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ARCHIVUM MATHEMATICUM (BRNO)

Tomus 42 (2006), 11 – 23

ON SOME NONLINEAR ALTERNATIVES OF

LERAY-SCHAUDER TYPE AND FUNCTIONAL INTEGRAL

EQUATIONS

B. C. DHAGE

Abstract. In this paper, some new fixed point theorems concerning the
nonlinear alternative of Leray-Schauder type are proved in a Banach algebra.
Applications are given to nonlinear functional integral equations in Banach
algebras for proving the existence results. Our results of this paper comple-
ment the results that appear in Granas et. al. [12] and Dhage and Regan [10].

1. Introduction

Nonlinear functional integral equations have been discussed in the literature
extensively, for a long time. See for example, Subramanyam and Sundersanam [15],
Ntouyas and Tsamatos [14], Dhage and Regan [10] and the references therein,
Recently, the present author, in a series of papers [4, 6] initiated the study of
nonlinear integral equations in a Banach algebra via fixed point techniques. In
this papers we study a new class of nonlinear functional integral equations for
the existence theory via a new nonlinear alternative of Leray-Schauder-type to
be developed in this paper. In particular, given a closed and bounded interval
J = [0, 1] ⊂ R, R denotes the set of all real numbers, we study the existence of
the nonlinear functional integral equation (in short FIE)

(1.1) x(t) = k
(

t, x(µ(t))
)

+
[

f
(

t, x(ν(t))
)]

(

q(t) +

∫ σ(t)

0

g
(

s, x(η(s))
)

ds
)

for t ∈ J , where q : J → R, f, g, h : J × R → R and µ, ν, σ, η : J → J .
The FIE (1.1) is general in the sense that it includes the integral equations

that have been studied in Dhage and Jahagirdar [9] and Dhage and Regan [10].
The special cases of the FIE (1.1) occur in some physical and biological processes,
queing theory etc. For the details of such problems one is referred to Deimling [3],
Chandrasekhar [2]. The rest of the paper is organized as follows. In section 2 and
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3 we shall develop a new fixed point theory and in section 4 we shall prove the
existence results for the FIE (1.1) under Carathéodory condition.

2. Fixed point theory

It is known since long time that the fixed point theory has some nice applica-
tions to nonlinear differential and integral equations for proving the existence and
uniqueness theorems. An interesting topological fixed point result that has been
widely used while dealing with the nonlinear equations is the following variant of
nonlinear alternative due to Laray and Schauder [16].

Theorem 2.1. Let U and U denote respectively the open and closed subset of a

convex set K of a normed linear space X such that 0 ∈ U and let N : Ū → K be

a compact and continuous operator. Then either

(i) the equation x = Nx has a solution in Ū , or

(ii) there exists a point u ∈ ∂U such that u = λNu for some λ ∈ (0, 1), where

∂U is a boundary of U .

Another important fixed point theorem that has been commonly used in the
theory of non-linear differential and integral equations is the following generaliza-
tion of Banach contraction mapping principle proved in Browder [1].

Theorem 2.2. Let S be a closed convex and bounded subset of a Banach Space

X and let T : S → S be a nonlinear contraction. Then T has a unique fixed point

x∗ and the sequence {T nx}, x ∈ X, of successive iterations converges to x∗.

Most recently the present author in [4] proved a fixed point theorem involving
three operators in a Banach algebra by blending the Banach fixed point theorem
with that of Schauder’s fixed point principle.

Theorem 2.3 (Dhage [4]). Let S be a closed, convex and bounded subset of a

Banach algebra X and let A,B,C : S → S be three operators such that

(a) A and C are Lipschitzians with the Lipschitz constants α and β respec-

tively,

(b)
(

I−C
A

)−1
exists on B(S), I being the identity operator on X, and the

operator I−C
A

: X → X is defined by
(

I−C
A

)

x = x−Cx
Ax

,

(c) B is completely continuous, and

(d) AxBy + Cx ∈ S ∀ x, y ∈ S.

Then the operator equation

(2.1) AxBx+ Cx = x

has a solution, whenever αM + β < 1, where M = ‖B(S)‖ = sup{‖Bx‖ : x ∈ S}.

It is shown in Dhage [4] that the above Theorem 2.3 is useful in the existence
theory of certain nonlinear integral equations in Banach algebras. Now we shall
obtain the nonlinear-alternative versions of Theorem 2.3 and a fixed point theorem
established is Nashed and Wong [13] under suitable conditions, Before going to
the main results, we give some preliminary definitions needed in sequel.



NONLINEAR ALTERNATIVES AND INTEGRAL EQUATIONS 13

Definition 2.1. A mapping T : X → X is called D-Lipschitzian if there exists
a continuous and nondecreasing function φT : R

+ → R
+ satisfying

(2.2) ‖Tx− Ty‖ ≤ φT (‖x− y‖)

for all x, y ∈ X with φT (0) = 0. Sometimes we call the function φT a D-function

of T on X . If φT (r) = αr for some constant α > 0, then T is called a Lipschitzian

with a Lipschitz constant α and further if α < 1, then T is called a contraction

with the contraction constant α. Again if φT satisfies φT (r) < r, r > 0, then T is
called a nonlinear D-contraction on X .

Remark 2.1. It is clear that every D-contraction implies nonlinear contraction
and nonlinear contraction implies D-Lipschitzian but the reverse implications may
not hold.

Definition 2.2. An operator T : X → X is called compact if T (X) is a compact
subset of X , and it is called completely continuous if it is continuous and for
any bounded subset S of X , T (S) is a compact subset of X.

It is clear that every compact operator is totally bounded but the converse may
not be true. However the two notions are equivalent on a bounded subset of X .

Theorem 2.4. Let U and Ū denote respectively the open bounded and closed

bounded subset of a Banach algebra X, and let A,C : X → X and B : U → X be

three operators satisfying

(a) A and C are with the D-functions φA and φC respectively,

(b)
(

I
A

)−1
exists, I being the identity operator on X, and the operator I

A
:

X → X is defined by
(

I
A

)

x = x
Ax

,

(c) B is completely continuous, and

(d) MφA(r) + φC(r) < r for r > 0, where M = ‖B(U)‖.

Then either

(i) the operator equation AxBx + Cx = x has a solution in U , or

(ii) there exists an u ∈ ∂U such that

λA
(u

λ

)

Bu+ λC
(u

λ

)

= u

for some λ ∈ (0, 1), where ∂U in the boundary of U .

Proof. Now the desired conclusion of the theorem follows by an application of

Theorem 2.1, where the operator N is defined by

(2.3) N =

(

I − C

A

)−1

B .

From hypothesis (d), it follows that φC(r) < r for r > 0, and so by Theorem 2.2

(I−C)−1 exists on X . Again the operator
(

I
A

)−1
exists in view of hypothesis (b).
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Therefore the operator
(

I−C
A

)−1
=

(

I
A

)−1
(I − C)−1 exists on U . We show that

the operator N given by (2.3) is well defined. We claim that

(I − C

A

)−1

B : U → X .

It is enough to prove that

B(U) ⊂

(

I − C

A

)

(X) .

Let y ∈ U be fixed point. Define a mapping Ay : X → X by

(2.4) Ay(x) = AxBy + Cx .

Let x1, x2 ∈ X . Then by (a),

‖Ay(x1) − Ay(x2)‖ ≤ ‖Ax1By −Ax2By‖ + ‖Cx1 − Cx2‖

≤ ‖Ax1 −Ax2‖‖By‖ + ‖Cx1 − Cx2‖

≤ ‖B(U)‖φA(‖x1 − x2‖) + φC(‖x1 − x2‖)

≤MφA(‖x1 − x2‖) + φC(‖x1 − x2‖)

= ψ(‖x1 − x2‖) ,

where ψ(r) = MφA(r) + φC(r) < r if r > 0.
Hence by an application of Theorem B yields that there is a unique point x∗ ∈ X

such tat

Ax∗By + Cx∗ = x∗

or

Ax∗By = (I − C)x∗ ,

i.e.,

By =
(I − C

A

)

x∗ .

Hence
(

I−C
A

)−1
B defines a mapping

(I − C

A

)−1

B : U → X .

Next we show that
(

I−C
A

)−1
is a continuous mapping on B(U ). Let {xn} be

any sequence in B(U ) such that xn → x.
Let

(I − C

A

)−1

(xn) = yn ⇒ xnAyn + Cyn = yn

and
(I − C

A

)−1

(x) = y ⇒ xAy + cy = y .
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Now

‖yn − y‖ = ‖xnAyn + Cyn − xAy − Cy‖

≤ ‖xnAyn − xAy‖ + ‖Cyn − Cy‖

≤ ‖xnAyn − xnAy‖ + ‖xnAy − xAy‖ + ‖Cyn − Cy‖

≤ ‖xn‖‖Ayn −Ay‖ + ‖Ay‖‖xn − x‖ + ‖Cyn − Cy‖

≤MφA(‖yn − y‖) + ‖Ay‖‖xn − x‖ + φC(‖yn − y‖) .

Therefore

lim sup
n

‖yn − y‖ ≤MφA
(

lim sup
n

‖yn − y‖
)

+ φC
(

lim sup
n

‖yn − y‖
)

.

If lim sup
n

‖yn−y‖ 6= 0, then we get a contradiction to the hypothesis (d). Hence

lim
n

∥

∥

∥

(I − C

A

)−1

(xn) −
(I − C

A

)−1

(x)
∥

∥

∥
= lim

n
‖yn − y‖ = 0 .

This shows that the operator ( I−C
A

)−1 is continuous on B(U). Since N is a
composite of a continuous and a completely continuous mappings, it is completely
continuous operator on U . Now an application of Theorem 2.1 yields that either

the operator equation
(

I−C
A

)−1
Bx = x has a solution in U or there exists a point

u ∈ ∂U such that λ
(

I−C
A

)−1
Bu = u for some λ ∈ (0, 1). This further implies that

either the operator equation AxBx + Cx = x has a solution in U or there exists
an u ∈ ∂U such that λA

(

u
λ

)

Bu + λC
(

u
λ

)

= u for some λ ∈ (0, 1), that is, either
conclusion (i) or (ii) hold. This completes the proof. �

Remark 2.2. We note that in a Banach algebra X , the operator
(

I
A

)−1
exists if

I
A

is well defined and one-to-one.

An interesting special case of Theorem 2.4 in the applicable form is

Corollary 2.1. Let B(0, r) and B[0, r] respectively denote the open and closed balls

centered at origin of radius r > 0 in a Banach algebra X and let A,B,C : X → X

be three operators such that

(a) I
A

is well defined and one-to-one,

(b) A and C are Lipschitzians with the Lipschitz constants α and β respec-

tively,

(c) B is completely continuous, and

(d) αM + β < 1, where M = ‖B(B[0, r])‖.

Then either

(i) the operator equation AxBx + Cx = x has a solution in B[0, r], or

(ii) there exists an u ∈ X with ‖u‖ = r such that λA
(

u
λ

)

Bu+ λC
(

u
λ

)

= u

for some λ ∈ (0, 1).

When C ≡ 0, we obtain
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Theorem 2.5. Let U and U denote respectively the open bounded and closed

bounded subset of a Banach algebra X, and let A : X → X and B : U → X be

three operators satisfying

(a) A is D-Lipschitzian with the D-function φA,

(b)
(

I
A

)−1
exists, I being the identity operator on X, and the operator I

A
:

X → X is defined by
(

I
A

)

x = x
Ax

,

(c) B is completely continuous, and

(d) MφA(r) < r for r > 0, where M = ‖B(U)‖.

Then either

(i) the operator equation AxBx = x has a solution in U , or

(ii) there exists an u ∈ ∂U such that

λA
(u

λ

)

Bu = u

for some λ ∈ (0, 1), where ∂U in the boundary of U .

Corollary 2.2 (Dhage and Regan [10]). Let B(0, r) and B[0, r] denote respectively

the open and closed balls centered at origin of radius r > 0 in a Banach algebra X

and let A,B : X → X be three operators such that

(a) I
A

is well defined and one-to-one,

(b) A is Lipschitzian with the Lipschitz constants α,

(c) B is completely continuous, and

(d) αM < 1, where M = ‖B(B[0, r])‖.

Then either

(i) the operator equation AxBx = x has a solution in B[0, r], or

(ii) there exists a u ∈ X with ‖u‖ = r such that λA
(

u
λ

)

Bu = u

for some λ ∈ (0, 1).

3. Another direction

In this section, we obtain some nonlinear alternatives of Leray-Schauder type
involving the two operators in a Banach space X . A slight generalization of a
nonlinear alternative established in Dhage and Regan [10] is

Theorem 3.1. Let U and U denote respectively the open and closed subsets of a

Banach space X such that 0 ∈ U , and let A,B : X → X and B : U → X satisfy

(a) A is nonlinear D-contraction, and

(a) B is compact and continuous.

Then either

(i) the operator equation Ax+Bx = x has a solution in U , or

(ii) there exists an u ∈ ∂U such that λA(u
λ
) + λBu = u for λ ∈ (0, 1),

where ∂U is the boundary of U .
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Proof. The desired conclusion of the theorem follows by a direct application of

Theorem 2.1 to the mapping N = (I − A)−1B. Since A is nonlinear contrac-
tion, by Theorem 2.2, the sequence {Anx}, x ∈ X , of successive iteration of A
at x converges to the unique fixed point of A, Therefore (I − A)−1 exists and is
continuous on X . Now the map (I − A)−1B which is a composite of a continu-
ous and completely continuous operator, is completely continuous on X , and in
particular on U . Hence by an application of Theorem 2.1 yields that either the
operator equation (I −A)−1Bx = x has a solution in U , or the operator equation
λ(I − A)−1Bx = x has a solution on the boundary ∂Ū of U for some λ ∈ (0, 1).
This further implies that either (i) the operator equation Ax+Bx = x has a solu-
tion in U , or (ii) there exists an u ∈ ∂U such that λA(u

λ
)+λBu = u for λ ∈ (0, 1).

This completes the proof. �

An interesting corollary to Theorem 3.1 is

Corollary 3.1. (Dhage and Regan [10]) Let B(0, r) and B[0, r] respectively denote

the open and closed ball in a Banach space X and let A,B : X → X satisfy

(a) A is contraction, and

(b) B is completely continuous.

Then either

(i) the operator equation Ax+Bx = x has a solution in B[0, r], or

(ii) there exists an element u ∈ X with ‖u‖ = r such that λA(u
λ
) + λBu = u

for some λ ∈ (0, 1).

Theorem 3.2. Let U and U respectively denote the open and closed ball in a Ba-

nach space X such that 0 ∈ U . Let A,B : X → X and B : U → X satisfy

(a) A is linear and bounded,

(b) there exists a positive integer p such that Ap is a nonlinear D-contraction,

and

(c) B is compact and continuous.

Then either the conclusion (i) or (ii) of Theorem 3.1 holds.

Proof. The desired conclusion of the theorem follows by a direct application of

Theorem 2.1 to the mapping N : U → X defined by

N = (I −A)−1B .

Now

(I −A)−1 = (I −Ap)−1
(

p−1
∑

j=0

Aj
)

.

By hypothesis (b), Ap is a nonlinear contraction, so by Theorem 2.2, the map-
ping (I−Ap)−1 exists on X and consequently the mapping (I−A)−1 exists on X .
Moreover from hypothesis (a) it follows that (I − A)−1 is continuous on X . The
rest of the proof is similar to Theorem 3.1. We omit the details. �
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A special case to Theorem 3.2 in its applicable form is

Corollary 3.2. Let B(0, r) and B[0, r] denote respectively the open and closed ball,

in a Banach space X centered at origin and of radius r > 0. Let A,B : X → X

satisfy

(a) A is linear and bounded,

(b) there exists a positive integer p such that Ap is a contraction, and

(c) B is completely continuous.

Then either conclusion (i) or (ii) of Theorem 3.2 holds.

Finally we give an important remark which is useful in the applications to the
theory of nonlinear differential equations.

Remark 3.1. Note that in Theorems 2.4 and 2.5, the sets U and U are assumed
to be the open and closed subsets in a Banach space X respectively, however, it
is enough to assume that U and U are subsets of some closed convex subset K of
the Banach algebra X . The same argument is also valid for Theorems 3.1 and 3.2.

4. Existence theory

We shall seek the solution of the FIE (1.1) in the space BM(J,R) of all bounded
and measurable real-valued functions on J . Define a norm ‖ · ‖ in BM(J,R) by

(4.1) ‖x‖ = max
t∈J

|x(t)| .

Clearly BM(J,R) becomes a Banach algebra with this supremum norm. We
need the following definition in the sequel.

Definition 4.1. A mapping β : J × R → R is said to satisfy L1-Carathéodory

condition or simply is called L1-Carathéodory if

(a) t→ β(t, x) is measurable for each x ∈ R,

(b) x→ β(t, x) is almost everywhere continuous for t ∈ J, and

(c) for each real number r > 0, there exists a function hr ∈ Ll(J,R) such that

|β(t, x)| ≤ hr(t) a.e. t ∈ J

for all x ∈ R with |x| ≤ r.

We consider the following assumptions:

(H0) The functions µ, ν, σ, η : J → J are continuous.

(H1) The function k : J × R → R is continuous and there exists a bounded
function γ : J → R with bound ‖γ‖ such that

|k(t, x) − k(t, y)| ≤ γ(t)|x− y| a.e. t ∈ J

for all x, y ∈ R.

(H2) The function x →
x

f(t, x)
is well defined for all t ∈ J and

x

f(t, x)
=

y

f(t, y)
⇒ x = y for all t ∈ J .
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(H3) The function f : J ×R → R\{0} is continuous and there exists a bounded
function α : J → R with bound ‖α‖ such that

|f(t, x) − f(t, y)| ≤ α(t)|x − y| a.e. t ∈ J .

(H4) q : J → R is continuous.

(H5) g is L1-Carathéodory.

(H6) There exists a continuous and nondecreasing function ψ : [0,∞) → [0,∞)
and a function p ∈ L1(J,R), p(t) > 0 a.e. t ∈ J such that

|g(t, x)| ≤ p(t)ψ(|x|) a.e. t ∈ J

for all x ∈ R.

Theorem 4.1. Suppose that the assumptions (H0)–(H6) hold. Further if there

exists a real number r > 0 such that

(4.2)







‖α‖
(

Q+ ‖p‖L1ψ(r)
)

+ ‖γ‖ < 1,

r >
K+F (Q+‖p‖

L1ψ(r))

1−[‖α‖(Q+‖p‖
L1ψ(r))+‖γ‖] ,

where Q = supt∈J |q(t)|, K = supt∈J |k(t, 0)| and F = supt∈J |f(t, 0)|, then the

FIE (1.1) has a solution on J .

Proof. Define an open ball B(0, r) centered at origin of radius r > 0, where r

satisfies the inequalities in (4.2). Now consider the mapping A,B,C on BM(J,R)
defined by

(4.3)



























Ax(t) = f
(

t, x(ν(t))
)

, t ∈ J,

Bx(t) = q(t) +

∫ σ(t)

0

g
(

s, x(η(s))
)

ds, t ∈ J, and

Cx(t) = k
(

t, x(µ(t))
)

, t ∈ J .

Then the problem FIE (1.1) is equivalent to the operator equation,

Ax(t)Bx(t) + Cx(t) = x(t) , t ∈ J .

We shall show that the mappings A,B and C satisfy all the conditions of
Corollary 2.1 on BM(J,R). Clearly A,B and C define the mappings A,B,C :
BM(J,R) → BM(J,R). As f(t, x) 6= 0 for all (t, x) ∈ J × R, the operator I

A

is well defined on BM(J,R). Further in view of hypotheis (H2) it follows that
the operator I

A
is one-to-one on BM(J,R). We shall show that A and C are

Lipschitzians on BM(J,R). Let x, y ∈ BM(J,R). Then by (H1) and (H3),

|Ax(t) −Ay(t)| = |f
(

t, x(ν(t))
)

− f
(

t, y(ν(t))
)

|

≤ α(t)|x
(

ν(t)
)

− y
(

ν(t)
)

|

≤ ‖α‖‖x− y‖ ,
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i.e.,

‖Ax−Ay‖ ≤ ‖α‖‖x− y‖ ,

and

|Cx(t) − Cy(t)| = |k
(

t, x(µ(t))
)

− k
(

t, y(µ(t))
)

|

≤ γ(t)|x
(

µ(t)
)

− y
(

µ(t)
)

|

≤ ‖γ‖‖x− y‖ ,

i.e.,

‖Cx− Cy‖ ≤ ‖γ‖ ‖x− y‖ .

Thus A and B are Lipschitzians with the Lipschitz constants ‖α‖ and ‖γ‖
respectively. Now we shall show that B is completely continuous mapping on
B[0, r]. Since σ and η are continuous and g is Carathéodory, it follows from
dominated convergence theorem that B is continuous on B[0, r]. See Granas et.
al. [12]. Let {xn} be a sequence in B[0, r], then ‖xn‖ ≤ r for all n ∈ N; so by (H5),

‖Bxn‖ ≤ sup
t∈J

|q(t)| + sup
t∈J

∫ σ(t)

0

|g
(

s, xn(η(s))
)

| ds

≤ Q+

∫ 1

0

hr(s) ds

= Q+ ‖hr‖L1 ,

which shows that {Bxn} is a uniformly bounded sequence in BM(J,R). Next we
show that {Bxn} is a equi-continuous set. Let t, τ ∈ J . Then we have

|Bxn(t) −Bxn(τ)| ≤ |q(t) − q(τ)| +
∣

∣

∣

∫ σ(t)

σ(τ)

g
(

s, x(η(s))
)

ds
∣

∣

∣

≤ |q(t) − q(τ)| + |m(t) −m(τ)| ,

where m(t) =

∫ σ(t)

0

hr(s) ds.

Since q andm are uniformly continuous functions on J , we conclude that {Bxn}
is a equi-continuous set. Hence B is a completely continuous mapping from B[0, r]
into BM(J,R) by Arzela-Ascoli theorem. Again by (H5),

M = ‖B(B[0, r])‖

= sup{‖Bx‖ : x ∈ B[0, r]}

= sup
x∈B[0,r]

{

sup
t∈J

|Bx(t)|
}

≤ sup
x∈B[0,r]

{

sup
t∈J

|q(t)| + sup
t∈J

∫ σ(t)

0

|g
(

s, x(η(s))
)

| ds
}
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≤ sup
x∈B[0,r]

{

Q+

∫ 1

0

p(s)ψ(‖x‖) ds
}

≤ Q+ ‖p‖L1ψ(r)

and so

‖α‖M + ‖γ‖ = ‖α‖
(

Q+ ‖p‖L1ψ(r)
)

+ ‖γ‖ < 1

in view of first inequality in condition (4.2).
Thus all the conditions of Corollary 2.1 are satisfied and hence an application

of it yields that either the conclusion (i) or (ii) holds. Now we shall show that the
conclusion (ii) is not possible. Indeed if u is a solution of the operator equation

λA

(

u

λ

)

Bu+ λC

(

u

λ

)

= u

with ‖u‖ = r for some λ ∈ (0, 1), then u is also a solution of the FIE

(4.4) u(t) = λ
[

k
(

t,
1

λ
u(µ(t))

)

]

+λ
[

f
(

t,
1

λ
u(ν(t))

)

](

q(t)+

∫ σ(t)

0

g
(

s, u(η(s))
)

ds
)

for some λ ∈ (0, 1).
But for any solution u of (4.4) with ‖u‖ = r and λ ∈ (0, 1) one has

|u(t)| ≤
∣

∣

∣
λk

(

t,
1

λ
(µ(t))

)

− λk(t, 0)
∣

∣

∣
+ λ|k(t, 0)|

+
(∣

∣

∣
λf

(

t,
1

λ
u(ν(t))

)

− λf(t, 0)
∣

∣

∣
+ λ|f(t, 0)|

)

×
(

|q(t)| +

∫ σ(t)

0

|g(s, u(η(s)))| ds
)

≤ γ(t)|u
(

µ(t)
)

| + |k(t, 0)|

+ (|α(t)||u(ν(t)| + |f(t, 0)|)
(

|q(t)| +

∫ 1

0

p(s)ψ
(

|u(η(s))|
)

ds
)

≤ ‖γ‖‖u‖+K + (‖α‖‖u‖ + F )
(

Q+ ‖p‖L1ψ(‖u‖)
)

,

‖u‖ ≤
[

‖α‖
(

Q+ ‖p‖L1ψ(‖u‖)
)

+ ‖γ‖
]

‖u‖ + F
(

Q+ ‖p‖L1ψ(‖u‖)
)

+K .

Letting ‖u‖ = r in the above inequality yields

r ≤
K + F (Q+ ‖p‖L1ψ(r))

1 − [‖α‖(Q+ ‖p‖L1ψ(r)) + ‖γ‖]
,

which is the contradiction to the second inequality in (4.2). Therefore the conclu-
sion (i) holds, and consequently the FIE (1.1) has a solution u on J with ‖u‖ ≤ r.
This completes the proof. �

As an application, we consider the following nonlinear functional differential
equation (in short FDE)

(4.5)

(

x(t) − k(t, x(µ(t)))

f(t, x(ν(t)))

)′

= g
(

t, x(η(s))
)

a.e. t ∈ J
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satisfying the initial condition

(4.6) x(0) = ξ ∈ R ,

where k, g : J × R → R, f : J × R → R\{0} and µ, ν, η : J → J are continuous
with ν(t) = 0 = µ(0).

By a solution of the FDE (4.5)–(4.6) we mean an absolutely continuous function
x : J → R that satisfies the equations (4.5)–(4.6) on J .

Let C(J,R) denote the space of all continuous functions on J . Clearly C(J,R) ⊂
BM(J,R). The existence result for the FDE (4.5)–(4.6) is

Theorem 4.2. Suppose that the assumptions (H1)–(H3) and (H3)–(H5) hold.

Further if there exists a real number r > 0 such that the inequalities in (4.2) hold

with Q =
∣

∣

ξ−k(0,ξ)
f(0,ξ)

∣

∣, then the FDE (4.5)–(4.6) has a solution on J .

Proof. The FDE (4.5)–(4.6) is equivalent to the integral equation.

(4.7) x(t) = k
(

t, x(µ(t))
)

+
[

f
(

t, x(ν(t))
)]

(ξ − k(0, ξ)

f(0, ξ)
+

∫ t

0

g
(

s, x(η(s))
)

ds
)

for t ∈ J .
Now the desired conclusion of the theorem follows by a direct application of

Theorem 4.1 with q(t) = ξ−k(0,ξ)
f(0,ξ) for all t ∈ J , σ(t) = t and the space BM(J,R)

replaced with C(J,R). The proof is complete. �

Further in an analogous way to Theorem 4.1, we can obtain the existence results
for the functional integral equations,

x(t) = q(t) +

∫ µ(t)

0

f
(

s, x(ν(s))
)

ds+

∫ σ(t)

0

g
(

s, x(η(s)
)

ds

and

x(t) = q(t) +

∫ t

0

k
(

t, s)x(ν(s)
)

ds+

∫ σ(t)

0

g
(

s, x(η(s)
)

ds

by the application of Corollaries 3.1 and 3.2, respectively. Some of the results in
this direction may be found in Dhage [7] and Dhage and Ntouyas [8].

Remark 4.1. Finally while concluding this paper, we remark if k(t, x) ≡ 0 on
J × R, then Theorem 4.1 reduces to the existence results proved in Dhage and
Regan [10] for the functional integral equation

x(t) =
[

f
(

t, x(ν(t)
)]

(

q(t) +

∫ σ(t)

0

g
(

s, x(η(s))
)

ds
)

.
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