Archivum Mathematicum

M. E. El-Shafei
Pairwise weakly Hausdorff spaces

Archivum Mathematicum, Vol. 41 (2005), No. 3, 281--287

Persistent URL: http://dml.cz/dmlcz/107959

Terms of use:

© Masaryk University, 2005

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

PAIRWISE WEAKLY HAUSDORFF SPACES

M. E. El-Shafei

Abstract

In this paper, we introduce and investigate the notion of weakly Hausdorffness in bitopological spaces by using the convergent of nets. Several characterizations of this notion are given. Some relationships between these spaces and other spaces satisfying some separation axioms are studied.

1. Introduction

Kelly [4] introduced and studied the notion of bitopological spaces. A set equipped with two topologies is called a bitopological space. Since then several authors continued investigating such spaces. Concepts of pairwise Hausdorff, pairwise regular and pairwise normal were introduced by Kelly [4], concepts of pairwise T_{0} and pairwise T_{1} were introduced by Murdeshwar and Naimpally [6] and the concept of pairwise compactness was introduced independently by Fletcher et. al. [2], Kim [5] and Pahk and Choi [7]. Dunham [1] introduced and studied the notion of a new class of topological spaces, namely, weakly Hausdorff spaces, which includes the class of Hausdorff spaces and regular Hausdorff spaces. The purpose of this paper is to introduce and investigate the notion of pairwise weakly Hausdorff spaces. Several characterizations and properties of pairwise weakly Hausdorff spaces have been obtained by using the convergent of nets. Some relationships between these spaces and other spaces satisfying some separation axioms are studied. We prove that a bitopological space is pairwise weakly Hausdorff iff its $P T_{0}$-identification is a pairwise Hausdorff. Moreover, we prove that τ_{i}-closure of τ_{i}-compact subsets of a pairwise weakly Hausdorff space are τ_{j}-compact.

For definitions and results of bitopological spaces which are not explained in this paper, we refer to the papers $[2,4,5,6]$, assuming them to be well known. The word "bitopological space", "pairwise" and "pairwise weakly Hausdorff" will be abbreviated as "bts", " P " and " $P W T_{2}$ " respectively. Also by $\tau_{i} \cdot \mathrm{cl}(A)$ and A^{\prime} we shall denote respectively the τ_{i}-closure and the complement of a set A. The set of all τ_{i}-closed sets and the set of all τ_{i}-neighbourhoods of a point $x \in X$ denoted

[^0]by τ_{i}^{\prime} and $N\left(x, \tau_{i}\right)$, respectively, $i=1,2$. Whenever we deal with a statement involving the topologies τ_{i} and τ_{j} it will be understood that $i \neq j$ and that i, j take on the values 1 and 2 .

2. Pairwise weakly Hausdorffness

In this section we introduce the concept of $P W T_{2}$-spaces and study a characterization and relationships with some other spaces. At first we recall the following definitions.

Definition 2.1. A net $S: D \rightarrow X$ in a bts $\left(X, \tau_{1}, \tau_{2}\right)$ is said to τ_{i}-converge to a point $x \in X$ (or, x is a τ_{i}-limit point of S) if for each $U \in N\left(x, \tau_{i}\right)$ there exists $n \in D$ such that $S_{m} \in U$ for each $m \geq n$. The τ_{i}-limit set of a net S is the set of all x such that the net $S \tau_{i}$-converges to x. We shall denote this set by $\tau_{i} \cdot \lim (S)$.

Definition 2.2. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is called $P W T_{2}$-space iff $\tau_{j} \cdot \operatorname{cl}(x)=\tau_{i} \cdot \operatorname{cl}(y)$ whenever there is a net $S: D \rightarrow X$ such that $x \in \tau_{i} \cdot \lim (S)$ and $y \in \tau_{j} \cdot \lim (S)$.
Theorem 2.3. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$ iff for each $x, y \in X$ one of the following holds:
(i) $\tau_{j} \cdot \mathrm{cl}(x)=\tau_{i} \cdot \mathrm{cl}(y)$.
(ii) There exist $U \in N\left(x, \tau_{i}\right)$ and $V \in N\left(y, \tau_{j}\right)$ such that $U \cap V=\phi$.

Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be $P W T_{2}$ and $x, y \in X$. Suppose the condition (ii) does not hold. Then we can define a set $D=\left\{U \cap V: U \in N\left(x, \tau_{i}\right)\right.$ and $\left.V \in N\left(y, \tau_{j}\right)\right\}$ with ordering by reverse inclusion, and a net $S: D \rightarrow X$ by $S(U \cap V) \in U \cap V$, arbitrary. Since $U \cap V \subset U$ and $U \cap V \subset V$, then $x \in \tau_{i} \cdot \lim (S)$ and $y \in \tau_{j} \cdot \lim (S)$ and it follows from the assumption that $\tau_{j} \cdot \operatorname{cl}(x)=\tau_{i} \cdot \operatorname{cl}(y)$.

Conversely, let $S: D \rightarrow X$ be a net in X and $x \in \tau_{i} \cdot \lim (S)$ and $y \in \tau_{j} \cdot \lim (S)$. Suppose that $\tau_{j} \cdot \operatorname{cl}(x) \neq \tau_{i} \cdot \operatorname{cl}(y)$, i.e. the condition (i) not hold, then the condition (ii) holds and so there exist $U \in N\left(x, \tau_{i}\right)$ and $V \in N\left(y, \tau_{j}\right)$ such that $U \cap V=\phi$. This contradicts that $x \in \tau_{i} \cdot \lim (S)$ and $y \in \tau_{j} \cdot \lim (S)$. Thus $\tau_{j} \cdot \operatorname{cl}(x)=\tau_{i} \cdot \operatorname{cl}(y)$ and so $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$.

Theorem 2.4. $A P T_{2}$-space is $P W T_{2}$-space.
Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be $P T_{2}$-space and let $S: D \rightarrow X$ be a net in X such that $x \in \tau_{i} \cdot \lim (S)$ and $y \in \tau_{j} \cdot \lim (S)$, for each $x, y \in X$. Since $\tau_{j} \cdot \lim (S)$ and $\tau_{i} \cdot \lim (S)$ are unique and equal in a $P T_{2}$-space, then $x=y$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is $P T_{1}$, then $\tau_{j} \cdot \operatorname{cl}(x)=\tau_{i} \mathrm{cl}(y)$. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$-space.

Definition 2.5 [8]. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is called:
(i) $P R_{0}$-space iff $\tau_{j} \cdot \operatorname{cl}(x) \subset U$; for each $U \in N\left(x, \tau_{i}\right)$.
(ii) $P R_{1}$-space iff for each $x, y \in X$ either $\tau_{j} \cdot \operatorname{cl}(x)=\tau_{i} \cdot \operatorname{cl}(y)$ or there exist $U \in N\left(\tau_{j} \cdot \mathrm{cl}(x), \tau_{i}\right)$ and $V \in N\left(\tau_{i} \cdot \operatorname{cl}(y), \tau_{j}\right)$ such that $U \cap V=\phi$.
(iii) $P R_{2}$-space iff $(\forall x \in X)\left(\forall U \in N\left(x, \tau_{i}\right)\left(\exists V \in N\left(x, \tau_{i}\right)\left(\tau_{j} \cdot \operatorname{cl}(V) \subseteq U\right)\right.\right.$.

In the following we shall prove that $P R_{1}$ and $P W T_{2}$ are identical.

Lemma 2.6. $A P W T_{2}$-space is $P R_{0}$-space.
Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be $P W T_{2}$-space. Suppose $U \in N\left(x, \tau_{i}\right)$ and $y \in \tau_{j} \cdot \operatorname{cl}(x)$. Then $\left(\forall V \in N\left(y, \tau_{j}\right)\right)(U \cap V \neq \phi)$. Hence the condition (ii) of Theorem 2.3 is not hold and so, by Theorem 2.3 (i), we have $x \in \tau_{i} \cdot \operatorname{cl}(y)$. Then $y \in G$ for each $G \in N\left(x, \tau_{i}\right)$. Thus $y \in U$ and so $\tau_{j} \cdot \mathrm{cl}(x) \subset U$ for each $U \in N\left(x, \tau_{i}\right)$ and hence (X, τ_{1}, τ_{2}) is $P R_{0}$-space.

Theorem 2.7. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$-space iff $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{1}$-space.
Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$-space. Suppose $\tau_{j} . c l(x) \neq \tau_{i} . c l(y)$. By Theorem 2.3 (ii), there exist $U \in N\left(x, \tau_{i}\right)$ and $V \in N\left(y, \tau_{j}\right)$ such that $U \cap V=\phi$. By Lemma 2.6, $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{0}$-space and so $\tau_{j} \cdot \operatorname{cl}(x) \subset U$ and $\tau_{i} \cdot \operatorname{cl}(y) \subset V$. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{1}$-space.

Conversely, if $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{1}$-space and $\tau_{j} \cdot \operatorname{cl}(x)=\tau_{i} \cdot \operatorname{cl}(y)$, then Theorem 2.3 (i) holds and so $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$. Otherwise, if $\tau_{j} \cdot \mathrm{cl}(x) \neq \tau_{i} \cdot \mathrm{cl}(y)$, then since $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{1}$, there exist $U \in N\left(\tau_{j} \cdot \operatorname{cl}(x), \tau_{i}\right)$ and $V \in N\left(\tau_{i} \cdot \operatorname{cl}(y), \tau_{j}\right)$ such that $U \cap V=\phi$. Hence Theorem 2.3 (ii) holds and so (X, τ_{1}, τ_{2}) is $P W T_{2^{-}}$ space.

Theorem 2.8. A $P R_{2}$-space is $P W T_{2}$-space.
Proof. Let $x, y \in X$ and suppose condition (i) of Theorem 2.3 fails. Without loss of generality, we may assume that $\left(\exists U \in N\left(x, \tau_{i}\right)\right)(y \notin U)$. By pairwise regularity, $\left(\exists V \in N\left(x, \tau_{i}\right)\right)\left(V \subseteq \tau_{j} \cdot \operatorname{cl}(V) \subseteq U\right)$ and so $x \in V, y \in\left(\tau_{j} \cdot \operatorname{cl}(V)\right)^{\prime}$ and $V \cap\left(\tau_{j} \cdot \operatorname{cl}(V)\right)^{\prime}=\emptyset$. This satisfies condition (ii) of Theorem 2.3, and we conclude the space is $P W T_{2}$.
Definition 2.9. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be pairwise zero dimensional iff $(\forall x \in$ $X)\left(\forall G \in N\left(x, \tau_{i}\right)\right)\left(\exists H \in N\left(x, \tau_{i} \cap \tau_{j}^{\prime}\right)\right)(H \subseteq G)$.
Definition 2.10. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is said to be P -saturated iff arbitrary intersections of members of τ_{i} is a member of $\tau_{i}, i=1,2$.

Theorem 2.11. If a bts $\left(X, \tau_{1}, \tau_{2}\right)$ is P-saturated, then the following statements are equivalent:
(i) $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise zero dimensional.
(ii) $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{2}$.
(iii) $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$.
(iv) $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{0}$.
(v) $\tau_{i}=\tau_{j}^{\prime}$.

Proof. (i) \Longrightarrow (ii): Let $x \in X$ and $F \in \tau_{i}^{\prime}$ such that $x \notin F$. Then $F^{\prime} \in N\left(x, \tau_{i}\right)$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is pairwise zero dimensional, then $\left(\exists H \in N\left(x, \tau_{i} \cap \tau_{j}^{\prime}\right)\right)\left(H \subseteq F^{\prime}\right)$. Therefore (X, τ_{1}, τ_{2}) is $P R_{2}$.
(ii) \Longrightarrow (iii): Follows from Theorem 2.8.
(iii) \Longrightarrow (iv): Follows from Lemma 2.6.
(iv) $\Longrightarrow(\mathrm{v})$: Suppose that $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{0}$-space and let $U \in \tau_{i}$. Then for each $x \in U, \tau_{j} \cdot \operatorname{cl}(x) \subseteq U$ and so $U=\cup\left\{\tau_{j} \cdot \operatorname{cl}(x): x \in U\right\}$ is τ_{j}-closed, by
the P-saturation property. Thus $\tau_{i} \subseteq \tau_{j}^{\prime}$ and the reverse inclusion follows by complementation.
(v) \Longrightarrow (i): Obvious.

Let $\left(X, \tau_{1}, \tau_{2}\right)$ be any bitopological space and define a relation R on X by $x R y$ iff $\tau_{i} \cdot \operatorname{cl}(x)=\tau_{j} \cdot \operatorname{cl}(y)$. Then $\left(X / R, \tau_{1} / R, \tau_{2} / R\right)$ is the well-known $P T_{0^{-}}$ identification with $q: X \rightarrow X / R$ the natural quotient mapping.
Proposition 2.12. For an equivalence relation R on a bts $\left(X, \tau_{1}, \tau_{2}\right)$ the following statements are equivalent:
(i) The natural mapping $q:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(X / R, \tau_{1} / R, \tau_{2} / R\right)$ is P-open.
(ii) The set $q^{-1} q(U) \subseteq X$ is τ_{i}-open for every τ_{i}-open $U \subseteq X, i=1,2$.

Proof. (i) \Longrightarrow (ii) Suppose q is P-open and let U be a τ_{i}-open in X. Then $q(U)$ is τ_{i} / R-open and hence $q^{-1} q(U)$ is τ_{i}-open.
(ii) \Longrightarrow (i) Suppose that $q^{-1} q(U)$ is τ_{i}-open for every τ_{i}-open subset U in X. Let V be a τ_{i}-open, then $q^{-1} q(V)$ is τ_{i}-open. Hence $q(V)$ is τ_{i} / R-open. Thus q is P-open.

Proposition 2.13. If $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{0}$, then $q:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(X / R, \tau_{1} / R, \tau_{2} / R\right)$ is P-open mapping.
Proof. It suffices to show that $U=q^{-1} q(U)$ for each U is τ_{i}-open. Let $x \in$ $q^{-1} q(U)$. Then $q(x) \in q(U)$ and hence there exists $y \in U$ such that $[x]=[y]$. It implies that $x R y$ and hence $\tau_{i} \cdot \operatorname{cl}(x)=\tau_{j} \cdot \operatorname{cl}(y)$ for some $y \in U$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{0}$, then $x \in \tau_{i} \cdot \operatorname{cl}(x)=\tau_{j} \cdot \operatorname{cl}(y) \subseteq U$. Hence $q^{-1} q(U) \subseteq U$ and then $q^{-1} q(U)=U$.

Theorem 2.14. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$ iff $\left(X / R, \tau_{1} / R, \tau_{2} / R\right)$ is $P T_{2}$.
Proof. Suppose that $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$ and $q(x) \neq q(y)$ in X / R. Then τ_{i}. $\operatorname{cl}(x) \neq \tau_{j} \cdot \mathrm{cl}(y)$, and by Theorem 2.3 there exist $U \in N\left(x, \tau_{j}\right)$ and $V \in N\left(y, \tau_{i}\right)$ such that $U \cap V=\emptyset$. Thus $q(x) \in q(U)$ and $q(y) \in q(V)$. By Lemma 2.6 and Proposition 2.13, $q(U) \in \tau_{j} / R$ and $q(V) \in \tau_{i} / R$. It remains only to show $q(U) \cap q(V)=\emptyset$. But if $q(z) \in q(U) \cap q(V)$, then there exist $x^{*} \in U$ and $y^{*} \in V$ such that $\tau_{i} \cdot \operatorname{cl}(z)=\tau_{j} \cdot \operatorname{cl}\left(x^{*}\right)$ and $\tau_{i} \cdot \operatorname{cl}(z)=\tau_{j} \cdot \mathrm{cl}\left(y^{*}\right)$. Applying Lemma 2.6, $\tau_{j} \cdot \operatorname{cl}\left(y^{*}\right) \subseteq V$ and hence $x^{*} \in U \cap \tau_{i} \cdot \operatorname{cl}(z)=U \cap \tau_{j} \cdot \operatorname{cl}\left(y^{*}\right) \subseteq U \cap V$, a contradiction.

Conversely, suppose that $S: D \rightarrow X$ is a net with $x \in \tau_{i} \cdot \lim (S)$ and $y \in \tau_{j} \cdot \lim (S)$. Then $q(x) \in \tau_{i} \cdot \lim (q \circ S)$ and $q(y) \in \tau_{j} \cdot \lim (q \circ S)$. Since $\left(X / R, \tau_{1} / R, \tau_{2} / R\right)$ is $P T_{2}$, then $q(x)=q(y)$. Thus $\tau_{j} \cdot \mathrm{cl}(x)=\tau_{i} \cdot \mathrm{cl}(y)$ and so $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$.

3. Some basic properties

Theorem 3.1. $A P W T_{2}$ is hereditary property.
Proof. Let $\left(Y, \tau_{1_{Y}}, \tau_{2_{Y}}\right)$ be a bitopological subspace of a $P W T_{2}$-space $\left(X, \tau_{1}, \tau_{2}\right)$. Let $S: D \rightarrow Y$ be a net in Y with $y_{1} \in \tau_{i_{Y}} \cdot \lim (S)$ and $y_{2} \in \tau_{j_{Y}} \cdot \lim (S)$ for some $y_{1}, y_{2} \in Y$. It is clear that $y_{1} \in \tau_{i} \cdot \lim (S)$ and $y_{2} \in \tau_{j} \cdot \lim (S)$. Since
$\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$-space and $y_{1}, y_{2} \in X$, then $\tau_{j} \cdot \operatorname{cl}\left(y_{1}\right)=\tau_{i} \cdot \operatorname{cl}\left(y_{2}\right)$. Thus $\tau_{j_{Y}} \cdot \operatorname{cl}\left(y_{1}\right)=Y \cap \tau_{j} \cdot \operatorname{cl}\left(y_{1}\right)=Y \cap \tau_{i} \cdot \operatorname{cl}\left(y_{2}\right)=\tau_{i_{Y}} \cdot \operatorname{cl}\left(y_{2}\right)$. Thus $\left(Y, \tau_{i_{Y}}, \tau_{2_{Y}}\right)$ is $P W T_{2}$-space and hence $P W T_{2}$ is hereditary property.

Theorem 3.2. $A P W T_{2}$ is a topological property.
Proof. Let $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(Y, \Delta_{1}, \Delta_{2}\right)$ be a P-homeomorphism and let $\left(X, \tau_{1}, \tau_{2}\right)$ be $P W T_{2}$-space. Let $S: D \rightarrow Y$ be a net in Y with $y_{1} \in \Delta_{i} \cdot \lim (S)$ and $y_{2} \in \Delta_{j} \cdot \cdot \lim (S)$. Since f is $1-1$, then there exist $x_{1}, x_{2} \in X$ with $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$. Thus $x_{1}=f^{-1}\left(y_{1}\right) \in \tau_{i} \cdot \lim \left(f^{-1} \circ S\right)$ and $x_{2}=$ $f^{-1}\left(y_{2}\right) \in \tau_{j} \cdot \lim \left(f^{-1} \circ S\right)$, where $f^{-1} \circ S$ is a net in X. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$-space, then $\tau_{j} \cdot \mathrm{cl}\left(x_{1}\right)=\tau_{i} \cdot \mathrm{cl}\left(x_{2}\right)$. Since f is P-homeomorphism and $\tau_{j} \cdot \operatorname{cl}\left(f^{-1}\left(y_{1}\right)\right)=\tau_{i} \cdot \operatorname{cl}\left(f^{-1}\left(y_{2}\right)\right)$, then $\Delta_{j} \cdot \operatorname{cl}\left(y_{1}\right)=\Delta_{i} \cdot \operatorname{cl}\left(y_{2}\right)$. Thus $\left(Y, \Delta_{1}, \Delta_{2}\right)$ is $P W T_{2}$-space.

Theorem 3.3. $A P W T_{2}$ is productive property.
Proof. Necessity. Let $X=\prod_{\alpha} X_{\alpha}$ and $\tau_{1}=\prod_{\alpha} \tau_{\alpha}^{1}$ and $\tau_{2}=\prod_{\alpha} \tau_{\alpha}^{2}$. For each $\alpha \in \Gamma$, there exists a subspace of $\left(\prod_{\alpha} X_{\alpha}, \prod_{\alpha} \tau_{\alpha}^{1}, \prod_{\alpha} \tau_{\alpha}^{2}\right)$ which is P-homeomorphic to $\left(X_{\alpha}, \tau_{\alpha}^{1}, \tau_{\alpha}^{2}\right)$. Then $\left(X_{\alpha}, \tau_{\alpha}^{1}, \tau_{\alpha}^{2}\right)$ is $P W T_{2}$, by Theorems 3.1 and 3.2.

Sufficiency. Let $S: D \rightarrow X$ be a net in $X=\prod_{\alpha} X_{\alpha}$ and $x \in \tau_{i} \cdot \lim (S)$, $y \in \tau_{j} \cdot \lim (S)$ in $\prod_{\alpha} X_{\alpha}$, where $\tau_{i}=\prod_{\alpha} \tau_{\alpha}^{i}, i=1,2$. Then for each $\alpha \in \Gamma, P_{\alpha} \circ S$ is a net in X_{α} and $P_{\alpha}(x) \in \tau_{i} \cdot \lim \left(P_{\alpha} \circ S\right), P_{\alpha}(y) \in \tau_{j} \cdot \lim \left(P_{\alpha} \circ S\right)$, where $P_{\alpha}: \prod_{\alpha} X_{\alpha} \rightarrow X_{\alpha}$ is the projection. Since $\left(X_{\alpha}, \tau_{\alpha}^{1}, \tau_{\alpha}^{2}\right)$ is $P W T_{2}$ for each $\alpha \in \Gamma$, we have $\tau_{\alpha}^{j} \cdot \mathrm{cl}\left(P_{\alpha}(x)\right)=\tau_{\alpha}^{i} \cdot \mathrm{cl}\left(P_{\alpha}(y)\right)$, for each $\alpha \in \Gamma$. Then $\tau_{j} \cdot \mathrm{cl}(x)=\left(\prod_{\alpha} \tau_{\alpha}^{j}\right)$. $\operatorname{cl}(x)=\prod_{\alpha}\left(\tau_{\alpha}^{j} \cdot \operatorname{cl}\left(P_{\alpha}(x)\right)\right)=\prod_{\alpha}\left(\tau_{\alpha}^{i} \cdot \operatorname{cl}\left(P_{\alpha}(y)\right)\right)=\left(\prod_{\alpha} \tau_{\alpha}^{i}\right) \cdot \operatorname{cl}(y)=\tau_{i} \cdot \operatorname{cl}(y)$. Thus $\left(\prod_{\alpha} X_{\alpha}, \prod_{\alpha} \tau_{\alpha}^{1}, \prod_{\alpha} \tau_{\alpha}^{2}\right)$ is $P W T_{2}$.

Theorem 3.4. A bts $\left(X, \tau_{1}, \tau_{2}\right)$ is $P T_{2}$ iff it is $P T_{0}$ and $P W T_{2}$.
Proof. The necessity follows immediately from Theorem 2.4. To prove sufficiency, let $x, y \in X$ with $x \neq y$. Since $\left(X, \tau_{1}, \tau_{2}\right)$ is $P T_{0}$-space, then $\tau_{j} \cdot \operatorname{cl}(x) \neq \tau_{i} \cdot \operatorname{cl}(y)$ and the result follows from condition (ii) of Theorem 2.3.

4. Pairwise Compactness

Definition 4.1. A bts X is called P-paracompact if it is $P T_{2}$ and if every P-open cover of X has a locally finite P-open refinement cover.

Theorem 4.2. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be P-paracompact. Then $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{2}$ iff $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$.

Proof. Sufficiency follows from Theorem 2.8. To prove necessity, suppose $\left(X, \tau_{1}, \tau_{2}\right)$ is $P W T_{2}$ and $x \notin F \in \tau_{i}^{\prime}$. Then for each $y \in F, x \notin \tau_{i} \cdot \operatorname{cl}(y)$ and so $\tau_{j} \cdot \operatorname{cl}(x) \neq \tau_{i} \cdot \mathrm{cl}(y)$. By Theorem 2.3 (ii), there are $U_{y} \in N\left(x, \tau_{i}\right)$ and $V_{y} \in N\left(y, \tau_{j}\right)$ such that $U_{y} \cap V_{y}=\phi$. The family $\mathcal{U}=F^{\prime} \cup\left\{V_{y}: y \in F\right\}$ is a P-open cover of X. Since X is P-paracompact, then there is a locally finite P-open refinement cover $\left\{W_{\alpha}: \alpha \in \Gamma\right\}$ of X. Let $W=\cup\left\{W_{\alpha}: W_{\alpha} \cap F \neq \phi\right\}$. Then we have $F \subset W$ and will show that $x \in\left(\tau_{i} \cdot \operatorname{cl}(W)\right)^{\prime}$. For otherwise, $x \in \tau_{i} \cdot \operatorname{cl}(W)=\cup\left\{\tau_{i} \cdot \operatorname{cl}\left(W_{\alpha}\right): W_{\alpha} \cap F \neq \phi\right\}$ by locally finiteness, and so $x \in \tau_{i} \cdot \operatorname{cl}\left(W_{\alpha^{*}}\right)$ where $W_{\alpha^{*}} \cap F \neq \phi$ for some $\alpha^{*} \in \Gamma$. Thus, $W_{\alpha^{*}} \not \subset F^{\prime}$ and so $W_{\alpha^{*}} \subset V_{y^{*}}$ for some $y^{*} \in F$. But then $x \in \tau_{j} \cdot \operatorname{cl}\left(W_{\alpha^{*}}\right) \subset \tau_{j} \cdot \operatorname{cl}\left(V_{y^{*}}\right)$, a contradiction since $x \in U_{y^{*}}$ and $U_{y^{*}} \cap V_{y^{*}}=\phi$. Thus $F \subset W \in \tau_{j}$ and $x \in\left(\tau_{i} \cdot \mathrm{cl}(W)\right)^{\prime} \in \tau_{i}$ with $W \cap\left(\tau_{i} \cdot \operatorname{cl}(W)\right)^{\prime}=\phi$. Hence $\left(X, \tau_{1}, \tau_{2}\right)$ is $P R_{2}$-space.

Corollary 4.3. A P-compact space is $P R_{2}$ if it is $P W T_{2}$.
Proof. Since every finite subcover is locally finite refinement, it is clear that a P-compactness implies P-paracompactness and the result follows from Theorem 4.2.

Corollary 4.4. A P-paracompact, $W P T_{2}$-space is P-normal space $\left(P R_{3}\right.$-space, for short).

Proof. A P-paracompact, $W P T_{2}$-space is P-paracompact and $P R_{2}$-space and thus $P R_{3}$-space.

Corollary 4.5. A P-compact, $W P T_{2}$-space is $P R_{2 \frac{1}{2}}$ and $P R_{3}$.
Proof. $P R_{2}$ follows from Corollary 4.3 and $P R_{3}$ follows from Corollary 4.4. Thus the space is $P R_{2 \frac{1}{2}}$ as well.

Theorem 4.6. In a $W P T_{2}$-space, τ_{i}-closure of τ_{j}-compact sets are τ_{j}-compact.
Proof. Let $\left(X, \tau_{1}, \tau_{2}\right)$ be $W P T_{2}$ and $A \subset X$ be τ_{j}-compact set. Then if $\mathcal{U}=$ $\left\{U_{\alpha}: \alpha \in \Gamma\right\}$ is an τ_{j}-open cover of $\tau_{i} \cdot \operatorname{cl}(A)$, there exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ such that $A \subset U_{\alpha_{1}} \cup U_{\alpha_{2}} \cup \cdots \cup U_{\alpha_{n}}$. Now if $x \in \tau_{i} \cdot \operatorname{cl}(A)$, there is a net $S: D \rightarrow A$ such that $x \in \tau_{i} \cdot \lim (S)$. Hence by τ_{j}-compactness of A, there is a subnet $T: D \rightarrow A$ such that $y \in \tau_{j} \cdot \lim (T)$ for some $y \in A$. Since $x \in \tau_{i} \cdot \lim (T)$ and $y \in \tau_{j} \cdot \lim (T)$ and $\left(X, \tau_{1}, \tau_{2}\right)$ is $W P T_{2}$, then $\tau_{j} \cdot \operatorname{cl}(x)=\tau_{i} \cdot \operatorname{cl}(y)$ and thus by Lemma 2.6, we have $x \in \tau_{j} \cdot \operatorname{cl}(x)=\tau_{i} \cdot \operatorname{cl}(y) \subset U_{\alpha_{1}} \cup U_{\alpha_{2}} \cup \ldots \cup U_{\alpha_{n}}$. It follows that $\tau_{i} \cdot \operatorname{cl}(A) \subset U_{\alpha_{1}} \cup \ldots \cup U_{\alpha_{n}}$. Hence $\tau_{i} \cdot \operatorname{cl}(A)$ is τ_{j}-compact.

Theorem 4.7. A P-locally compact, $W P T_{2}$-space is $P R_{2 \frac{1}{2}}$.
Proof. It follows from the fact that every P-compact is P-locally compact and by Corollary 4.5.

References

[1] Dunham, W., Weakly Hausdorff spaces, Kyungpook Math. J. 15 (1975), 41-50.
[2] Fletcher, P., Hoyle, H. B. and Patty, C. W., The comparison of topologies, Duke Math. J. 36 (1969), 325-331.
[3] Kariofillis, C. G., On pairwise almost compactness, Ann. Soc. Sci. Bruxelles 100(4) (1986), 129-137.
[4] Kelly, J. C., Bitopological spaces, Proc. London Math. Soc. 13 (1963), 71-89.
[5] Kim, Y. W., Pairwise compactness, Debrecen Tomus 15 FADC 1-4, (1986), 87-90.
[6] Murdeshwar, N. G. and Naimpally, S. A., Quasi-uniform compact spaces, Noordhoff, Groningen 1966.
[7] Pahk, D. H. and Choi, B. D., Notes on pairwise compactness, Kyungpook Math. J. 11 (1971), 45-52.
[8] Reilly, I. L., Zero dimensional bitopological spaces, Indag. Math. 53 (1973), 127-131.

Department of Mathematics, Faculty of Science
Mansoura University, 35516 Mansoura, Egypt
E-mail: mshafei@hotmail.com

[^0]: 2000 Mathematics Subject Classification: 54E55, 54D10, 54D30.
 Key words and phrases: pairwise weakly Hausdorffness, pairwise compactness, pairwise separation axioms, nets.

 Received November 7, 2003, revised May 2004.

