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BOUNDARY VALUE PROBLEMS FOR FIRST ORDER

MULTIVALUED DIFFERENTIAL SYSTEMS

A. BOUCHERIF, N. CHIBOUB-FELLAH MERABET

Abstract. We present some existence results for boundary value problems

for first order multivalued differential systems. Our approach is based on
topological transversality arguments, fixed point theorems and differential
inequalities.

1. Introduction

In this paper we investigate boundary value problems for first order multivalued
differential systems. More specifically, we shall be concerned with the existence
of solutions of the following boundary value problem for first order differential
inclusions

(1) x′(t) ∈ A(t)x(t) + F (t, x(t)) , t ∈ (0, 1); Mx(0) +Nx (1) = 0

Here F : I × Rn → 2R
n

is a Carathéodory multifunction, I = [0, 1], A(.) is a
continuous n × n matrix function, M and N are constant n × n matricies. We
shall denote by ‖x‖ the norm of any element x ∈ Rn and by ‖A‖ the norm of any
matrix A. Several authors have investigated problems similar to (1) under various
assumptions (see for instance [1], [2], [3], [4], [5], [7], [10], [11], [12], [16] and the
references therein). Problems (1) appear in the description of many physical phe-
nomena; for example dry friction problems (see for instance [9] and [19]), control
problems (see [8], [13], [16] and the references therein). We shall present existence
results under fairly general conditions on the multifunction F , the matrices A,
M and N . Our approach is based on the topological transversality theorem due
to Granas, fixed point theorems and differential inequalities. For the use of the
topological degree in multivalued boundary value problems we refer the reader to
[18]. Our results are based on different assumptions than those published earlier,
and cannot be derived trivially from the above cited results.
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2. Preliminaries

In this section we introduce notations, definitions and results that will be used
in the remainder of the paper.

2.1. Set-valued maps. Let X and Y be Banach spaces. A set-valued map G :

X → 2Y is said to be compact if G(X) = ∪{G(x);x ∈ X} is compact. G has
convex (closed, compact) values if G(x) is convex (closed, compact) for every
x ∈ X . G is bounded on bounded subsets of X if G(B) is bounded in Y for every
bounded subset B of X . A set-valued map G is upper semicontinuous (usc for
short) at z0 ∈ X if for every open set O containingGz0, there exists a neighborhood
M of z0 such that G(M) ⊂ O. G is usc on X if it is usc at every point of X . If G
is nonempty and compact-valued then G is usc if and only if G has a closed graph.
The set of all bounded closed convex and nonempty subsets of X is denoted by
bcc(X). A set-valued map G : I → bcc(X) is measurable if for each x ∈ X , the
function t 7→ dist (x,G(t)) is measurable on I. If X ⊂ Y , G has a fixed point if
there exists x ∈ X such that x ∈ Gx. Also, |G (x)| = sup {|y| ; y ∈ G (x)}.

Definition 1. A multivalued map F : I × Rn −→ 2R
n

is said to be an L1-
-Carathéodory multifunction if

(i) t 7−→ F (t, x) is measurable for each x ∈ Rn;
(ii) x 7−→ F (t, x) is upper semicontinuous for almost all t ∈ I;
(iii) For each σ > 0, there exists hσ ∈ L1(I,R+) such that

‖x‖ ≤ σ =⇒ ‖F (t, x)‖ = sup{‖v‖ : v ∈ F (t, x)} ≤ hσ(t) a.e. t ∈ I .

S1
F (.,x(.)) = {v ∈ L1(I,Rn) : v(t) ∈ F (t, x(t)) for a.e. t ∈ I} denotes the set

of selectors of F that belong to L1. By a solution of (1) we mean an absolutely
continuous function x on I, such that

(2) x′(t) = A(t)x(t) + f(t) , a.e. t ∈ (0, 1); Mx(0) +Nx (1) = 0

where f ∈ S1
F (.,x(.)). AC0 (I) denotes the space of absolutely continuous functions

x on I with Mx(0) + Nx (1) = 0. Also, for x ∈ AC (I) we define its norm by
‖x‖0 = sup{‖x (t)‖ ; t ∈ I}.

Note that for an L1-Carathéodory multifunction F : I × Rn −→ 2R
n

the set
S1

F (.,x(.)) is not empty (see [14]).

For more details on set-valued maps we refer to [6] and [8].

2.2. Topological transversality theory for set-valued maps. (see [11]).
Let X be a Banach space, C a convex subset of X and U an open subset of

C. K∂U (U, 2C) shall denote the set of all set-valued maps G : U → 2C which
are compact, usc with closed convex values and have no fixed points on ∂U (i.e.,
u /∈ Gu for all u ∈ ∂U). A compact homotopy is a set-valued map H : [0, 1] ×
U → 2C which is compact, usc with closed convex values. If u /∈ H(λ, u) for
every λ ∈ [0, 1], u ∈ ∂U , H is said to be fixed point free on ∂U . Two set-valued
maps F,G ∈ K∂U (U, 2C) are called homotopic in K∂U (U, 2C) if there exists a
compact homotopy H : [0, 1] × U → 2C which is fixed point free on ∂U and such
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that H(0, ·) = F and H(1, ·) = G. G ∈ K∂U (U, 2C) is called essential if every
F ∈ K∂U (U, 2C) such that G|∂U = F |∂U , has a fixed point. Otherwise G is called
inessential.

Theorem 1 (Topological transversality theorem). Let F , G be two homotopic
set-valued maps in K∂U (U, 2C). Then F is essential if and only if G is essential.

Theorem 2. Let G : U → 2C be the constant set-valued map G(u) ≡ u0. Then,
if u0 ∈ U , G is essential.

Theorem 3 (Theorem 2.1 in [17]). Let U be an open set in a closed, convex set
C of a Banach space E. Assume 0 ∈ U , G(U ) is bounded and G : U → C is given
by G = G1 + G2 where G1 : U → E is continuous and completely continuous,
and G2 : U → E is a nonlinear contraction (i.e. there exists a continuous non-
decreasing function φ : [0,∞) → [0,∞) satisfying φ (z) < z for z > 0, such that
‖G2 (x) −G2 (y)‖ ≤ φ (‖x− y‖) for all x, y ∈ U). Then either,

(A1) G has a fixed point in U ; or
(A2) there is a point u ∈ ∂U and λ ∈ (0, 1) with u = λG (u).

Remark 1. This theorem is stated in terms of single-valued maps. However,
it follows from the proof given in [17] that the theorem is still valid if G1

is a multivalued operator. Also, we shall apply this theorem with G2 ≡ 0, the
identically zero single-valued map.

3. Main results

In this section, we state and prove our main results.

3.1. A linear problem. Consider the following linear boundary value problem

(3) x′(t) = A(t)x(t) + h(t) , a.e. t ∈ (0, 1); Mx(0) +Nx (1) = 0 .

Let Φ(t) be a fundamental matrix solution of x′(t) = A(t)x(t), such that Φ(0) =
I, the n×n identity matrix. Then any solution x′(t) = A(t)x(t) is given by x(t) =
Φ(t)v where v is an arbitrary constant vector. The boundary condition Mx(0) +
Nx (1) = 0 implies that MΦ(0)v+NΦ(1)v = 0 or equivalently (M+NΦ(1))v = 0.
It follows that the homogeneous problem x′(t) = A(t)x(t), Mx(0) + Nx (1) = 0
has only the trivial solution if and only if det(M + NΦ(1)) 6= 0. In this case
the linear nonhomogeneous problem (3) has a unique solution given by x(t) =
∫ 1

0
G(t, s)h(s) ds where G(t, s) is the Green’s matrix. Simple computations give

G(t, s) =

{

Φ (t) J (s) 0 ≤ t ≤ s

Φ (t) Φ (s)
−1

+ Φ (t)J (s) s ≤ t ≤ 1

where J (t) = −(M +NΦ(1))−1NΦ(1)Φ (t)
−1

.
Let G0 := sup{‖G(t, s)‖ ; (t, s) ∈ I × I}.
We shall assume throughout the paper that A(.) is a continuous matrix function

on I with A0 := sup{‖A(t)‖ ; t ∈ I}, and the matrices M and N satisfy det(M +
NΦ(1)) 6= 0.

Our first result is based on the following assumption.
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(H1) F : I × Rn → bcc(Rn) is an L1-Carathéodory multifunction satisfying

‖F (t, x)‖ ≤ α (t)ψ (‖x‖) for a.e. t ∈ I, all x ∈ Rn,

where α ∈ L1I; R+ and ψ : [0,+∞) → (0,+∞) is continuous nondecreas-
ing and such that

lim sup
ρ→+∞

ρ

ψ (ρ)
= +∞ .

Our first result reads as follows.

Theorem 4. If the assumption (H1) is satisfied, then the boundary value problem
(1) has at least one solution.

Proof. This proof will be given in several steps.

Step 1. Consider the set-valued operator ̥ : AC(I) → L1(I) defined by

(̥x)(t) = F (t, x(t)) .

̥ is well defined, usc, with convex values and sends bounded subsets of AC(I)
into bounded subsets of L1(I). In fact, we have

̥x := {u : I → R
n measurable; u(t) ∈ F (t, x(t)) a.e. t ∈ I} .

Let z ∈ AC(I). If u ∈ ̥z then

‖u(t)‖ ≤ α (t)ψ (‖z(t)‖) ≤ α (t)ψ (‖z‖0) .

Hence ‖u‖L1 ≤ C0 := ‖α‖L1 ψ (‖z‖0). This shows that ̥ is well defined. It is
clear that ̥ is convex valued.

Now, let B be a bounded subset of AC(I). Then, there exists K > 0 such
that ‖u‖0 ≤ K for u ∈ B. So, for w ∈ ̥u we have ‖w‖L1 ≤ C1, where C1 =
ψ (K) ‖α‖L1 .

Also, we can argue as in [10, p. 16] to show that ̥ is usc.

Step 2. A priori bounds on solutions.
Let x be a possible solution of (1). Then there exists a positive constant R∗,

independent of x, such that

|x(t)| ≤ R∗ for all t ∈ I .

For, it follows from the definition of solutions of (1) that

x′(t) = A(t)x(t) + f(t) a.e. t ∈ (0, 1) ;Mx(0) +Nx (1) = 0

where f ∈ S1
F (.,x(.)). It is clear that the solution of the above problem is given by

(4) x (t) =

∫ 1

0

G(t, s)f(s) ds .

Hence

(5) ‖x (t)‖ ≤

∫ 1

0

‖G(t, s)‖ ‖f(s)‖ ds .
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Assumption (H1) yields

(6) ‖x(t)‖ ≤ G0

∫ 1

0

α (s)ψ (‖x(s)‖) ds .

Let

R0 = max {‖x(t)‖ ; t ∈ J} .

Then

(7) R0 ≤ G0

∫ 1

0

α (s)ψ (‖x(s)‖) ds .

Since ψ is nondecreasing we have

(8) R0 ≤ G0

∫ 1

0

α (s)ψ (R0) ds .

The last inequality implies that

(9)
R0

ψ (R0)
≤ G0 ‖α‖L1 .

Now, the condition on ψ in (H1) shows that there exists R∗ > 0 such that for
all R > R∗

(10)
R

ψ (R)
> G0 ‖α‖L1 .

Comparing these last two inequalities (9) and (10) we see that R0 ≤ R∗. Con-
sequently, we obtain ‖x(t)‖ ≤ R∗ for all t ∈ I.

Step 3. Existence of solutions.
For 0 ≤ λ ≤ 1 consider the one-parameter family of problems

(1λ) x′(t) ∈ A(t)x(t) + λF (t, x(t)) t ∈ I, Mx(0) +Nx (1) = 0

which reduces to (1) for λ = 1.
It follows from Step 2 that if x is a solution of (1)λ for some λ ∈ [0, 1], then

‖x(t)‖ ≤ R∗ for all t ∈ I

and R∗ does not depend on λ.
Define ̥λ : C(I) → L1(I) by

(̥λx) (t) = λF (t, x(t)) .

Step 1 shows that ̥λ is usc, has convex values and sends bounded subsets of
AC(I) into bounded subsets of L1(I). Let j : AC0(I) → AC(I) be the contin-
uous embedding. The operator L : AC0(I) → L1(I), defined by (Lx)(t) = x′(t)
−A(t)x(t) has a bounded inverse (in fact this follows from the solution given by
(4)), which we denote by L−1. Moreover L−1 is completely continuous.

Let BR∗+1 := {x ∈ AC0(I); ‖x‖0 < R∗ + 1} . Define a set-valued map
H : [0, 1]×BR∗+1 → AC0(I) by

H(λ, x) = (L−1 ◦ ̥λ ◦ j)(x) .
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We can easily show that the fixed points of H(λ, ·) are solutions of (1)λ. Moreover,
H is a compact homotopy between H(0, ·) ≡ 0 and H(1, ·). In fact, H is compact
since j is continuous, ̥λ is bounded on bounded subsets and L−1 is completely
continuous. Also, H is usc with closed convex values. Since solutions of (1)λ

satisfy ‖x‖0 ≤ R∗ < R∗ + 1 we see that H(λ, ·) has no fixed points on ∂BR∗+1.
Now, H(0, ·) is essential by Theorem 2. Hence H1 is essential. This implies

that L−1 ◦ ̥ ◦ j has a fixed point. Therefore problem (1) has a solution.
This completes the proof of Theorem 4. �

Our next result is based on an application of a fixed point by O’Regan [17].
We shall replace condition (H1) by the following

(H2) |F (t, x)| ≤ p(t)ψ (‖x‖) for a.e. t ∈ I, all x ∈ Rn, where p ∈ L1(I,R+),
ψ : [0,+∞) → (0,+∞) is continuous nondecreasing and such that

sup
δ∈(0,∞)

δ

G0 ‖p‖L1 ψ (δ)
> 1 .

We can state our second result.

Theorem 5. If the assumption (H2) is satisfied, then the boundary value problem
(1) has at least one solution.

Proof. This proof is similar to the proof of Theorem 4. Let M0 > 0 be defined by

M0

G0 ‖p‖L1 ψ (M0)
> 1 .

Let U := {x ∈ AC0(I); ‖x‖0 < M0}.
Consider the compact operator ( see Step 3 above)

(

L−1 ◦ ̥ ◦ j
)

: U → AC0(I).
Suppose that alternative (A2) in Theorem 3 holds. This means that there exists

x ∈ ∂U such that x ∈
(

L−1 ◦ ̥ ◦ j
)

(x), or equivalently

x′(t) ∈ A(t)x(t) + F (t, x(t)) t ∈ (0, 1), Mx(0) +Nx (1) = 0 .

Now, as in Step 2 above, assumption (H2) yields

‖x(t)‖ ≤ G0

∫ 1

0

p(s)ψ (‖x(s)‖) ds .

Since ψ is increasing we get

‖x(t)‖ ≤ G0

∫ 1

0

p(s)ψ (‖x‖0) ds

and, since for x ∈ ∂U we have ‖x‖0 = M0 this last inequality implies that

M0 ≤ G0

∫ 1

0

p(s)ψ (M0) ds

which, in turn gives

M0 ≤ G0

[

∫ 1

0

p(s) ds
]

ψ (M0) .

Hence,
M0 ≤ G0 ‖p‖L1 ψ (M0)
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This, clearly, contradicts the definition of M0. Therefore, condition (A2) of The-
orem 3 does not hold. Consequently, L−1 ◦ ̥ ◦ j has a fixed point, which is a
solution of problem (1). �

We now present a third result based on an inequality of Henry-Bihari type (see
[15]). We shall assume that f satisfies

(H3) there exists p ∈ L1(I; R+) and Ψ : [0,∞) → (0,∞), nondecreasing with
the properties
(i) there is γ ∈ C(I; R+) such that e−A0tΨ(u) ≤ γ(t)Ψ(e−A0tu) for any

u ≥ 0,

(ii)
∫ +∞ dσ

Ψ (σ)
= +∞, such that ‖F (t, x)‖ ≤ p(t)Ψ (‖x‖) for all (t, x) ∈

I × Rn.

As an example of such function Ψ, we can take Ψ (u) = um, with 0 < m < 1.

Proposition 1. Suppose (H3) is satisfied. Then there exists M1 > 0 such that
‖x(t)‖ ≤M1 for all t ∈ I and any possible solution x of (1)λ.

Proof. Let 〈·, ·〉 denote the inner product on Rn. Then, for f ∈ S1
F (·,x(·)) we have

〈x′(t), x(t)〉 = 〈A(t) x(t) + λf(t), x(t)〉.

Recall that 〈x′(t), x(t)〉 = 1
2

d
dt
‖x(t)‖

2
and use Cauchy-Schwarz inequality to

obtain
1

2

d

dt
‖x(t)‖

2
≤ ‖A(t)‖ ‖x(t)‖

2
+ λ ‖f (t)‖ ‖x(t)‖ .

Integrating the above inequality from 0 to 1, we get

‖x(t)‖2 ≤ ‖x (0)‖2 + 2A0

∫ t

0

‖x(s)‖2 ds+ 2

∫ t

0

‖F (s, x(s))‖ ‖x(s)‖ ds

which yields

(11) ‖x(t)‖
2
≤ ‖x (0)‖

2
+ 2A0

∫ t

0

‖x(s)‖
2
ds+ 2

∫ t

0

p(s)Ψ (‖x(s)‖) ‖x(s)‖ ds .

Let u(t) := the righthand side of (11). Then

(i) ‖x(t)‖ ≤
√

u(t) t ∈ I;

(ii) u′(t) = 2A0 ‖x(t)‖
2
+ 2 p(t)Ψ (‖x(t)‖) ‖x(t)‖.

So that

(12) u′(t) ≤ 2A0u(t) + 2p(t)Ψ
(

√

u(t)
)

√

u(t) .

Hence
u′(t)

2
√

u(t)
≤ A0

√

u(t) + p(t)Ψ
(

√

u(t)
)

or

(13)
d

dt
(
√

u(t)) ≤ A0

√

u(t) + p(t)Ψ
(

√

u(t)
)

.

Let v(t) =
√

u(t) for t ∈ [0, 1]. Then Inequality (13) becomes

v′(t) ≤ A0v(t) + p(t)Ψ (v(t))
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or equivalently

(14)
(

e−A0tv(t)
)′

≤ e−A0tp(t)Ψ (v(t)) .

It follows from inequality (14) and the properties of the function Ψ that
(

e−A0tv(t)
)′

≤ p(t)γ(t)Ψ
(

e−A0tv(t)
)

.

Let z(t) = e−A0tv(t). Then the above inequality gives

z′(t) ≤ p(t)γ(t)Ψ (z(t)) .

Thus

(15)
z′(t)

Ψ (z(t))
≤ p(t)γ(t) 0 ≤ t ≤ 1 .

Recall that z(0) = v(0) =
√

u(0) = ‖x (0)‖.
Inequality (15) implies that

∫ z(t)

‖x(0)‖

dσ

Ψ (σ)
≤

∫ t

0

p(s)γ(s) ds ≤ ‖p‖L1 ‖γ‖0 . �

This shows that there exists M1 > 0 such that

‖x(t)‖ ≤M1 0 ≤ t ≤ 1 .

Now, proceeding as in the proof of Theorem 3 we can prove

Theorem 6. If the assumption (H3) is satisfied, then the boundary value problem
(1) has at least one solution.
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