectors X2, . . . , Xm of Mx such that {X1, X2, . . . , Xm} is an
orthonormal basis of (Mx, gx), then the matrix of G(x,u), with respect to the basis

{Xh
1 , Xh

2 , . . . , Xh
m, Xv

1 , Xv
2 , . . . , Xv

m} of (TM)(x,u), is given by Pm(r2), where Pm

is the (2m, 2m)-matrix-valued real function

Pm(t) =

















(φ1 + φ3)(t) 0 · · · 0 φ2(t) 0 · · · 0
0
...
0

(α1 + α3)(t) · Im−1

0
...
0

α2(t) · Im−1

φ2(t) 0 · · · 0 φ1(t) 0 · · · 0
0
...
0

α2(t) · Im−1

0
...
0

α1(t) · Im−1

















,(2.3)

Im−1 being the identity matrix of GL(m), and we can prove by induction on m
that the determinant of the last matrix is equal to φ(t) · αm−1(t).

On the other hand, if u = 0 then the determinant of the matrix of G(x,0)

with respect to any basis {Xh
1 , Xh

2 , . . . , Xh
m, Xv

1 , Xv
2 , . . . , Xv

m} of (TM)(x,u), where
{X1, X2, . . . , Xm} is any orthonormal basis of (Mx, gx), is given by αm(0) = φ(0) ·
αm−1(0). Now the result follows easily.

Similarly, we can prove the following:

Proposition 2.8 ([5]). The necessary and sufficient conditions for a g-natural

metric G on the tangent bundle of a Riemannian manifold (M, g) to be Riemannian

are that the functions of Proposition 2.4, defining G, satisfy the inequalities

{

α1(t) > 0 , φ1(t) > 0 ,

α(t) > 0 , φ(t) > 0 ,
(2.4)

for all t ∈ [0,∞). For m = 1 the system reduces to α1(t) > 0 and α(t) > 0, for all

t ∈ [0,∞).

Important conventions:

1) In the sequel, when we consider an arbitrary Riemannian g-natural metric G
on TM , we implicitly suppose that it is defined by the functions αi, βi : [0,∞) →
R, i = 1, 2, 3, given in Corollary 2.4 and satisfying (2.4).

2) Unless otherwise stated, all real functions αi, βi, φi, α and φ and their
derivatives are evaluated at r2 := gx(u, u).
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3. g-natural metrics by the scheme of Musso-Tricerri

Considering TM as a vector bundle associated with the bundle of orthonor-
mal frames OM , E. Musso and F. Tricerri have constructed an interesting class
of Riemannian natural metrics on TM [18]. This construction is not a classifica-
tion per se, but it is a construction process of Riemannian metrics on TM from
symmetric, positive semi-definite tensor fields Q of type (2, 0) and rank 2m on
OM × R

m, which are basic for the natural submersion Φ : OM × R
m → TM ,

Φ(v, ε) = (x,
∑

i εivi), for v = (x; v1, . . . , vm) ∈ OM and ε = (ε1, . . . , εm) ∈ R
m.

Recall that Q is basic means that Q is O(m)-invariant and Q(X, Y ) = 0, if X is
tangent to a fiber of Φ.

Given such a Q, there is a unique Riemannian metric GQ on TM such that
Φ∗(GQ) = Q. This metric is determined by the formula

GQ

(x,u)(X, Y ) = Q(v,ε)(X
′, Y ′) ,(3.1)

where (v, ε) belongs to the fiber Φ−1(x, u), X , Y are elements of (TM)(x,u), X ′,
Y ′ are tangent vectors to OM × R

m at (v, ε) with dΦ(X ′) = X and dΦ(Y ′) = Y .
Now, we can check that this process can be generalized to construct also metrics

on TM which are not necessarily Riemannian (even degenerate ones). Precisely,
we have:

Proposition 3.1. Let Q be a symmetric tensor field of type (2, 0) on OM ×R
m,

which is basic for the natural submersion Φ : OM × R
m → TM . Then there is a

unique metric GQ on TM such that Φ∗(GQ) = Q. It is given by (3.1).
Furthermore, we have:

1. The rank of GQ is equal to that of Q.

2. GQ is Riemannian if and only if Q is positive semi-definite of rank 2m.

Remark that the rank of Q is less than or equal to 2m, since Q is basic, and
that the second assertion of the previous proposition corresponds exactly to the
original process of E. Musso and F. Tricerri given in [18]. Note also that such a
generalization is possible due to the fact that the process of identification of TM
as an associated bundle is natural.

Let (e1, . . . , em) be an orthonormal frame field defined on an open set U ⊂
M , and let (x1, . . . , xm) be a local coordinate system on U . We define a local
coordinate system (x1, . . . , xm, u1, . . . , um) on p−1(U) as follows:

xi(x, u) = xi(x), ui(x, u) = ui, (x, u) ∈ p−1(U) , where u =
∑

i

uiei(x) .

We denote with Γi
j the local 1-forms defined by

∇Xei =
∑

j

Γj
i (X)ej .

Let ei be the 1-forms on p−1(U) defined by ei(ek) = δi
k, and

Dui = dui +
∑

j

ujp∗(Γi
j) .
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Then (eh
1 , . . . , eh

m, ev
1, . . . , e

v
m) is a frame field on p−1(U), whose dual coframe is

given by

p∗e1, . . . , p∗em, Du1, . . . , Dum .(3.2)

Let θ = (θ1, . . . , θm) denote the canonical 1-form on OM , and let π denote the

natural projection OM
π→ M . Then

dπv(X) =
∑

i

θi(X)vi , v = (x; v1, . . . , vm) .

If we denote with ω = (ωi
j) the so(m)-valued differential form defined by the

Levi-Civita connection of g, then we find that

θi, i = 1, . . . , m; ωi
j , 1 ≤ i ≤ j ≤ m; dεi, i = 1, . . . , m ,

is an absolute parallelism on OM ×R
m. Note that we use here (and in the sequel)

the abuse of notation θ = π∗
1θ, where π1 : OM × R

m → OM is the natural first
projection. We put

Dεi = dεi +
∑

j

εjωi
j .

On the other hand, we have [18]:

Lemma 3.2. Any basic symmetric quadratic form Q on OM × R
m is a second

order polynomial in θi and Dεi whose coefficients yield Q invariant under the

O(m)-action.

As an application of Proposition 3.1, we consider the two following symmetric
quadratic forms on OM × R

m,

Qh =
∑

i

θiDεi and Qv =
∑

i

(θi)2 ,

which are basic by Lemma 3.2. They give rise, via the scheme of Proposition
3.1, to the classical lifts gh and gv, respectively. It is clear that Qh, as gh, is of
signature (m, m), and that Qv is degenerate of rank m as the metric gv.

Generally, we can assert the following:

Proposition 3.3. Every g-natural metric on the tangent bundle TM of a Rie-

mannian manifold (M, g) can be constructed by the Musso-Tricerri’s generalized

scheme, given by Proposition 3.1.

Proof. Let G be a g-natural metric on the tangent bundle TM of a Riemannian
manifold (M, g). With respect to the coframe (3.2), G can be written as follows:

G = (α1 + α3)(r
2)

∑

i(p
∗ei)2 + (β1 + β3)(r

2)(
∑

i ui(p∗ei))2

+α1(r
2)

∑

i(Dui)2 + β1(r
2)(

∑

i uiDui)2

+α2(r
2)

∑

i(p
∗ei)Dui + β2(r

2)(
∑

i ui(p∗ei))(
∑

i uiDui) ,

(3.3)

where r2 =
∑

i(u
i)2 and αi, βi, i = 1, 2, 3, are functions from [0,∞) to R.
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Consider the symmetric tensor field Q of type (2, 0) on OM × R
m

Q = (α1 + α3)(r
2)

∑

i(θ
i)2 + (β1 + β3)(r

2)(
∑

i εiθi)2

+α1(r
2)

∑

i(Dεi)2 + β1(r
2)(

∑

i εiDεi)2

+α2(r
2)

∑

i θiDεi + β2(r
2)(

∑

i εiθi)(
∑

i εiDεi) ,

(3.4)

where r2 =
∑

i(ε
i)2. It is easy to see [18] that:

R∗
a(θi) =

∑

j(a
−1)i

jθ
j ,

R∗
a(ωi

j) =
∑

k,l(a
−1)i

kωk
l al

j ,

R∗
a(Dεi) =

∑

j(a
−1)i

jDεj ,

for all a ∈ O(m), where Ra is the natural translation by a. Then Q is O(m)-
invariant.

On the other hand, Q is basic by Lemma 3.2. Therefore, by virtue of Proposition
3.1, Q induces a unique metric on TM . Furthermore, we claim that Q induces G.
Indeed, if we denote by ΦU the O(m)-valued function on π−1(U) given by

(ΦU )i
j(v) = g(ei(π(v)), vj) ,

then the forms ωi
j are related to the local 1-forms Γi

j as follows

ωi
j =

∑

k

(Φ−1
U )i

kd(ΦU )k
j +

∑

k,l

(Φ−1
U )i

k(p∗Γk
l )(ΦU )l

j .(3.5)

We can also check easily that

Φ∗(ui) =
∑

j

(ΦU )i
jε

j .(3.6)

Using formulas (3.5) and (3.6) and the following commutative diagram:

OM × R
m Φ

//

π1

��

TM

p

��

OM
π

// M,

we get

Φ∗(p∗ei) =
∑

j

(ΦU )i
jθ

j ,(3.7)

and

Φ∗(Dvi) =
∑

j

(ΦU )i
jDεj .(3.8)

Note that formula (4.10) in [18] should read our formula (3.7), i.e. Φ∗(p∗ei) instead
of p∗ei. Since ΦU is O(m)-valued, we have by virtue of formulas (3.3), (3.4), (3.6)–
(3.8) and the O(m)-invariance of Q, the identity Φ∗

U (G) = Q.
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4. The Levi-Civita connection of (TM, G)

In this section, we shall calculate the Levi-Civita connection of a Riemannian
g-natural metric G on the tangent bundle of a Riemannian manifold (M, g). We
can assert the following:

Proposition 4.1. Let (M, g) be a Riemannian manifold, ∇ its Levi-Civita con-

nection and R its curvature tensor. Let G be a Riemannian g-natural metric on

TM . Then the Levi-Civita connection ∇̄ of (TM, G) is characterized by

(i) (∇̄XhY h)(x,u) = (∇XY )h
(x,u) + h{A(u; Xx, Yx)} + v{B(u; Xx, Yx)} ,

(ii) (∇̄XhY v)(x,u) = (∇XY )v
(x,u) + h{C(u; Xx, Yx)} + v{D(u; Xx, Yx)} ,

(iii) (∇̄XvY h)(x,u) = h{C(u; Yx, Xx)} + v{D(u; Yx, Xx)} ,

(iv) (∇̄Xv Y v)(x,u) = h{E(u; Xx, Yx)} + v{F (u; Xx, Yx)} ,

for all vector fields X, Y on M and (x, u) ∈ TM , where A, B, C, D, E and F
are the F -tensor fields of type (2, 1) on M defined, for all u, X, Y ∈ Mx, x ∈ M ,

by:

A(u; X, Y ) = −α1α2

2α
[R(X, u)Y + R(Y, u)X ]

+ α2(β1+β3)
2α

[gx(Y, u)X + gx(X, u)Y ]

+ 1
αφ

{α2[α1(φ1(β1 + β3) − φ2β2) + α2(β1α2

− β2α1)]gx(R(X, u)Y, u) + φ2α(α1 + α3)
′gx(X, Y )

+ [αφ2(β1 + β3)
′ + (β1 + β3)[α2(φ2β2 − φ1(β1 + β3))

+ (α1 + α3)(α1β2 − α2β1)]]gx(X, u)gx(Y, u)}u ,

B(u; X, Y ) =
α2

2

α
R(X, u)Y − α1(α1+α3)

2α
R(X, Y )u

− (α1+α3)(β1+β3)
2α

[gx(Y, u)X + gx(X, u)Y ]

+ 1
αφ

{α2[α2(φ2β2 − φ1(β1 + β3)) + (α1 + α3)(β2α1

− β1α2)]gx(R(X, u)Y, u) − α(φ1 + φ3)(α1 + α3)
′gx(X, Y )

+ [−α(φ1 + φ3)(β1 + β3)
′

+ (β1 + β3)[(α1 + α3)[(φ1 + φ3)β1 − φ2β2]

+ α2[α2(β1 + β3) − (α1 + α3)β2]]gx(X, u)gx(Y, u)}u ,



82 M. T. K. ABBASSI, M. SARIH

C(u; X, Y ) = −α2
1

2α
R(Y, u)X − α1(β1+β3)

2α
gx(X, u)Y

+ 1
α
[α1(α1 + α3)

′ − α2(α
′
2 − β2

2 )]gx(Y, u)X

+ 1
αφ

{α1

2
[α2(α2β1 − α1β2) + α1(φ1(β1 + β3)

− φ2β2)]gx(R(X, u)Y, u) + α[φ1

2 (β1 + β3) + φ2(α
′
2 − β2

2 )]gx(X, Y )

+ [αφ1(β1 + β3)
′ + [α2(α1β2 − α2β1)

+ α1(φ2β2 − (β1 + β3)φ1)][(α1 + α3)
′ + β1+β3

2 ]

+ [α2(β1(φ1 + φ3) − β2φ2) + α1(β2(α1 + α3)

− α2(β1 + β3)](α
′
2 − β2

2 )]gx(X, u)gx(Y, u)}u ,

D(u; X, Y ) = 1
α
{α1α2

2 R(Y, u)X − α2(β1+β3)
2 gx(X, u)Y

+ [−α2(α1 + α3)
′ + (α1 + α3)(α

′
2 − β2

2 )]gx(Y, u)X}
+ 1

αφ
{α1

2 [(α1 + α3)(α1β2 − α2β1)

+ α2(φ2β2 − φ1(β1 + β3))]gx(R(X, u)Y, u)

− α[φ2

2 (β1 + β3) + (φ1 + φ3)(α
′
2 − β2

2 )]gx(X, Y )

+ [αφ2(β1 + β3)
′ + [(α1 + α3)(α2β1 − α1β2)

+ α2(φ1(β1 + β3) − φ2β2)][(α1 + α3)
′ + β1+β3

2 ]

+ [(α1 + α3)(β2φ2 − β1(φ1 + φ3)) + α2(β2(α1 + α3)

− α2(β1 + β3)](α
′
2 − β2

2 )]gx(X, u)gx(Y, u)}u ,

E(u; X, Y ) = 1
α
[α1(α

′
2 + β2

2 ) − α2α
′
1][gx(Y, u)X + gx(X, u)Y ]

+ 1
αφ

{α[φ1β2 − φ2(β1 − α′
1)]gx(X, Y )

+ [α(2φ1β
′
2 − φ2β

′
1) + 2α′

1[α1(α2(β1 + β3)

− β2(α1 + α3)) + α2(β1(φ1 + φ3) − β2φ2)]

+ (2α′
2 + β2)[α1(φ2β2 − φ1(β1 + β3))

+ α2(α1β2 − α2β1)]]gx(X, u)gx(Y, u)}u ,

F (u; X, Y ) = 1
α
[−α2(α

′
2 + β2

2 ) + (α1 + α3)α
′
1][gx(Y, u)X + gx(X, u)Y ]

+ 1
αφ

{α[(φ1 + φ3)(β1 − α′
1) − φ2β2]gx(X, Y )

+ [α((φ1 + φ3)β
′
1 − 2φ2β

′
2) + 2α′

1[α2(β2(α1 + α3)

− α2(β1 + β3)) + (α1 + α3)(β2φ2 − β1(φ1 + φ3))]

+ (2α′
2 + β2)[α2(φ1(β1 + β3) − φ2β2)

+ (α1 + α3)(α2β1 − α1β2)]]gx(X, u)gx(Y, u)}u .

For m = 1 the same holds with βi = 0, i = 1, 2, 3.
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Proof. At first, we can easily check the following formulas which relate the metric
G to the base metric g. Let X and Y be vector fields on M and (x, u) ∈ TM ,
then, according to (2.2), we have

gx(X, u) =
1

φ1 + φ3
G(x,u)(X

h, h{u}) ,(4.1)

gx(X, Y ) =
1

α1 + α3
{G(x,u)(X

h, Y h) − (β1 + β3)gx(Xx, u)gx(Yx, u)} ,(4.2)

and similarly, with respect to vertical lifts, we have

gx(X, u) =
1

φ1
G(x,u)(X

v, v{u}) ,(4.3)

gx(X, Y ) =
1

α1
{G(x,u)(X

v, Y v) − β1gx(Xx, u)gx(Yx, u)} .(4.4)

Using Koszul formula (1.16), and then (1.4), (1.8), (1.10) and (1.13), we can write
for each vector field Z on M ,

2G(x,u)(∇̄XhY h, Zh) = 2G(x,u)((∇XY )h, Zh) − 2α2gx(R(Xx, u)Yx, Zx) ,

and by virtue of (4.1) and (4.2), we have

2G(x,u)(∇̄XhY h, Zh) = 2G(x,u)(h{T11}, Zh(x, u)) ,

where T11 is given by

T11 = (∇XY )x +
α2

α1 + α3
{−R(Xx, u)Yx +

β1 + β3

φ1 + φ3
gx(R(Xx, u)Yx, u)u} .(4.5)

By similar way, using Koszul formula (1.16), and then (1.4), (1.5), (1.8)-(1.10),
(1.13), (1.14), (4.3) and (4.4), we can write for each vector field Z on M ,

2G(x,u)(∇̄XhY h, Zv) = 2G(x,u)(v{T12}, Zv(x, u)) ,

where T12 is given by

T12 =
1

α1
{α2(∇XY )x − β1 + β3

2
[gx(Yx, u)Xx + gx(Xx, u)Yx]}

− 1

2
R(Xx, Yx)u +

1

φ1
{(β2 −

α2

α1
β1)gx((∇XY )x, u)

− (α1 + α3)
′gx(Xx, Yx) + [

β1(β1 + β3)

α1

− (β1 + β3)
′]gx(Xx, u)gx(Yx, u)}u .

(4.6)

Similar formulas can be obtained using the same formulas and some formulas
from § 1, i.e.

2G(x,u)(∇̄XvY h, Zh) = 2G(x,u)(h{T21}, Zh(x, u)) ,

2G(x,u)(∇̄XvY h, Zv) = 2G(x,u)(v{T22}, Zv(x, u)) ,

2G(x,u)(∇̄XvY v, Zh) = 2G(x,u)(h{T31}, Zh(x, u)) ,

2G(x,u)(∇̄Xv Y v, Zv) = 2G(x,u)(v{T32}, Zv(x, u)) ,
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where T21, T22, T31 and T32 are given by

T21 = 1
α1+α3

{(α1 + α3)
′gx(Xx, u)Yx + β1+β3

2 gx(Yx, u)Xx

− α1

2 R(Xx, u)Yx + 1
2(φ1+φ3){α1(β1 + β3)gx(R(Xx, u)Yx, u)

+ (α1 + α3)(β1 + β3)gx(Xx, Yx) + [2(α1 + α3)(β1 + β3)
′

− (2(α1 + α3)
′ + (β1 + β3))(β1 + β3)]gx(Xx, u)gx(Yx, u)}u} ,

(4.7)

T22 = 1
α1

(α′
2 − β2

2 )[gx(Xx, u)Yx − 1
φ1

G(x,u)(X
v, Y v)u] ,(4.8)

T31 = 1
α1+α3

{(α′
2 + β2

2 )[gx(Yx, u)Xx + gx(Xx, u)Yx]

+ 1
φ1+φ3

[β2(α1 + α3)gx(Xx, Yx) + (2(α1 + α3)β
′
2

− (β1 + β3)(β2 + 2α′
2))gx(Xx, u)gx(Yx, u)]u} ,

(4.9)

T32 = 1
α1

{α′
1[gx(Yx, u)Xx + gx(Xx, u)Yx] + 1

φ1
[α1(β1

− α′
1)gx(Xx, Yx) + (α1β

′
1 − 2α′

1β1)gx(Xx, u)gx(Yx, u)]u} .
(4.10)

If we put Q1 = ∇̄XhY h, Q2 = ∇̄XvY h and Q3 = ∇̄XvY v, then we can write

Qi = h{Ti1} + v{Ti2} + h{Ai} + v{Bi} ; i = 1, 2, 3 .

From the equalities

G(x,u)(Qi, Z
h(x, u)) = G(x,u)(h{Ti1}, Zh(x, u)),(4.11)

G(x,u)(Qi, Z
v(x, u)) = G(x,u)(v{Ti2}, Zv(x, u)),(4.12)

we obtain the following identities

(α1 + α3)Ai + α2Bi = −α2Ti2 − [(β1 + β3)gx(Ai, u)(4.13)

+ β2(gx(Bi, u) + gx(Ti2, u))]u ,

α2Ai + α1Bi = −α2Ti1 − [β2(gx(Ai, u) + gx(Ti1, u))(4.14)

+ β1gx(Bi, u)]u .

Letting Zx = u into the equations (4.11) and (4.12), we obtain

(φ1 + φ3)gx(Ai, u) + φ2gx(Bi, u) = −φ2gx(Ti2, u)

φ2gx(Ai, u) + φ1gx(Bi, u) = −φ2gx(Ti1, u) .

Consequently, we can write

gx(Ai, u) =
φ2

φ
[φ2gx(Ti1, u) − φ1gx(Ti2, u)],(4.15)

gx(Bi, u) =
φ2

φ
[−(φ1 + φ3)gx(Ti1, u) + φ2gx(Ti2, u)] .(4.16)

Substituting from (4.15)–(4.16) into (4.11) and (4.12), we obtain
{

(α1 + α3)Ai + α2Bi = Di1 ,

α2Ai + α1Bi = Di2 .
(4.17)
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where Di1 and Di2 are given by

Di1 = −α2Ti2 −
α2(β1 + β3) − β2(α1 + α3)

φ
[φ2gx(Ti1, u) − φ1gx(Ti2, u)]u ,

Di2 = −α2Ti1 −
α1β2 − β1α2

φ
[(φ1 + φ3)gx(Ti1, u) − φ2gx(Ti2, u)]u .

The resolution of the system (4.17) gives by routine calculations the result.

Remark 4.2. Note that when we take into account the orientation of M , general
formulas of g-natural metrics on TM become larger (precisely for the dimensions
2 and 3 of M), as given explicitly in [15]. This yields very complicated formu-
las calculating the Levi-Civita connection of an arbitrary Riemannian g-natural
metric. This question has been treated in detail in [4].

Now, among all Riemannian g-natural metrics on TM , we shall specify those
with respect to which all the fibers of TM are totally geodesic.

Theorem 4.3. Let (M, g) be a Riemannian manifold and G be a Riemannian g-
natural metric on TM . The fibers of (TM, G) are totally geodesic if and only if

there is a real constant c such that







α2(t) = c√
φ1(t)

(t · α′
1(t) + α1(t)),

β2(t) = c√
φ1(t)

(β1(t) − α′
1(t)) ,

(4.18)

for all t ∈ R
+.

Note that c = 0, in the system (4.18), corresponds to the case when horizontal
and vertical distributions are orthogonal.
Proof. Remark first that the fibers of (TM, G) are totally geodesic if and only if
∇̄XvXv is vertical, for all X ∈ X(M) (cf. [6], p.47). Hence, by virtue of Proposition
4.1, the fibers of (TM, G) are totally geodesic if and only if E(u; X, X) = 0, for all
X ∈ X(M). Since E is symmetric and linear in the second and third arguments,
the last assertion is equivalent to E(u; u, u) = 0 and E(u; X, X) = 0, for all
u ∈ TM and X⊥u.

But, if X⊥u then we have by virtue of Proposition 4.1,

E(u; X, X) =
1

φ
(φ1β2 − φ2(β1 − α′

1)) · gx(X, X) · u .

Hence, E(u; X, X) = 0, for all u ∈ TM and X⊥u, is equivalent to

φ1β2 = φ2(β1 − α′
1) ,(4.19)

on R
+∗, and by continuity on R

+.
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On the other hand, we have for all u ∈ TM ,

E(u; u, u) = r2

φ
{φ1β2 − φ2(β1 − α′

1) + 1
α
{2φ[α1(α

′
2 + β2

2 ) − α2α
′
1]

+ α[2φ1β
′
2 − φ2β

′
1] · r2 + 2α′

1 · r2[α1(α2(β1 + β3) − β2(α1 + α3))

+ α2(β1(φ1 + φ3) − β2φ2)] + (2α′
2 + β2) · r2[α1(φ2β2 − φ1(β1 + β3))

+ α2(α1β2 − α2β1)]}}u
= r2

φ
{φ1β2 − φ2(β1 − α′

1) + 1
α
{α[2φ1β

′
2 − φ2β

′
1] · r2

+ 2α′
1[α2(−φ + α1(β1 + β3) · r2 + (φ1 + φ3)β1 · r2 − φ2β2 · r2)

− α1(α1 + α3)β2 · r2] + (2α′
2 + β2)[α1(φ + (φ2β2

− φ1(β1 + β3)) · r2) + α2(α1β2 − α2β1) · r2]}}u ,

where r2 = g(u, u). But

α2(−φ + α1(β1 + β3) · r2 + (φ1 + φ3)β1 · r2 − φ2β2 · r2) − α1(α1 + α3)β2 · r2

= α2[(φ
2
2 − φ2β2 · r2) + ((φ1 + φ3)β1 · r2 − φ1(φ1 + φ3)) + α1(β1 + β3) · r2]

− α1(α1 + α3)β2 · r2

= α2[φ2α2 − α1(φ1 + φ3) + α1(β1 + β3) · r2] − α1(α1 + α3)β2 · r2

= α2[φ2α2 − α1(α1 + α3)] − α1(α1 + α3)β2 · r2

= α2
2φ2 − α1(α1 + α3)(α2 + β2 · r2)

= −α · φ2 .

By similar way, we find that

α1(φ + (φ2β2 − φ1(β1 + β3)) · r2) + α2(α1β2 − α2β1) · r2 = α · φ1 ,

so that, we obtain

E(u; u, u) = r2

φ
{φ1β2 − φ2(β1 − α′

1) + (2φ1β
′
2 − φ2β

′
1) · r2

− 2φ2α
′
1 + φ1(2α′

2 + β2)}u
= r2

φ
{2φ1(β2 + α′

2 + β′
2 · r2) − φ2(β1 + α′

1 + β′
1 · r2)}u

=
r2

φ
{2φ1φ

′
2 − φ2φ

′
1}u .

Hence, E(u; u, u) = 0, for all u ∈ TM , if and only if 2φ1φ
′
2 − φ2φ

′
1 = 0 on R

+∗,
and by continuity on R

+.
We deduce that the fibers of (TM, G) are totally geodesic if and only if

{

φ1β2 = φ2(β1 − α′
1) ,

2φ1φ
′
2 = φ2φ

′
1 ,

(4.20)

on R
+. Now, (4.20)2 is equivalent to

{

α2(t) = β2(t) = 0 whenever φ2(t) = 0 ,

φ2
2/φ1 is constant on each interval where φ2(t) 6= 0 everywhere .

(4.21)
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Denote by J the complement of φ−1
2 (0) in R

+. J is an open subset of R
+. We

claim that, in the conditions of (4.21), either J = ∅ or J = R
+. If not, there

is 0 < a < b such that ]a, b [ ⊂ J (since J is open) and a 6∈ J . Then there is a
constant d > 0 such that φ1 = d ·φ2

2 on ]a, b [ . When t → a, we have by continuity
of φ1 and φ2, φ1(a) = d · φ2

2(a). Since a 6∈ J , then φ1(a) = 0, which contradicts
the fact that G is Riemannian (Proposition 2.8). We deduce that either J = ∅ or
J = R

+. Hence, (4.21) is equivalent to
{

either α2 = β2 = 0 on R
+,

or φ2
2/φ1 is constant on R

+ ,

or equivalently,

φ2
2/φ1 is a constant on R

+ .(4.22)

Hence (4.20) holds if and only if
{

φ1β2 = φ2(β1 − α′
1) ,

φ2 = c · √φ1 ,
(4.23)

on R
+, where c is a constant, or equivalently,

{

β2 = c√
φ1

(β1 − α′
1) ,

α2 = φ2 − t · β2 = c√
φ1

(t · α′
1 + α1) ,

(4.24)

on R
+. This completes the proof.

Remark 4.4. As other applications of Proposition 4.1, we can check the following
assertions:

1) Let (M, g) be a Riemannian manifold and G be a Riemannian g-natural
metric on TM . Then M , considered as an embedded submanifold of TM by the
zero section, is always totally geodesic.

2) Among all Riemannian g-natural metrics on the tangent bundle TM of a
Riemannian manifold (M, g), the only ones with respect to which the vertical lift
preserves the parallelism of vector fields on M are those which belong to the 2-
dimensional cone C = {a.gs + b.gh + c.gv, c > 0, a > 0, b2 − c(a + c) < 0} in the
3-dimensional real vector space generated by the three classical lifts gs, gh and gv

of g.
Note that with respect to any element of C, the horizontal lift also preserves

the parallelism of vector fields on M .

5. The geodesic flow in TM and incompressibility

Let (M, g) be a Riemannian manifold, and G be a Riemannian g-natural metric
on TM . In this section, we study the situations when the geodesic flow in TM is
incompressible with respect to G.

Let {(U ; xi, i = 1, . . . , m)} be a local coordinate system in M and {(p−1(U); xi,
ui, i = 1, . . . , m)} the induced local coordinate system in TM . Let {Γk

ij ; i, j, k =

1, . . . , m} and {Γ̄K
IJ ; I, J, K = 1, . . . , 2m} be the Riemann-Christoffel symbols of

(M, g) and (TM, G) respectively. If T is an F -tensor field on M of type (2, 1),
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then we denote by T (u)k
ij (1 ≤ i, j ≤ m) the components of the (2, 1)-tensor

on Mx determined by the bilinear mapping T (u; . , . ) : Mx × Mx → Mx, i.e.
T (u)k

ij = dxk[T (u; ∂
∂xi ,

∂
∂xj )], (1 ≤ i, j ≤ m). Now, the expressions of the identities

of Proposition 4.1 in local coordinates yield the following:

Lemma 5.1. The Riemann-Christoffel symbols of (TM, G) are given by

Γ̄k
m+im+j(u) = E(u)k

ij ,

Γ̄m+k
m+im+j(u) = F (u)k

ij − Γk
λµ(x)E(u)λ

iju
µ ,

Γ̄k
im+j(u) = Γλ

iµ(x)Γ̄k
m+λm+j(u)uµ + C(u)k

ij ,

Γ̄m+k
im+j(u) = Γλ

iµ(x)Γ̄m+k
m+λm+j(u)uµ + Γk

ij(x) − Γk
lµ(x)C(u)l

iju
µ ,

Γ̄k
ij(u) = Γk

ij(x) + A(u)k
ij + Γl

iµ(x)Γ̄k
m+lj(u)uµ

+ Γl
jµ(x)Γ̄k

m+li(u)uµ − Γl
iµ(x)Γt

jλ(x)Γ̄k
m+lm+t(u)uλuµ ,

Γ̄m+k
ij (u) = −Γk

λµ(x)Γλ
ij(x)uµ − Γl

iµ(x)Γk
jl(x)uµ − Γk

λµ(x)A(u)λ
iju

µ

+ B(u)k
ij +

∂Γk
jµ

∂xi
(x)uµ + Γl

iµ(x)Γ̄m+k
m+lj(u)uµ

+ Γl
jµ(x)Γ̄m+k

m+li(u)uµ − Γl
iµ(x)Γt

jλ(x)Γ̄m+k
m+lm+t(u)uλuµ .

for all x ∈ U and u ∈ p−1(x).

Note that we have been using, and we will be, the so-called Einstein’s summa-
tion. Now, our main result in this section is:

Theorem 5.2. Let (M, g) be a Riemannian manifold and G be a g-natural metric

on the tangent bundle TM . Then the geodesic flow of (M, g) is incompressible with

respect to G if and only if the following conditions are satisfied:

(i) φ1 + φ3 is constant on each interval where α2 = 0 and β2 6= 0 everywhere;

(ii) Ricx(u, u) = θ(r2)gx(u, u) whenever α2(r
2) 6= 0;

where θ is the function defined from R
+ \ [(α2)

−1(0)] to R by

θ =
1

α1
{(m − 1)(β1 + β3) +

2φ2α

α2φ
(φ1 + φ3)

′},(5.1)

r2 = gx(u, u) and Ric is the Ricci tensor field on (M, g).

Proof. Let ξ be the geodesic flow vector of (M, g). It is a vector field on TM
which is locally expressed as ξi = ui, ξm+i = −Γk

iju
juk. We shall compute the

divergence of ξ, divGξ, relatively to the metric G on TM . By the definition of the



ON NATURAL METRICS ON TANGENT BUNDLES OF RIEMANNIAN MANIFOLDS 89

divergence, we have

(divGξ)(x,u) = ∂ξi

∂xi + ∂ξm+i

∂ui + Γ̄I
IJξJ

= −2 · Γi
ij + (Γ̄i

ij + Γ̄m+i
m+ij)u

j − (Γ̄i
im+j + Γ̄m+i

m+im+j)Γ
j
klu

kul

= [Γi
ij + A(u)i

ji + Γl
iµΓλ

jν Γ̄i
m+λm+lu

µuν + Γl
iµC(u)i

jlu
µ

+ Γl
iµΓλ

jν Γ̄i
m+λm+lu

µuν + Γl
jµC(u)i

ilu
µ − Γl

iµΓλ
jν Γ̄i

m+λm+lu
µuν

+ Γl
jµΓm+i

m+im+lu
µ + Γi

ij − Γi
lµC(u)l

jiu
µ]uj

− [Γl
iµΓj

klΓ̄
i
m+lm+ju

kuluµ + Γj
klC(u)i

iju
kul + Γj

klΓ
m+i
m+im+ju

kul]

= −2 · Γi
iju

j + [2 · Γi
ij + A(u)i

ji] · uj

= A(u)i
ji · uj,

so that (divGξ)(x,u) is the trace of the endomorphism of Mx given by X →
A(u; u, X). But

A(u; u, X) = 1
α
{−α1α2

2 R(X, u)u + α2(β1+β3)
2 gx(u, u)X + 1

φ
{φα2(β1+β3)

2

+ φ2α(α1 + α3)
′ + αφ2(β1 + β3)

′ · r2 + (β1 + β3) · r2[α2(φ2β2

− φ1(β1 + β3)) + (α1 + α3)(φ1β2 − φ2β1)]}gx(X, u)u} ,

so that

A(u)i
ij = 1

α
{−α1α2

2 Ri
jikujuk + m · α2(β1+β3)

2 · r2 + 1
φ
{φα2(β1+β3)

2

+ φ2α(α1 + α3)
′ + αφ2(β1 + β3)

′ · r2 + (β1 + β3) · r2[α2(φ2β2

− φ1(β1 + β3)) + (α1 + α3)(φ1β2 − φ2β1)]}r2}
= 1

α
{−α1α2

2 Rjkujuk + (m − 1) · α2(β1+β3)
2 · r2 + r2

φ
{φ2α[(α1 + α3)

′

+ (β1 + β3)
′ · r2] + α2(β1 + β3)[φ + φ2β2 · r2 − φ1(β1 + β3) · r2

− (α1 + α3)β1 · r2] + α1(α1 + α3)β2(β1 + β3) · r2}}
= 1

α
{−α1α2

2 Rjkujuk + (m − 1) · α2(β1+β3)
2 · r2 + r2

φ
{φ2α[(α1 + α3)

′

+ (β1 + β3)
′ · r2] + α2(β1 + β3)[α1(α1 + α3) − α2φ2]

+ α1(α1 + α3)β2(β1 + β3) · r2}}
= 1

α
{−α1α2

2 Rjkujuk + (m − 1) · α2(β1+β3)
2 · r2 + r2

φ
{φ2α[(α1 + α3)

′

+ (β1 + β3)
′ · r2] + α1(α1 + α3)(β1 + β3)φ2 − α2

2φ2(β1 + β3)}}
= −α1α2

2α
Rjkujuk + {(m − 1) · α2(β1+β3)

2α
+ φ2(φ1+φ3)

′

φ
} · r2 ,

where Rjk denote the components of the Ricci tensor field on M . We deduce then
that

(5.2) (divGξ)(x,u)

= −α1α2

2α
Ricx(u, u) + {φ2(φ1 + φ3)

′

φ
+

(m − 1)α2(β1 + β3)

2α
}gx(u, u) .
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Now, (divGξ) ≡ 0 if and only if
{

β2·r2

φ
· (φ1 + φ3)

′(r2) = 0 if α2(r
2) = 0 ,

Ricx(u, u) = θ(r2)gx(u, u) if α2(r
2) 6= 0 ,

or equivalently,

{

(φ1 + φ3)
′(r2) = 0 if α2(r

2) = 0 , β2(r
2) 6= 0 and r 6= 0 ,

Ricx(u, u) = θ(r2)gx(u, u) if α2(r
2) 6= 0 .

Using the continuity of (φ1 + φ3)
′ at 0, the last system is equivalent to

{

(φ1 + φ3)
′ = 0 whenever α2 = 0 and β2 6= 0,

Ricx(u, u) = θ(r2)gx(u, u) if α2(r
2) 6= 0 .

Corollary 5.3. Let (M, g) be a Riemannian manifold and G be a g-natural met-

ric on the tangent bundle TM , with respect to which horizontal and vertical dis-

tributions are orthogonal. Then the geodesic flow of (M, g) is incompressible with

respect to G.

Proof. According to (2.2), the orthogonality of the horizontal and vertical distri-
butions is equivalent to the vanishing of the functions α2 and β2 identically. Since
the conditions (i) and (ii) of Proposition 5.2 deal with values where β2 and α2

don’t vanish respectively, then they are automatically satisfied. This completes
the proof.

Corollary 5.4. Let (M, g) be a Riemannian manifold and G be a g-natural metric

on the tangent bundle TM , such that I0 = R
+ \ [(α2)

−1(0)] is dense in R
+. Then

the geodesic flow of (M, g) is incompressible with respect to G if and only if the

function θ of Theorem 5.2 is a constant θ0 on I0 and (M, g) is an Einstein manifold

with Ric = θ0g.

Proof. Fix x ∈ M , t0 ∈ I0 \ {0} and u0 ∈ Mx such that gx(u0, u0) = t0. Suppose
that ξ is incompressible with respect to G. Then from Theorem 5.2,

Ricx(λu0, λu0) = θ(λ2t0)gx(λu0, λu0) ,

for all λ such that λ2t0 ∈ I0. By virtue of bilinearity of Ricx and gx, we see that
θ(t) = θ(t0) =: θ0, for all t ∈ I0. Furthermore,

Ricx(tu0, tu0) = θ0gx(tu0, tu0) ,(5.3)

for all t ∈ I0. Since I0 is dense in R
+, then by continuity, (5.3) is valid for all

t ∈ R. Now, x and u0 being arbitrary and since θ depends only on the norms of
vectors under consideration, Ricx(u, u) = θ0gx(u, u), for all (x, u) ∈ TM . Using
once again the bilinearity and the symmetry of Ricx and gx, we have Ric = θ0g.

Conversely, if θ is a constant θ0 on I0 and Ric = θ0g, then we have, by (5.2),
(divG)(x,u) = 0, for all (x, u) such that gx(u, u) ∈ I0. Fix t0 and u0 as before. Then
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(divG)(x,λu0) = 0, for all λ such that λ2t0 ∈ I0. Since {(x, λu0)/λ2t0 ∈ I0} is dense
in {(x, λu0)/λ ∈ R}, the continuity of divG implies that (divG)(x,λu0) = 0, for all
λ ∈ R. u0 and x being arbitrary, we have (divG)(x,u) = 0, for all (x, u) ∈ TM .

Remark 5.5. If I0 = R
+ \ [(α2)

−1(0)] is dense in R
+ and θ is constant on I0,

then Corollary 5.4 shows that the metric G presents a certain kind of rigidity. For
example, if we consider G Riemannian such that

(a) α1, α3 and β1 + β3 are constant on R
+;

(b) α2 doesn’t vanish on R
+, except may be at isolated points of R

+ ,

then θ = 0 on I0. It follows from Corollary 5.4 that the geodesic flow of (M, g)
is incompressible with respect to G if and only if (M, g) is an Einstein manifold
with vanishing scalar curvature.

As examples of such Riemannian g-natural metrics G, we mention:

• the elements G = a · gs + b · gh + c · gv of C, such that b 6= 0;
• G = a · gs + α2 · gh + c · gv, where α2 =

√

a(a + c) · sin ◦ ρ on R
+, ρ being

any function on R
+ and a, a + c > 0.
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Département des Mathématiques et Informatique
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