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PROLONGATION OF PAIRS OF CONNECTIONS

INTO CONNECTIONS ON VERTICAL BUNDLES

MIROSLAV DOUPOVEC AND W LODZIMIERZ M. MIKULSKIAbstra
t. Let F be a natural bundle. We introduce the geometrical construction
transforming two general connections into a general connection on the F -vertical
bundle. Then we determine all natural operators of this type and we generalize
the result by I. Kolář and the second author on the prolongation of connections to
F -vertical bundles. We also present some examples and applications.

Introduction

Let Mfm be the category of m-dimensional manifolds and local diffeomor-
phisms, FM be the category of fibered manifolds and fiber respecting mappings
and FMm,n be the category of fibered manifolds with m-dimensional bases and
n-dimensional fibers and locally invertible fiber respecting mappings.

Consider an arbitrary bundle functor F on the category Mfn and denote by
V F its vertical modification. Our starting point is the paper [9] by I. Kolář and
the second author, who studied the prolongation of a connection Γ on an arbitrary
fibered manifold Y →M with respect to an F -vertical functor V F . In particular,
they have introduced an F -vertical prolongation VF Γ of a connection Γ and have
proved that VF is the only natural operator of finite order transforming connections
on Y → M into connections on V FY → M . They have also described some
conditions under which every natural operator of such a type has finite order.
Further, in the case of the vertical Weil functor V A they have proved that the
operator transforming a connection Γ on Y → M into its vertical prolongation
VAΓ is the only natural one.

The aim of this paper is to study the prolongation of a pair of connections
Γ1 and Γ2 on Y → M into a connection on V FY → M . Our main result is
Theorem 1 which describes all such natural operators. As a direct consequence
we prove the generalization of a result by I. Kolář and the second author. In
particular, we show that VF is the only natural operator transforming connections
on Y → M into connections on V FY → M (without any additional assumption
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on the finite order). In Section 1 we discuss the prolongation of connections on
Y → M into connections on GY → M , where G is a bundle functor on FMm,n.
Section 2 is devoted to the construction of a connection on V FY → M by means
of a pair Γ1, Γ2 of connections on Y → M . This geometrical construction will be
based on linear natural operators transforming vector fields on n-manifolds N into
vector fields on FN . In Section 3 we introduce some examples and applications.
We also show, that in the case of a vertical Weil functor V A the connection on
V AY →M depending on a pair Γ1, Γ2 can be constructed by means of the vertical
prolongation of the deviation δ(Γ1,Γ2) of Γ1 and Γ2. Finally, the whole Section 4
is devoted to the proof of Theorem 1.

In what follows Y → M stands for FMm,n-objects and N stands for Mfn-
objects. All manifolds and maps are assumed to be of the class C∞. Unless
otherwise specified, we use the terminology and notation from the book [7].

1. Prolongation of connections to GY → M

Recently it has been clarified that the order of bundle functors on FM is
characterized by three integers (r, s, q), s ≥ r ≤ q and is based on the concept of
(r, s, q)-jet, [7]. Consider two fibered manifolds p : Y → M and p : Y → M and
let r, s ≥ r, q ≥ r be integers. We recall that two FM-morphisms f, g : Y → Y

with the base maps f, g : M →M determine the same (r, s, q)-jet jr,s,q
y f = jr,s,q

y g

at y ∈ Y , p(y) = x, if

jr
yf = jr

yg, j
s
y(f |Yx) = js

y(g|Yx), jq
xf = jq

xg .

The space of all such (r, s, q)-jets will be denoted by Jr,s,q(Y, Y ). By 12.19 in [7],
the composition of FM-morphisms induces the composition of (r, s, q)-jets.

Definition 1 ([9]). A bundle functor G on FMm,n is said to be of order (r, s, q),
if jr,s,q

y f = jr,s,q
y g implies Gf |GyY = Gg|GyY .

Then the integer q is called the base order, s is called the fiber order and r is
called the total order of G.

If X : N → TN is a vector field and F is a bundle functor on Mfn, then we
can define the flow prolongation FX : FN → TFN of X with respect to F by

(1) FX =
∂

∂t

∣∣
0
F (exp tX)

where exp tX denotes the flow of X , [7]. Quite analogously, a projectable vector
field on a fibered manifold Y → M is an FM-morphism Z : Y → TY over the
underlying vector field M → TM , and its flow exp tZ is formed by local FMm,n-
morphisms. Further, if G is a bundle functor on FMm,n, the flow prolongation of
Z with respect to G is defined by

GZ =
∂

∂t

∣∣
0
G(exp tZ) .

By [9], this map is R-linear and preserves bracket.
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Proposition 1 ([9]). If G is of order (r, s, q), then the value of GZ at each point

of GyY depends on jr,s,q
y Z only.

Thus the construction of the flow prolongation of projectable vector fields can
be interpreted as a map

GY : GY ×Y Jr,s,qTY → TGY ,

where Jr,s,qTY denotes the space of all (r, s, q)-jets of projectable vector fields on
Y . Since the flow prolongation is R-linear, GY is linear in the second factor.

Now let Γ : Y → J1Y be a general connection on p : Y → M . In [7] and [9] it
is clarified, that if the functor G on FMm,n has the base order q, then one can
construct the induced connection G(Γ,∆) on GY → M by means of an auxiliary
linear q-th order connection ∆ on the base manifold M . The geometrical con-
struction of the connection G(Γ,∆) is the following. Let X be a vector field on M
with the coordinate components X i(x) and let

dyp = Γp
i (x, y) dx

i

be the coordinate expression of Γ. Then the Γ-lift of X is a vector field ΓX on Y ,
whose coordinate form is

X i(x)
∂

∂xi
+ Γp

i (x, y)X
i(x)

∂

∂yp
.

By Proposition 1, the flow prolongation G(ΓX) depends on the q-jets of X only.
So we obtain a map

(2) GΓ : GY ×M JqTM → TGY ,

which is linear in the second factor. Further, let ∆ : TM → JqTM be a linear
q-th order connection on M . By linearity, the composition

(3) G(Γ,∆) := GΓ ◦ (idGY ×idM
∆) : GY ×M TM → TGY

is the lifting map of a connection on GY → M . Clearly, if the base order of G
is zero, then (2) is a connection on GY → M and we need no auxiliary linear
connection ∆. This is the case of a vertical functor V F , which is defined as
follows. Let F be a bundle functor on Mfn of order s. Its vertical modification
V F is a bundle functor on FMm,n defined by

V FY =
⋃

x∈M

F (Yx) , V F f =
⋃

x∈M

F (fx) ,

where fx is the restriction and corestriction of f : Y → Y over f : M → M to

the fibers Yx and Y f(x), [9]. Obviously, the order of the functor V F is (0, s, 0).

Since the base order of V F is zero, the map (2) defines a connection VF Γ for every
connection Γ on Y →M .
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Definition 2 ([9]). The connection VF Γ is called the F -vertical prolongation of Γ.

If F = TA is a Weil functor, then V T A

is the vertical Weil functor on FMm,n,
which will be denoted by V A. This functor induces the vertical A-prolongation
VAΓ. In particular, for F = T we obtain the classical vertical bundle, which will
be denoted by V instead of V T and the corresponding vertical prolongation of Γ
will be denoted by VΓ. I. Kolář [5] has proved that VΓ is the only natural operator
transforming connections on Y → M into connections on V Y → M , see also [7],
p. 255. Moreover, the following naturality property of the F -vertical prolonga-
tion VF Γ is an interesting generalization of the well known result concerning the
classical vertical prolongation VΓ to an arbitrary bundle functor F on Mfn.

Proposition 2 ([9]). VF is the only natural operator of finite order transforming

connections on Y →M into connections on V FY →M .

Propositon 3 ([9]). If the standard fiber F0(R
n) of F is compact or if F0(R

n)
contains a point z0 such that F (bidRn)(z) → z0 if b→ 0 for any z ∈ F0(R

n), then

every natural operator D transforming connections on Y → M into connections

on V FY →M has finite order.

For example, the assumption of Proposition 3 is satisfied in the case F is a Weil
functor TA. On the other hand, this assumption is not satisfied in the case F is
a cotangent bundle functor T ∗.

Remark 1. It is well known, that there is no natural operator transforming con-
nections on Y → M into connections on J1Y → M , see [5] and [7]. Quite analo-
gously, I. Kolář and the first author have proved that there is no first order natural
operator transforming connections on Y → M into connections on TY → M , [2].
The second author has recently proved the following general result, [13]: If G is
a bundle functor on FMm,n such that G1 : Mfm → FM, G1M = G(M × Rn),
G1(ϕ) = G(ϕ× id Rn) is not of order zero, then there is no natural operator trans-
forming connections on Y → M into connections on GY → M . This means that
in this case, the use of an auxiliary linear connection ∆ on the base manifold M in
the construction (3) is unavoidable. We remark that all natural operators trans-
forming a connection Γ on Y → M and a linear connection ∆ : TM → J1TM

into a connection on J1Y →M are determined in [5].

2. Prolongation of pairs of connections

into connections on vertical bundles

Let F : Mfn → FM be a natural bundle of order s and V F : FMm,n → FM
be the corresponding vertical modification. Suppose we have a natural linear
operator

L : T  TF

transforming vector fields onN into vector fields on FN . Let Γ1,Γ2 : Y ×M TM →
TY be connections on an FMm,n-object Y → M . We are going to construct
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a connection VF,L(Γ1,Γ2) on V FY → M depending canonically on Γ1 and Γ2.
Clearly, such a connection can be written in the form

VF,L(Γ1,Γ2) : V FY ×M TM → TV FY .

Firstly, we define a fiber linear map

(4) (Γ1,Γ2)
F,L : V FY ×M TM → V (V FY )

covering the identity on V FY as follows. Let (u, v) ∈ (V FY ×M TM)x, x ∈ M

and let vΓ1 , vΓ2 (defined on Yx) be the horizontal lifts of v with respect to Γ1

and Γ2 respectively. The difference vΓ1,Γ2 := (vΓ1 − vΓ2) is vertical, so it can be
considered as the vector field on Yx, vΓ1,Γ2 : Yx → T (Yx) = (V Y )x. Using the
linear operator L, we have the vector field

L(vΓ1,Γ2) : F (Yx) = (V FY )x → T
(
(V FY )x

)
=

(
V (V FY )

)
x

which can be considered as (defined on (V FY )x) vertical vector field L(vΓ1,Γ2) :
V FY → V (V FY ). We put

(Γ1,Γ2)
F,L(u, v) = L(vΓ1,Γ2)(u) .

Since L is a linear operator, the map (Γ1,Γ2)
F,L is linear in the second factor.

Further,

VF,L(Γ1,Γ2) := VF Γ1 + (Γ1,Γ2)
F,L : V FY ×M TM → TV FY

is a connection on V FY →M canonically dependent on Γ1 and Γ2.

Definition 3. The connection VF,L(Γ1,Γ2) is called the (F,L)-vertical prolonga-
tion of (Γ1,Γ2).

From the geometrical construction of (Γ1,Γ2)
F,L it follows directly

Lemma 1. We have

(i) (Γ1,Γ2)
F,L = −(Γ2,Γ1)

F,L,

(ii) (Γ1,Γ2)
F,c1L1+c2L2 = c1(Γ1,Γ2)

F,L1 + c2(Γ1,Γ2)
F,L2 , c1, c2 ∈ R,

(iii) VF,L(Γ,Γ) = VF Γ.

The main result of the present paper is the following classification theorem.

Theorem 1. VF,L are the only natural operators transforming pairs of connec-

tions on Y →M into connections on V FY →M .

We have the following corollary of Theorem 1.
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Corollary 1. ṼF (Γ1,Γ2) := 1
2 (VF Γ1+VF Γ2) is the only natural symmetric oper-

ator transforming pairs of connections on Y →M into connections on V FY →M .

Proof of Corollary 1. Let D be such an operator. By Theorem 1, D(Γ1,Γ2) =
VF Γ1 + (Γ1,Γ2)

F,L. By the symmetry of D we get VF Γ1 + (Γ1,Γ2)
F,L = VF Γ2 −

(Γ1,Γ2)
F,L because (Γ2,Γ1)

F,L = −(Γ1,Γ2)
F,L. Then (Γ1,Γ2)

F,L = 1
2 (VF Γ2 −

VF Γ1) and D(Γ1,Γ2) = 1
2 (VF Γ1 + VF Γ2) as well. �

Now we show that one can omit the finite order assumption in Proposition 2.
In this way we obtain the following generalization of this result:

Proposition 2’. VF is the only natural operator transforming connections on

Y →M into connections on V FY →M .

Proof. Write Γ1 = Γ2 = Γ in Corollary 1. Then we obtain ṼF (Γ,Γ) = VF Γ. �

Remark 2. The (F,L)-prolongation is a geometrical construction, which trans-
forms two connections Γ1 and Γ2 on Y → M into a connection VF,L(Γ1,Γ2) on
V FY → M . Another example of a geometrical construction defined on pairs of
connections is the mixed curvature, which is defined as the Frölicher-Nijenhuis
bracket [Γ1,Γ2]. We remark that the mixed curvature is a section Y → V Y ⊗
⊗2T ∗M , see 27.4 in [7].

By Theorem 1, natural operators transforming pairs of connections on Y →M

into a connection on V FY → M depend on linear natural operators L : T  TF

on vector fields. Now we show that it suffices to find the basis of such linear
operators.

Proposition 4. Let L1, . . . , Lk be the basis of linear natural operators T  TF

transforming vector fields on n-manifolds N into vector fields on FN . Then all

natural operators transforming pairs of connections on Y → M into a connection

on V FY →M are of the form

(Γ1,Γ2) 7→ VF Γ1 + c1(Γ1,Γ2)
F,L1 + · · · + ck(Γ1,Γ2)

F,Lk , , ci ∈ R .

Proof. An arbitrary linear operator L : T  TF is of the form L = c1L1 + · · ·+
ckLk, ci ∈ R. Then the assertion follows from Theorem 1 and from Lemma 1. �

3. Applications

Clearly, the flow prolongation (1) is a natural linear operator T  TF . So for an
arbitrary natural bundle F on Mfn there exists a natural operator transforming
pairs of connections Γ1,Γ2 on Y →M into a connection VF,F(Γ1,Γ2) on V FY →
M . Now let F = TA be a Weil functor determined by a Weil algebra A. By [7], all
product preserving functors on Mf are of this type. We have the following action

(5) A× TTAN → TTAN

of the elements of A on the tangent vectors on TAN . Indeed, the multiplication
of the tangent vectors of N by reals is a map m : R × TN → TN . Applying the
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functor TA and using the fact that TAR = A we obtain a map TAm : A×TATN →
TATN . Finally, the canonical identification TATN ∼= TTAN yields the action (5).
So for an arbitrary a ∈ A we have a natural affinor on TAN of the form

af(a)N : TTAN → TTAN .

By [7], all natural linear operators T  TTA transforming vector fields on N into
vector fields on TAN are of the form

af (a) ◦ T A

for all a ∈ A, where T A means the flow operator. Thus, we have

Proposition 5. All natural operators transforming pairs of connections on Y →
M into a connection on V AY → M are of the form

(Γ1,Γ2) 7→ VT A, af(a)◦T A

(Γ1,Γ2)

for all a ∈ A.

It is well known that J1Y → Y is an affine bundle with the associated vector
bundle V Y ⊗ T ∗M . So the difference of two connections Γ1,Γ2 : Y → J1Y is
a map δ(Γ1,Γ2) : Y → V Y ⊗ T ∗M , which is called the deviation of Γ1 and Γ2.
Clearly, this map can be written as

(6) δ(Γ1,Γ2) : Y ×M TM → V Y .

A. Cabras and I. Kolář [1] have constructed the vertical A-prolongation of (6) with
respect to the first factor

(7) VA
1 δ(Γ1,Γ2) : V AY ×M TM → V V AY

fiberwise in the following way. Denoting by q : TM → M the bundle projection,
we can write δz : Yx → (V Y )x for the map y 7→ δ(Γ1,Γ2)(y, z), y ∈ Y , z ∈ TM ,
q(z) = x. Applying TA we obtain a map

(V A
1 δ)z := TA(δz) : TA(Yx) = (V AY )x → TA((V Y )x) = (V AV Y )x

which yields a map V A
1 δ : V AY ×M TM → V AV Y . Further, the canonical

exchange diffeomorphism of Weil functors iB,A
N : TB(TAN) → TA(TBN) from [7]

induces the exchange diffeomorphism iY : V AV Y → V V AY , [1]. Then the map
(7) can be defined by

(8) VA
1 δ(Γ1,Γ2) = iY ◦ V A

1 δ .

On the other hand, we can construct the vertical A-prolongations VAΓ1,V
AΓ2 :

V AY ×M TM → TV AY of Γ1 and Γ2. The deviation of the connections VAΓ1

and VAΓ2 is a map

(9) δ(VAΓ1,V
AΓ2) : V AY ×M TM → V (V AY ) .

A. Cabras and I. Kolář have proved the formula

(10) δ(VAΓ1,V
AΓ2) = VA

1 δ(Γ1,Γ2) .

Consider now a linear map (4), where we put F = TA and L = T A, (Γ1,Γ2)
T A,T A

:
V AY ×M TM → V (V AY ). We have



416 M. DOUPOVEC, W. M. MIKULSKI

Proposition 6. Let T A be the flow operator. Then we have

(11) (Γ1,Γ2)
T A,T A

= VA
1 δ(Γ1,Γ2) .

Proof. Denoting by δ := δ(Γ1,Γ2)(y,−) : (TM)x → (V Y )x, we have δ(v) =
Γ1v − Γ2v for v ∈ (TM)x. Since δ(v) is vertical, it can be considered as a vector
field Yx → T (Yx). Applying the flow operator T A we obtain a vector field T Aδ(v) :
TA(Yx) = (V AY )x → T ((V AY )x) = (V (V AY ))x, which can be considered as a
vertical vector field on V AY . This defines the map
(12)

(Γ1,Γ2)
T A,T A

: V AY ×M TM → V (V AY ) , (Γ1,Γ2)
T A,T A

(u, v) = T Aδ(v)(u) .

In general, given a vector field ξ : N → TN , the flow prolongation T Aξ can be also

constructed as the composition T Aξ = iA,D
N ◦TAξ, where iA,D

N : TATN → TTAN is
the canonical exchange diffeomorphism and D is the Weil algebra of dual numbers
corresponding to the tangent bundle T . By (8) and (12) we have T Aδ = VA

1 δ. �

Remark 3. It is interesting to pose a question whether the formulas (10) and
(11) can be generalized for an arbitrary natural bundle F on Mfn. Given any
connections Γ1 and Γ2 on Y →M , one can construct their F -vertical prolongations
VF Γ1,V

F Γ2 : V FY ×M TM → T (V FY ) and then the deviation

(13) δ(VF Γ1,V
F Γ2) : V FY ×M TM → V (V FY ) .

Further, for any linear natural operator L : T  TF we have the map (4). From
Theorem 1 it follows that

δ(VF Γ1,V
F Γ2) = (Γ1,Γ2)

F,L

for some linear natural operator L. By (10) and (11), if F = TA, then L =
T A. From the proof of Theorem 1 (see the construction (14) of LD) it follows
that even in the general case of an arbitrary natural bundle F we have L = F ,
where F is the flow operator (1). We remark that the construction of the vertical
prolongation (7) and the proof of (11) essentially depend on the existence of the
exchange diffeomorphism iY : V AV Y → V V AY . We recall that the bundle functor
F is said to have the point property, if F (pt) = pt, where pt denote the one-point
manifold. From Theorem 39.2 in [7] it follows directly that if F has the point
property, then there exists a natural equivalence iFY : V FV Y → V V FY if and only
if F is a Weil functor TA. In this case, iFY coincides with iY .

Let T r∗N = Jr(N,R)0 be the space of all r-jets from an n-manifold N into
reals with target 0. Since R is a vector space, T r∗N has a canonical structure of
the vector bundle over N . T r∗N is called the r-th order cotangent bundle and the
dual vector bundle

T (r)N = (T r∗N)∗

is called the r-th order tangent bundle. For every map f : N → N1 the jet
composition A 7→ A ◦ (jr

xf), x ∈ N , A ∈ (T r∗N1)f(x) defines a linear map
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(T r∗N1)f(x) → (T r∗N)x. The dual map T
(r)
x f : (T (r)N)x → (T (r)N1)f(x) is

called the r-th order tangent map of f at x. This defines a vector bundle functor
T (r), which is defined on the whole category Mf of all smooth manifolds and all
smooth maps. Clearly, for r = 1 we obtain the classical tangent functor T and for
r > 1 the functor T (r) does not preserve products. Obviously, we have the canoni-
cal inclusion TN ⊂ T (r)N . Using fiber translations on T (r)N , we can extend every
section X : N → TN into a vector field V (X) on T (r)N . This defines a linear
natural operator V : T  TT (r). The second author has in [10] determined all
natural operators T  TT (r). From this result we obtain directly that all linear
natural operators T  TT (r) transforming vector fields on N into vector fields on
T (r)N are of the form c1T

(r) + c2V , ci ∈ R. Using Proposition 4 we have

Proposition 7. All natural operators transforming pairs of connections on Y →

M into a connection on V T (r)

Y →M are of the form

(Γ1,Γ2) 7→ VT (r)

Γ1 + c1(Γ1,Γ2)
T (r),T (r)

+ c2(Γ1,Γ2)
T (r),V , ci ∈ R .

By Corollary 4.1 in [11], all linear natural operators T  TT ∗ are linear combi-
nations (with real coefficients) of the flow operator T ∗ and the operator V defined
by V (X)ω = 〈ω,Xx〉 · Cω, where C is the Liouville vector field of the cotangent
bundle and X ∈ X (N), ω ∈ T ∗

xN , x ∈ N . Thus, we have

Proposition 8. All natural operators transforming pairs of connections on Y →
M into a connection on V T∗

Y → M are of the form

(Γ1,Γ2) 7→ VT∗

Γ1 + c1(Γ1,Γ2)
T∗,T ∗

+ c2(Γ1,Γ2)
T∗,V , ci ∈ R .

Using [11], we can generalize this result in the following way. First, we have r
linear natural operators E1, . . . , Er : T  TT r∗ defined by

Ek(X)(jr
xγ) =

〈
X(x), j1xγ

〉
·

d

dt

∣∣
0
(jr

xγ + tjr
x(γ)k) , k = 1, . . . , r

where X ∈ X (N) is a vector field on N , jr
xγ ∈ T r∗

x N and (γ)k is the k-th power
of the map γ : N → R. Further, if we interpret X as the differentiation, then
(Xγ − Xγ(x))(γ)s−1 is a function on N which maps the point x ∈ N into zero.
So we can define linear natural operators F2, . . . , Fr : T  TT r∗ by

Fs(X)(jr
xγ) =

d

dt

∣∣
0

[
jr
xγ + tjr

x

(
(Xγ −Xγ(x))(γ)s−1

)]
, s = 2, . . . , r .

By [11], the flow operator T r∗ and the operators E1, . . . , Er, F2, . . . , Fr form the
basis over R of the vector space of all linear natural operators T  TT r∗. By
Proposition 4 we have
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Proposition 9. All natural operators transforming pairs of connections on Y →
M into a connection on V T r∗

Y →M are of the form

(Γ1,Γ2) 7→ VT r∗

Γ1 + c0(Γ1,Γ2)
T r∗,T r∗

+ c1(Γ1,Γ2)
T r∗,E1 + · · · + cr(Γ1,Γ2)

T r∗,Er

+ d2(Γ1,Γ2)
T r∗,F2 + · · · + dr(Γ1,Γ2)

T r∗,Fr , ci, di ∈ R .

We remark that there are many papers which classify all natural operators
T  TF for particular natural bundles F , see e.g. [4], [6], [10]-[12], [14] and [15].
For example, P. Kobak [4] has determined all natural operators T  TTT ∗ and
J. Tomáš [14] has classified all natural operators T  TT ∗T r

k , where T r
kN =

Jr
0 (Rk, N) is the bundle of k-dimensional velocities of order r. If we restrict

ourselves only to linear natural operators, we can easily determine all natural
operators transforming pairs of connections on Y → M into a connection on
V FY →M .

4. Proof of Theorem 1

From now on Rm,n is the trivial bundle Rm ×Rn over Rm. The usual coordi-
nates on Rm,n will be denoted by x1, . . . , xm, y1, . . . , yn. If D̃ is a natural operator
of our type, then for given connections Γ1 and Γ2 on an FMm,n-object Y → M

the difference

∆(Γ1,Γ2) = D̃(Γ1,Γ2) − VF Γ1 : V FY ×M TM → V (V FY )

is a fiber linear map covering the identity on V FY . So it remains to describe all
natural operators of the type as ∆. Consider a natural operator D of the type as
∆. We prove some auxiliary lemmas.

Lemma 2. Suppose that

D
( m∑

i=1

dxi ⊗
∂

∂xi
+

m∑

i=1

n∑

j=1

∑

|α|+|β|≤K

Γj
1iαβx

αyβdxi ⊗
∂

∂yj
,

m∑

i=1

dxi ⊗
∂

∂xi
+

m∑

i=1

n∑

j=1

∑

|α|+|β|≤K

Γj
2iαβx

αyβdxi ⊗
∂

∂yj

)
(u, v) = 0

for any K ∈ N, any (u, v) ∈ (V F Rm,n)0 × T0R
m, any Γj

1iαβ and any Γj
2iαβ for

i, j, α, β as indicated. Then D = 0.

Proof. It follows from a corollary of non-linear Peetre theorem (Corollary 19.8
in [7]). �

Lemma 3. Suppose that

D
( m∑

i=1

dxi ⊗
∂

∂xi
+ yβdxi0 ⊗

∂

∂yj0
,

m∑

i=1

dxi ⊗
∂

∂xi

)
(u, v) = 0
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and

D
( m∑

i=1

dxi ⊗
∂

∂xi
,

m∑

i=1

dxi ⊗
∂

∂xi
+ yβdxi0 ⊗

∂

∂yj0

)
(u, v) = 0

for any (u, v) ∈ (V F Rm,n)0 × T0R
m, any n-tuple β and any i0 = 1, . . . ,m and

j0 = 1, . . . , n. Then D = 0.

Proof. Using the invariance of D with respect to the base homotheties t id Rm ×
id Rn for t > 0 we get the homogeneity condition

D
( m∑

i=1

dxi ⊗
∂

∂xi
+

m∑

i=1

n∑

j=1

∑

|α|+|β|≤K

t|α|+1Γj
1iαβx

αyβdxi ⊗
∂

∂yj
,

m∑

i=1

dxi ⊗
∂

∂xi
+

m∑

i=1

n∑

j=1

∑

|α|+|β|≤K

t|α|+1Γj
2iαβx

αyβdxi ⊗
∂

∂yj

)
(u, v)

= tD
( m∑

i=1

dxi ⊗
∂

∂xi
+

m∑

i=1

n∑

j=1

∑

|α|+|β|≤K

Γj
1iαβx

αyβdxi ⊗
∂

∂yj
,

m∑

i=1

dxi ⊗
∂

∂xi
+

m∑

i=1

n∑

j=1

∑

|α|+|β|≤K

Γj
2iαβx

αyβdxi ⊗
∂

∂yj

)
(u, v) .

By the homogeneous function theorem, this type of homogeneity gives that

D
( m∑

i=1

dxi ⊗
∂

∂xi
+

m∑

i=1

n∑

j=1

∑

|α|+|β|≤K

Γj
1iαβx

αyβdxi ⊗
∂

∂yj
,

m∑

i=1

dxi ⊗
∂

∂xi
+

m∑

i=1

n∑

j=1

∑

|α|+|β|≤K

Γj
2iαβx

αyβdxi ⊗
∂

∂yj

)
(u, v)

depends linearly on Γj

1i(0)β and Γj

2i(0)β and is independent of Γj
1iαβ and Γj

2iαβ for

|α| > 0. So, the assumptions of the lemma imply the assumption of Lemma 2,
which completes the proof. �

Lemma 4. Suppose that

D
( m∑

i=1

dxi ⊗
∂

∂xi
+ dxi0 ⊗ Y,

m∑

i=1

dxi ⊗
∂

∂xi

)
(u, v) = 0

and

D
( m∑

i=1

dxi ⊗
∂

∂xi
,

m∑

i=1

dxi ⊗
∂

∂xi
+ dxi0 ⊗ Y

)
(u, v) = 0

for any (u, v) ∈ (V F Rm,n)0 ×T0R
m, any i0 = 1, . . . ,m and any vector field Y on

Rn. Then D = 0.

Proof. Obviously, the assumptions of the lemma imply the assumptions of
Lemma 3, which completes the proof. �
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Lemma 5. Suppose that

D
( m∑

i=1

dxi ⊗
∂

∂xi
+ dx1 ⊗

∂

∂y1
,

m∑

i=1

dxi ⊗
∂

∂xi

)
(u, v) = 0

and

D
( m∑

i=1

dxi ⊗
∂

∂xi
,

m∑

i=1

dxi ⊗
∂

∂xi
+ dx1 ⊗

∂

∂y1

)
(u, v) = 0

for any (u, v) ∈ (V F Rm,n)0 × T0R
m. Then D = 0.

Proof. Any non-vanishing vector field Y on Rn is locally ∂
∂y1 modulo a local

diffeomorphism ϕ : Rn → Rn. There exists a diffeomorphism ψ : Rm → Rm

sending xi0 into x1. Using the invariance of D with respect to FMm,n-map
ψ × ϕ we can see that the assumptions of the lemma imply the assumptions of
Lemma 4 with non-vanishing Y . Then the regularity of D implies the assumptions
of Lemma 4, which completes the proof. �

Lemma 6. Suppose that

D
( m∑

i=1

dxi ⊗
∂

∂xi
+ dx1 ⊗ Y,

m∑

i=1

dxi ⊗
∂

∂xi

)
(u, v) = 0

for any (u, v) ∈ (V F Rm,n)0 ×T0R
m, and any vector field Y on Rn. Then D = 0.

Proof. The assumption of the lemma implies the first assumption of Lemma 5.
Further, using the invariance of D with respect to FMm,n-map (x1, . . . , xm,−y1+
x1, y2, . . . , yn) we obtain the second assumption of Lemma 5. Finally, Lemma 5
completes the proof. �

Lemma 7. Suppose that

D
( m∑

i=1

dxi ⊗
∂

∂xi
+ dx1 ⊗ Y,

m∑

i=1

dxi ⊗
∂

∂xi

)(
u,

∂

∂x1
(0)

)
= 0

for any u ∈ (V F Rm,n)0, and any vector field Y on Rn. Then D = 0.

Proof. Any vector v ∈ T0R
m with d0x

1(v) 6= 0 is proportional to ∂
∂x1 (0) modulo

a diffeomorphism ψ : Rm → Rm preserving x1. Using the invariance of D with
respect to FMm,n-map ψ× idRn we see that the assumption of the lemma implies
the assumption of Lemma 6 with d0x

1(v) 6= 0. Then using the regularity of D we
obtain the assumption of Lemma 6, which completes the proof. �

Let Y be a vector field on an n-manifold N . Define a vector field LD(Y ) on
F (N) by
(14)

LD(Y )(u) = D
( m∑

i=1

dxi ⊗
∂

∂xi
+ dx1 ⊗ Y,

m∑

i=1

dxi ⊗
∂

∂xi

)(
u,

∂

∂x1
(0)

)
∈ TuF (N)

for any u ∈ (V F (Rm × N))0 = F (N), where we use the obvious identification
Vu(V F (Rm ×N)) = TuF (N).
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Lemma 8. The Mfn-natural operator LD : T  TF is linear.

Proof. The Mfn-naturality is a simple consequence of the invariance of D with
respect to FMm,n-maps of the form id Rm ×ϕ. Further, by the invariance of D
with respect to the base homotheties t id Rm × idRn for t > 0 we get the homogene-
ity condition D(tY )(u) = tD(Y )(u). So, the linearity is an immediate consequence
of the homogeneous function theorem. �

Lemma 9. We have

D
( m∑

i=1

dxi ⊗
∂

∂xi
+ dx1 ⊗ Y,

m∑

i=1

dxi ⊗
∂

∂xi

)(
u,

∂

∂x1
(0)

)

=
( m∑

i=1

dxi ⊗
∂

∂xi
+ dx1 ⊗ Y,

m∑

i=1

dxi ⊗
∂

∂xi

)F,LD(
u,

∂

∂x1
(0)

)

for any u ∈ (V F Rm,n)0 and Y ∈ X (Rn), where (Γ1,Γ2)
F,L was defined in Sec-

tion 2.

Proof. Observe that vΓ = v+Y if Γ =
∑m

i=1 dx
i ⊗ ∂

∂xi +dx1⊗Y and v = ∂
∂x1 (0).

�

Now, using Lemma 7 we see that D(Γ1,Γ2) = (Γ1,Γ2)
F,LD

. Therefore D̃ =

VF,L∆

and the proof of Theorem 1 is complete. �
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