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ON UNIVERSALITY OF SEMIGROUP VARIETIES

MARIE DEMLOVÁ AND VÁCLAV KOUBEK

To Professor Jǐŕı Rosický on his 60th birthdayAbstra
t. A category K is called α-determined if every set of non-isomorphic K-
objects such that their endomorphism monoids are isomorphic has a cardinality less
than α. A quasivariety Q is called Q-universal if the lattice of all subquasivarieties
of any quasivariety of finite type is a homomorphic image of a sublattice of the
lattice of all subquasivarieties of Q. We say that a variety V is var-relatively alg-
universal if there exists a proper subvariety W of V such that homomorphisms of
V whose image does not belong to W contains a full subcategory isomorphic to
the category of all graphs. A semigroup variety V is nearly J -trivial if for every
semigroup S ∈ V any J -class containing a group is a singleton. We prove that
for a nearly J -trivial variety V the following are equivalent: V is Q-universal; V is
var-relatively alg-universal; V is α-determined for no cardinal α; V contains at least
one of the three specific semigroups. Dually, for a nearly J -trivial variety V the
following are equivalent: V is 3-determined; V is not var-relatively alg-universal; the
lattice of all subquasivarieties of V is finite; V is a subvariety of one of two special
finitely generated varieties.

1. Introduction

Questions about the representative power of algebraic structures determined by
a given category are quite interesting in general. Here we concentrate on algebraic
structures determined by morphisms of a semigroup variety. Adams and Dziobiak
[4] surprisingly connected this topic with the representative power of the lattice
of all subquasivarieties. The aim of this paper is to develop these connections for
semigroup varieties. We continue on the results by Adams and Dziobiak [5], Sapir
[30, 31, 32] and the authors of this paper [9, 10, 11].

First, let us recall notions describing algebraic structures determined by mor-
phisms. For a category K, let End(A) denote the endomorphism monoid of a K-
-object A (i.e. End(A) consists of all endomorphisms of A with the operation
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composition and the identity morphism). We say that K-objects A and B are
equimorphic if End(A) and End(B) are isomorphic. The category K is called
α-determined (where α is a cardinal) if every set of non-isomorphic equimorphic
K-objects has cardinality less than α.

The opposite property is an alg-universality. A concrete category K is called
alg-universal if there exists a full embedding F of the category GR into K (GR

consists of all undirected graphs and their homomorphisms). If, moreover, FG is
finite – i.e., underlying set of FG is finite – for every finite graph G, then K is
ff -alg-universal. If for every monoid M there exists a K-object A such that M

and End(A) are isomorphic then we say that K is monoid-universal. Hedrĺın and
Pultr proved

Theorem 1.1 [19, 20, 28]. Every alg-universal category is monoid universal. If,
moreover, K is ff -alg-universal then for every finite monoid M there exists a finite
K-object A such that M and End(A) are isomorphic.

Rosický [29] constructed complete, cocomplete, well powered and co-well pow-
ered concrete monoid universal category that it is not alg-universal.

Many examples of alg-universal categories and their basic properties are pre-
sented in the monograph [28] by Pultr and Trnková.

Hedrĺın-Sichler theorem says that the properties of determinacy and alg-univer-
sality are mutually exclusive. In fact

Theorem 1.2 [20, 28]. If K is an alg-universal category then for every monoid
M there exists a proper class of non-isomorphic K-objects with endomorphism
monoids isomorphic to M.

Thus any alg-universal category is α-determined for no cardinal α. Hence
alg-universal categories and α-determined categories are on the opposite ends of
a spectrum of representative power of categories.

For many categories the proof that they are not alg-universal is based on the
existence of ‘trivial’ morphisms. For example, the variety of lattices or the variety
of semilattices are not alg-universal because any constant mapping between lattices
or semilattices is a homomorphism. This motivates the following definitions. We
say that a class I of K-morphisms is an ideal if f ◦ g ∈ I whenever f ∈ I or g ∈ I.
Let C be a class of K-objects then a K-morphism f : A −→ B factorizes through C
if there exist C ∈ C and K-morphisms g : A −→ C and h : C −→ B with f = h ◦ g.
Clearly, the class I(C) of all K-morphisms factorizing through C is an ideal. We
say that a functor F : L −→ K is an I-relatively full embedding for an ideal I in K

if

F is faithful;
Ff /∈ I for all L-morphisms f ;
if f : FA −→ FB is a K-morphism for L-objects A and B then either
f = Fg for some L-morphism g : A −→ B or f ∈ I.

A concrete category K is I-relatively alg-universal if for a given ideal I of K there
exists an I-relatively full embedding F : GR −→ K. If, moreover, FG is finite for
every finite graph then we say that K is I-relatively ff -alg-universal. Observe that
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a category K is alg-universal (or ff -alg-universal) if and only if K is I-relatively
alg-universal (or I-relatively ff -alg-universal) for the empty ideal I.

We recall that a category of algebraic systems of the same type and their ho-
momorphisms is a variety (or a quasivariety) if it is closed under all products, sub-
systems and homomorphic images (or all products, subsystems and ultraproducts,
respectively). Any variety is a quasivariety, but the converse does not hold. For
a class C of algebraic systems of the same type, let Var (C) denote the least variety
containing C and Qua(C) denote the least quasivariety containing C. We modify rel-
ative alg-universality for varieties and quasivarieties of algebraic systems. We say
that a variety (or quasivariety) V is W-relatively alg-universal where W is a proper
subvariety of V if V is I(W)-relatively alg-universal. A variety or a quasivariety V is
called var-relatively alg-universal if it is W-relatively alg-universal for some proper
subvariety W of V. Analogously we can define W-relatively ff -alg-universality and
var-relatively ff -alg-universality. Many var-relatively alg-universal varieties are
α-determined for no cardinal α. On the other hand, if we combine results from
[26] and [27] we obtain a finitely generated I(W)-relatively ff -alg-universal variety
V of dp-algebras that is α-determined for some finite cardinal α where W is the
union of proper subvarieties of V. Relationship of var-relatively alg-universality to
determinacy remains an open problem.

Many papers are devoted to the lattice of subvarieties or the lattice of subqua-
sivarieties. Thus for a quasivariety Q, let QL(Q) be the lattice of all subquasiva-
rieties of Q and for a variety V, let VL(V) be the lattice of all subvarieties of V.
The properties of QL(Q) were examined for many quasivarieties Q. One of the
most interesting problems are lattice identities satisfied by QL(Q) for a concrete
quasivariety Q. This motivated Sapir [32] to define the notion of Q-universality.
A quasivariety Q of finite type is called Q-universal if QL(R) is a homomorphic
image of a sublattice of QL(Q) for every quasivariety R of algebraic systems of
finite type. It is known that if Q is Q-universal then the free lattice over a count-
able set is isomorphic to a sublattice of QL(Q) (thus QL(Q) satisfies no non-trivial
lattice identity) and the size of QL(Q) is 2ℵ0 . Sapir [32] proved that the variety of
all three-nilpotent commutative semigroups is Q-universal. Let P (ω0) denote the
set of all finite subsets of natural numbers. Dziobiak proved

Theorem 1.3 [12, 13]. If a quasivariety Q of algebraic systems of finite type
contains a family {AX | X ∈ P (ω0)} of finite systems such that

(P1) A∅ is a terminal algebraic system of Q;
(P2) if X,Y, Z ∈ P (ω0) with X = Y ∪ Z then AX ∈ Qua{AY ,AZ};
(P3) if X,Y ∈ P (ω0) with X 6= ∅ and AX ∈ Qua{AY } then X = Y ;
(P4) if X ∈ P (ω0) is such that AX is an algebraic subsystem of B × C for

finite algebraic systems B and C from Qua{AY | Y ∈ F} for a finite
F ⊆ P (ω0), then there exist Y, Z ∈ P (ω0) such that if Y 6= ∅ then AY is
an algebraic subsystem of B, if Z 6= ∅ then AZ is an algebraic subsystem
of C and X = Y ∪ Z,

then there exists a sublattice of QL(Q) isomorphic to the lattice of all ideals in the
free lattice over a countably infinite set.
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Adams and Dziobiak strengthened this result by proving

Theorem 1.4 [2]. If a quasivariety Q of finite type contains a family {AX | X ∈
P (ω0)} of finite algebraic systems satisfying the conditions (P1), (P2), (P3) and
(P4) then Q is Q-universal.

The result below by Adams and Dziobiak connects alg-universality to Q-univer-
sality.

Theorem 1.5 [4]. If a quasivariety Q of finite type is ff -alg-universal then it is
also Q-universal. In fact, the lattice QL(Q) contains a sublattice isomorphic to
the lattice of all ideals of the free lattice over a countably infinite set.

In many instances the proof that a quasivariety Q of finite type is var-relatively
alg-universal can be modified to a proof that Q is Q-universal (precisely that Q

contains a family {AX | X ∈ P (ω0)} of finite algebraic systems satisfying the
conditions (P1), (P2), (P3) and (P4)). But Koubek and Sichler [27] constructed
a finitely generated I(W)-relatively ff -alg-universal variety of dp-algebras where
W is the union of proper subvarieties that is not Q-universal.

In [3], Adams and Dziobiak gave also a tool for proving that a quasivariety is
not Q-universal. They called a finite algebraic system A critical if

A /∈ Qua{B | B is a proper subsystems of A}.

Theorem 1.6 [3]. Let Q be a locally finite quasivariety of finite type. If Q con-
tains only finitely many non-isomorphic critical algebras then Q is not Q-universal.

A summary of results concerning Q-universality is given in the survey paper by
Adams, Adaricheva, Dziobiak and Kravchenko [1].

We are interested in the relationship of the above notions for semigroup va-
rieties. Hedrĺın and Lambek [18, 28] proved that a variety of all semigroups is
alg-universal (clearly, it is not ff -alg universal). Koubek and Sichler [25] charac-
terized alg-universal varieties of semigroups. Schein [33] proved that the variety of
semilattices is 3-determined and then he generalized this result [34] showing that
the variety of normal bands is 5-determined. Sapir [32] proved that the variety
of commutative three nilpotent semigroups is Q-universal, in [30] Sapir charac-
terized semigroup varieties V with finite QL(V) and in [31] Sapir characterized
semigroup varieties V with countable QL(V). These results motivate the following
open problems:

(a) Characterize var-relatively alg-universal semigroup varieties.
(b) Characterize Q-universal semigroup varieties.
(c) Characterize semigroup varieties that are α-determined for some cardi-

nal α.

The aim of this paper is to contribute to a solution of these problems. We be-
lieve that their solution would clarify a connection between var-relatively alg-
-universality, Q-universality and determinacy.

We recall that a semigroup S is

J -trivial if every J -class of S is a singleton;
a band if every element of S is idempotent (i.e. s2 = s for all s ∈ S).
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For a semigroup S, let us denote r(S) the union of all subgroups of S. A semigroup
variety V is called nearly J -trivial if for every semigroup S ∈ V any J -class of S

having the non-empty intersection with r(S) is a singleton. Let S denote the
variety of all semigroups and B the variety of all bands.

The specific aim of this paper is to solve problems (a), (b) and (c) for nearly
J -trivial semigroup varieties. The second section recalls the results concerning of
the band varieties and generalizes these results to semigroup varieties consisting
of inflations of bands. The third section investigates the bottom of the lattice
VL(S) and describes the location of nearly J -trivial varieties in VL(S). For this
purpose we recall results about varieties generated by special semigroups M1, M2

and M3 (these are defined in the third section). We define another special semi-
group M4 and the main result of this section is that a nearly J -trivial semigroup
variety V either contains one of the semigroups M2, M4, M

op
4 or V ⊆ Var (M1)

or V ⊆ Var (Mop
1 ). The last section solves problems (a), (b) and (c) for the va-

riety Var (M4) (and by the duality also for the variety Var (Mop
4 )). This solves

our problems for nearly J -trivial semigroup varieties. Main results of this paper
are summarized in Theorems 5.1 and 5.2 in Conclusion, where we also suggest
a direction of further research.

Finally, we would like to turn the attention to the following three open general
problems:

(d) Is there a var-relatively alg-universal variety (or quasivariety) that is α-
determined for some cardinal α? Or is any var-relatively alg-universal
variety α-determined for no cardinal α?

(e) Does there exist a Q-universal quasivariety Q such that no sublattice of
QL(Q) is isomorphic to the lattice of all ideals of the free lattice over an
infinite countable set? Or does there exist a Q-universal quasivariety Q

such that no family {AX | X ∈ P (ω0)} of finite algebraic systems from Q

satisfies the conditions (P1), (P2), (P3), and (P4)?
(f) Does there exist a monoid universal variety that is not alg-universal?

We hope that resolving problems (a), (b) and (c) will help in understanding and
solution of the latter three problems.

2. Varieties consisting of inflations of bands

The lattice VL(B) of all band varieties was described independently by Birjukov
[6], Fennemore [14] and Gerhard [15]. The bottom of VL(B) is shown in Figure
1, all connecting lines there indicate covers. The varieties are determined by the
associative and idempotent identities and the identity in the brackets.

We recall the terminology of band varieties:

semigroups in the variety SL are called semilattices;
semigroups in the variety LZ (or RZ) are called left-zero semigroups (or
right-zero semigroups);
semigroups in the variety RCB are called rectangular bands;
semigroups in the variety LNB (or RNB) are called left normal bands (or
right normal bands);
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LSN[xyzxz=xyz] RB[xyxzx=xyzx]
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LZ[xy=x]
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SL[xy=yx] RZ[xy=y]

kkkkkkkkkkkkkkk

T[x=y]

Fig. 1. The bottom of the lattice VL(B).

semigroups in the variety NB are called normal bands;
semigroups in the variety SLZ (or SRZ) are called semilattices of left-zero
semigroups (or semilattices of right-zero semigroups);
semigroups in the variety LQN (or RQN) are called left quasi-normal bands
(or right quasi-normal bands);
semigroups in the variety RB are called regular bands;
semigroups in the variety LSN (or RSN) are called left semi-normal bands
(or right semi-normal bands).

Next, we recall known results concerning varieties of bands.

Theorem 2.1. The variety SLZ of semilattices of left-zero semigroups and the
variety SRZ of semilattices of right-zero senigroups are 3-determined. The variety
RNB of right quasi-normal bands and the variety LNB of left quasi-normal bands
are 5-determined, see [8].

The variety V of bands is var-relatively alg-universal if and only if LSN ⊆ V or
RSN ⊆ V, see [9].

The variety LSN of all left semi-normal bands and the variety RSN of all right
semi-normal bands are Q-universal, see [5].

For normal bands, the lattice QL(NB) is finite and thus NB is not Q-universal,
see [16].

The cardinality of QL(V) is not countable for a band variety V if and only if
SLZ ⊆ V or SRZ ⊆ V, see [30, 31].
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The announcement of Sapir’s result that the variety LQN of all left quasinormal
bands and the variety RNB of all right quasinormal bands are Q-universal can be
found in [5].

We recall that atoms in the lattice VL(S) are the band varieties SL, LZ and RZ,
and the variety ZS of all zero-semigroups (determined by the identity xy = uv)
and the varieties ABp for a prime p of all p-elementary Abelian groups (ABp is
determined by identities xy = yx and xpy = y).

Next we study quasivarieties of the form ZS ∨ Q in QL(S), where Q is a band
quasivariety. Let Z = (Z, ·) be the two-element zero-semigroup with Z = {z, 0}.
Then ZS = Qua(Z) = Var (Z) and hence ZS 6⊆ V for a semigroup variety V if and
only if V satisfies the identity xn = x for some n > 1.

We recall several notions given by Koubek and Radovanská in [24]. Let K be
a concrete category. We say that K is amenable if for every K-object A with the
underlying set A and for every bijection f : A −→ B there exist a K-object B with
the underlying set B and a K-isomorphism φ : A −→ B with underlying mapping
f . An isomorphism φ : End(A) −→ End(B) for K-objects A and B with underlying
sets A and B is a strong isomorphism if there exists a bijection ψ : A −→ B such
that φ(f) ◦ ψ = ψ ◦ f for all endomorphisms f ∈ End(A). We say that K has
strong isomorphisms if every isomorphism φ : End(A) −→ End(B) for equimorphic
K-objects is strong. We say that K-objects A and B with the same underlying
set are strongly equimorphic if End(A) = End(B). A category K is strongly α-
determined for a cardinal α if every set of non-isomorphic strongly equimorphic
K-objects has a cardinality less than α. We recall

Proposition 2.2 [24]. Let K be an amenable category having strong isomor-
phisms. Then K is α-determined if and only if K is strongly α-determined.

In fact, [8] contains the proof of the following corollary.

Corollary 2.3. The variety SLZ of semilattices of left-zero semigroups and the
variety SRZ of semilattices of right-zero senigroups are strongly 3-determined. The
variety RQN of right quasi-normal bands and the variety LQN of left quasi-normal
bands are strongly 5-determined.

Next we recall several folklore semigroup notions, see [7]. Let S = (S, ·) be a
semigroup, then s ∈ S is called irreducible if s = uv for no u, v ∈ S. We say that
S is an inflation of a semigroup T = (T, ·) if there exists a subsemigroup of S on a
set U ⊆ S isomorphic to T, every element s ∈ S \U is irreducible and there exists
an idempotent endomorphism f of S with Im(f) = U . Then we say that f is an
inflation endomorphism. In this case, S is isomorphic to a subsemigroup of T×Zα

for some cardinal α. Let S and T be classes of semigroups, we say that S is an
inflation of T -semigroups if for every semigroup S ∈ S there exists a semigroup
T ∈ T such that S is an inflation of T. The next theorem gives properties of
the least quasivariety containing all inflations of Q-semigroups where Q is a band
quasivariety.

Theorem 2.4. Let Q be a band quasivariety. Then Q ∨ ZS is an inflation of
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Q-semigroups, Q ∨ ZS covers Q in the lattice QL(S) and

(1) Q ∨ ZS is α-determined for a cardinal α if and only if Q is α-determined
(then Q ∨ ZS is strongly α-determined);

(2) Q ∨ ZS is Q-universal if and only if Q is Q-universal;
(3) Q ∨ ZS is W-relatively alg-universal for a proper subvariety of Q ∨ ZS if

and only if W ∩ Q is a proper subvariety of Q and Q is W ∩ Q-relatively
alg-universal;

(4) Q ∨ ZS is W-relatively ff -alg-universal for a proper subvariety of Q ∨ ZS

if and only if W∩Q is a proper subvariety of Q and Q is W∩Q-relatively
ff -alg-universal.

Proof. First we give a proof of the folklore statement characterizing the quasi-
variety Q ∨ ZS in QL(S). Let Q be a band quasivariety. Then it is easy to verify
that inflations of Q-semigroups are closed under products and subsemigroups. Let
S be an inflation of T ∈ Q and let ∼ be a congruence of S such that ∼ is identical
on Im(f) for the inflation endomorphism f of S. Then S/ ∼ is an inflation of T.
Hence we obtain that inflations of Q-semigroups form a quasivariety and if Q is a
variety then they form also a variety. Thus Q ∨ ZS consists of all inflations of Q-
semigroups. If S is an inflation of a Q-semigroup and S /∈ Q then Z is isomorphic
to a subsemigroup of S and hence Q∨ZS covers Q in the lattice QL(S). Let Q1 be
a subquasivariety of Q∨ZS. Let us denote Q2 = Q1∩Q. Then Q2 is a quasivariety
and either Q2 = Q1 or Z ∈ Q1. In the second case, Q1 consists of inflations of
Q2-semigroups. Hence either Q2 = Q1 or Q1 = Q2 ∨ ZS. Thus QL(Q ∨ ZS) is
isomorphic to the lattice QL(Q) × 2 where 2 is a two-element lattice. Hence (2)
follows.

Since Q is a subquasivariety of Q ∨ ZS then from the fact that Q ∨ ZS is α-
determined it follows that Q is α-determined. Assume that Q is α-determined.
By Proposition 1.7 from [24], B has strong isomorphisms, thus Q has strong iso-
morphisms. Since Q is amenable we conclude that Q is strongly α-determined. If
S = (S, ·) is a band then every constant mapping from S into itself is an endomor-
phism of S that is a left zero of End(S). Further, any idempotent endomorphism
f ∈ End(S) is either a left zero of End(S) or there exist at least two distinct left
zeros g ∈ End(S) with f ◦ g = g. If S = (S, ·) is an inflation of a band T such that
the inflation endomomorphism f of S is not an automorphism of S, then

(1) a constant mapping from S into itself with value s ∈ S is an endomorphism
S if and only if s ∈ Im(f);

(2) the set of all left zeros of S is the set of all constant endomorphisms of S;
(3) for every s ∈ S \ Im(f) there exists an idempotent endomorphism g ∈

End(S) with Im(g) = {s, s2};
(4) for an idempotent endomorphism g of S there exists s ∈ S \ Im(f) with

Im(g) = {s, s2} if and only if there exists exactly one left zero g′ of S with
g ◦ g′ = g′ = g′ ◦ g 6= g and for every idempotent endomorphism h of S

with g ◦ h = h we have either h = g′ or h ◦ g = g;
(5) f = g for an idempotent endomorphism g of S if and only if g◦h = h for all

left zeros h ∈ End(S) and if g′ ∈ End(S) is an idempotent endomorphism
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with g′ ◦ h = h for all left zeros h ∈ End(S) then g′ ◦ g = g;
(6) the monoid End(T) is isomorphic to the subsemigroup {f ◦ g ◦ f | g ∈

End(S)} of End(S) (see [24]);
(7) if S′ is an inflation of T′ such that f ′ is an inflation endomorphism of S′

and if there exists an isomorphism φ : Im(f) −→ Im(f ′) between subsemi-
groups of S and S′ such that |f−1(s)| = |(f ′)−1(φ(s))| for all s ∈ Im(f),
then there exists an isomorphism φ′ : S −→ S′ such that φ′(s) = φ(s) for
all s ∈ Im(f).

First we prove that Q∨ZS has strong isomorphisms. Let Si = (S, ·) be an inflation
of Ti with an inflation endomorphism fi for i = 1, 2 where T1,T2 ∈ Q such that
there exists a monoid isomorphism φ : End(S1) −→ End(S2). For s ∈ Im(f1), let
gs be the constant mapping with value s. By (1), gs is an endomorphism of S1

and, by (2), φ(gs) is a constant endomorphism of S2. Let us denote ψ(s) the value
of φ(gs). By (1) and (2), ψ is a bijection from Im(f1) onto Im(f2) because φ is
an isomorphism. By (3), for every s ∈ S1 \ Im(f1) there exists an idempotent
endomorphism gs with Im(gs) = {s, s2}. By (4), φ(gs) is an idempotent endo-
morphism of S2 such that Im(φ(gs)) = {s′, (s′)2} for some s′ ∈ S2 \ Im(f2) with
ψ(s2) = (s′)2. Set ψ(s) = s′, then ψ is a bijection because φ is a bijection. For
every s ∈ S1 and f ∈ End(S1) we have

ψ ◦ (f ◦ gs) = ψ ◦ gf(s) = φ(gf(s)) ◦ ψ = φ(f) ◦ φ(gs) ◦ ψ = φ(f) ◦ ψ ◦ gs

and hence φ is a strong isomorphism. Thus, by Proposition 1.6 from [24], for every
family {Ai | i ∈ I} of equimorphic semigroups from Q ∨ ZS there exists a family
{Bi | i ∈ I} of strongly equimorphic semigroups from Q ∨ ZS such that Ai is
isomorphic to Bi for every i ∈ I.

Consider a family {Si | i ∈ I} of equimorphic semigroups from Q ∨ ZS. By the
above statement, we can assume that they are strongly equimorphic. By (5), if Si

is an inflation of Ti with an inflation endomorphism fi for all i ∈ I where Ti ∈ Q

for all i ∈ I then, by (5) Im(fi) = Im(fj) for all i, j ∈ I. Let {Ui | i ∈ I} be a
family of subsemigroups of Si on Im(fi) for all i ∈ I. Then, by (6), {Ui | i ∈ I}
are strongly equimorphic semigroups in Q and hence I/ ∼ has cardinality smaller
than α where i ∼ j if and only if Ui is isomorphic to Uj . If ψi,j is an isomorphism
between Ui and Uj such that g◦ψi,j = ψi,j ◦g for all g ∈ {fi◦h◦fi | h ∈ End(Si)},
then by (3), (4) and (7), it can be extended to an isomorphism between Si and Sj .
Thus if {Si | i ∈ I} is a family of non-isomorphic equimorphic semigroups from
Q ∨ ZS then the cardinality of I is less than α and (1) is proved.

If Q is W-relatively alg-universal (or W-relatively ff -alg-universal) then W is
a proper subvariety of Q and thus W is a proper subvariety of Q ∨ ZS and thus
Q∨ZS is W-relatively alg-universal (or W-relatively ff -alg-universal). Conversely,
assume that W is a proper subvariety of Q ∩ ZS and that F : GR −→ Q ∨ ZS is
I(W)-relatively full embedding. First we prove that Q ∩ W is a subvariety of Q.
If W ⊆ Q then W = W ∩ Q is a subvariety of Q. If W 6⊆ Q then ZS ⊆ W and, by
(1), there exists a proper subquasivariety W1 of Q with W = W1 ∨ ZS. Consider
a semigroup S ∈ W1 ⊆ W. If T is a homomorphic image of S then T ∈ W. Since
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S is a band we conclude that T is also a band and hence Var (T) ∧ZS = T. From
this it follows that T ∈ W1 and whence W1 is a variety.

Consider a semigroup S = (S, ·) ∈ Q ∨ ZS. Clearly, either S contains an
irreducible element or S ∈ Q. Thus if S contains an irreducible element x then S

is an inflation of T where T ∈ Q is not isomorphic to S. Consider mappings fx

and gx from S into itself such that

fx(y) =

{

y if y 6= x ,

x2 if y = x ,
gx(y) =

{

x2 if y 6= x ,

x if y = x .

It is easy to verify that both fx and gx are endomorphisms of S. Clearly, the
subsemigroup of S on Im(gx) is isomorphic to Z and T is isomorphic to a sub-
semigroup of the subsemigroup of S on Im(fx).

Consider a rigid graph G such that FG has at least three elements. If FG

contains an irreducible element x then subsemigroups of FG on subsets Im(fx)
and Im(gx) belong to W because for any non-identical endomorphism f of FG,
the subsemigroup of FG on Im(f) necessarily belongs to W. Hence Z,T ∈ W and
therefore FG ∈ W – this is a contradiction. Thus we conclude

(A) if G is a rigid graph such that FG has at least three elements then FG ∈
Q \ W.

It is easy to see that there exists a natural number n0 depending on F such
that FG has at least three elements whenever G has at least n0 vertices. As a
consequence of Hedrĺın-Sichler theorem we deduce that Q 6= Q ∩ W.

It is well known that there exists a full embedding G1 : GR −→ GR such that
G1G is connected and has no loops for any graph G, G1G is finite for all finite
graphs G andG1G has at least n0 vertices for all graphs G, see [28]. By [22, 23], for
every connected graph H without loops there exists a full embedding GH : GR −→
GR such that for every graph G and every edge e of GHG there exists an induced
subgraph of GHG isomorphic to H containing the edge e. Moreover, if H is finite
then GHG is a finite graph for all finite graphs G. By an easy combination, there
exists a full embedding G : GR −→ GR such that GG is a finite graph for all finite
graphs, GG has at least n0 vertices for all graphs G and for every graph G there
exist a rigid graph G1 and an injective graph homomorphism ιG : GG −→ G1. If
we prove that F ◦GG ∈ Q for all graphs G, then F ◦G : GR −→ Q is I(W ∩ Q)-
relatively full embedding and if FG is finite for every finite graph G then F ◦GG

is finite for every finite graph G. Thus the proof (3) and (4) will be complete.
Let G be a graph. To prove that F ◦ GG ∈ Q consider that there exists an

irreducible element x of F ◦ GG. Consider an endomorphism f of F ◦ GG such
that

f(y) =

{

y if y 6= x,

x2 if y = x.

¿From the properties of G, there exist a rigid graph G1 and an injective graph
homomorphism ιG : GG −→ G1. Since GG has at least n0 vertices we obtain that
G1 has at least n0 vertices and thus FG1 has at least three elements and, by (A),
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FG1 ∈ Q. Thus FιG(x) = FιG(x2) because FG1 is a band. If the subsemigroup
of F ◦GG on Im(f) does not belong to W then there exists an endomorphism h
of G such that F ◦Gh = f and ιG 6= ιG ◦Gh. On the other hand

F (ιG ◦Gh) = FιG ◦ (F ◦Gh) = FιG ◦ f = FιG

and this is a contradiction with the injectivity of ιG. Thus we can assume that
the subsemigroup of F ◦ GG on Im(f) belongs to W. Since FιG = FιG ◦ f we
conclude that the subsemigroup of FG1 on Im(FιG) belongs to W because W is
a variety, and this contradicts the fact that F is a W-relatively full embedding.
Thus F ◦GG ∈ Q. �

Combining Theorems 2.1 and 2.4, we obtain that a variety V∨ZS is Q-universal
for a band variety V whenever LQN ⊆ V or RQN ⊆ V and V∨ZS is notQ-universal
for a band variety V whenever V ⊆ NB. For varieties SLZ ∨ ZS and SRZ ∨ ZS

it is an open problem whether they are Q-universal. The varieties SLZ ∨ ZS and
SRZ ∨ ZS are 3-determined and the varieties LQN ∨ ZS and RQN ∨ ZS are 5-
determined. For a band variety V such that RB ⊆ V or LSN ⊆ V or RSN ⊆ V it is
an open problem whether V is α-determined for some cardinal α. We conjecture
that the variety RB (and also RB∨ZS) is α-determined for some cardinal α. The
variety V ∨ ZS is var-relatively alg-universal for a band variety V if and only if
LSN ⊆ V or RSN ⊆ V. In this case V ∨ ZS is var-relatively ff -alg-universal.

3. The bottom of the lattice VL(S)

First we recall results from [10]. For this we need the semigroups M1, M2 and
M3 defined by Table 1. For a semigroup S = (S, ·), let Sop = (S,⊙) denote the
semigroup opposite to S; thus s⊙ t = t · s for all s, t ∈ S.

M1 1 a 0
1 1 a 0
a 0 0 0
0 0 0 0

M2 a b c 0
a 0 c 0 0
b c 0 0 0
c 0 0 0 0
0 0 0 0 0

M3 d a b c
d a a a b
a a a a a
b b b b b
c c c c c

Table 1. Multiplicative tables of semigroups M1, M2 and M3.

Semigroup varieties generated by semigroups M1, M2 and M
op
1 play an im-

portant role in investigations of J -trivial varieties. We recall results concerning
varieties generated by these semigroups.

Theorem 3.1 [10, 11]. The varieties Var (M1) and Var (Mop
1 ) are 3-determined

and are neither var-relatively alg-universal nor Q-universal.
The variety Var (M2) is ZS-relatively ff -alg-universal, Q-universal and α-deter-

mined for no cardinal α. There exists a finite semigroup S ∈ Var (M2) such
that Qua(S) is ZS-relatively ff -alg-universal and Q-universal. The quasivariety
Qua(M2) is neither var-relatively alg-universal nor Q-universal.



368 ON UNIVERSALITY OF SEMIGROUP VARIETIES

The variety Var (M3) is (ZS ∨ LZ)-relatively ff -alg-universal and Q-universal
and is α-determined for no cardinal α. The variety Var (Mop

3 ) is (ZS ∨ RZ)-
relatively ff -alg-universal and Q-universal and is α-determined for no cardinal α.
There exists a finite semigroup S ∈ Var (M3) such that Qua(S) is (ZS ∨ LZ)-
relatively ff -alg-universal and Q-universal and Qua(Sop) is (ZS ∨ RZ)-relatively
ff -alg-universal and Q-universal. The quasivarieties Qua(M3) and Qua(Mop

3 ) are
neither var-relatively alg-universal nor Q-universal.

Sapir [32] presented a finite semigroup S ∈ Var (M2) such that Qua(S) is Q-
universal. The semigroup S from [11] is substantially smaller than the Sapir’s
semigroup.

Next we recall several properties of varieties Var (M1), Var (Mop
1 ) and Var (M2).

We recall that r(S) the union of all subgroups of S for every semigroup S.

Proposition 3.2 [10]. Let V be a semigroup variety satisfying one of the following
conditions:

(a) V satisfies an identity x2 = xn+2 for no natural number n > 0;
(b) M1,M

op
1 ∈ V;

(c) there exist semigroups S1,S2 ∈ V such that r(S1) is not a right ideal in
S1 and r(S2) is not a left ideal in S2;

(d) there exists a semigroup S ∈ V such that r(S) is not a union of all regular
J -classes of S;

(e) there exists a semigroup S ∈ V and x, y, z ∈ S \ r(S) such that s2 = s3 for
all elements s of S, xy = z and x2y 6= z 6= xy2;

(f) there exists a semigroup in V on the set {a, b, c, 0} such that ab = c and
all other products equal 0.

Then M2 ∈ V, and thus V is var-relatively ff -alg-universal, Q-universal and α-
determined for no cardinal α.

Proposition 3.3 [10]. Let V be a semigroup variety containing the semigroup S

such that r(S) is not a right ideal in S. Then M1 ∈ V or M2 ∈ V.
Let V be a semigroup variety containing the semigroup S such that r(S) is not

a left ideal in S. Then M
op
1 ∈ V or M2 ∈ V.

Our aim is to solve problems (a), (b) and (c) from Introduction for nearly J -
trivial semigroup varieties. From Theorems 2.1 and 3.1 it follows that the the
bottom of the lattice VL(S) plays the key role. Accordingly, we first recall several
folklore facts about the bottom of the lattice VL(S). Recall that a semigroup
variety V covers the variety ZS in the lattice VL(S) if and only if V is one of
the varieties ZS ∨ LZ, ZS ∨ RZ, ZS ∨ SL, ZS ∨ ABp for a prime p, Var (M2).
Analogously, if W is one of the varieties SL, RZ or LZ then a variety V failing
the identity x = x2 covers W in the lattice VL(S) if and only if V = W ∨ ZS or
V = W ∨ ABp for a prime. For the full picture we recall that the variety V covers
ZS ∨ LZ (or ZS ∨ RZ) in the lattice VL(S) if and only if V is one of the varieties
ZS ∨RCB, ZS ∨LNB, ZS ∨LZ∨ABp for a prime p, and Var (M3) (or ZS ∨RCB,
ZS ∨ RNB, ZS ∨ RZ ∨ ABp for a prime p, and Var (Mop

3 ). These folklore facts are
presented, for example in [17]. It is routine to verify that ZS ∨ SL is determined
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by the identities xy = yx, x2 = x3 and xy = (xy)2. A folklore statement below
describes semigroup the varieties covering ZS ∨ SL.

Proposition 3.4. A semigroup variety V covers the variety ZS∨SL in the lattice
VL(S) if and only if V is one of the varieties ZS∨LNB, ZS∨RNB, ZS∨ABp for
a prime p, Var (M1), Var (Mop

1 ), or SL ∨ Var (M2).

Proof. By [10], Var (M1) and Var (Mop
1 ) cover the variety ZS ∨ SL. We prove

that SL∨Var (M2) covers ZS∨SL. It is easy to verify that SL∨Var (M2) satisfies
identities xy = yx, x2 = x3 and xyz = (xyz)2. Consider a semigroup S =
(S, ·) ∈ SL ∨ Var (M2). Then x2y2 = (xy)2 = (xy)3 and (x2y)2 = x2y imply that
r(S) = {s ∈ S | s2 = s} is an ideal of S. If there exist x, y ∈ S \ r(S) such that
xy /∈ r(S) then M2 is isomorphic to a subsemigroup of the Rees quotient of S

by r(S), if S \ r(S) consists of irreducible elements then S satisfies the identity
xy = (xy)2. Hence S ∈ ZS ∨ SL and thus SL ∨ Var (M2) covers ZS ∨ SL. From
Theorem 2.1 it follows that the other varieties in the list cover the variety ZS∨SL

in the lattice VL(S).
Let V be a semigroup variety covering ZS ∨ SL. If there exists a semigroup

S ∈ V with a non-trivial subgroup, then there exists a prime p and an element s of
S with sp+1 = s and sp 6= s. Thus ZS∨SL∨ABp ⊆ V and hence V = ZS∨SL∨ABp.
Therefore we can assume that every group in V is trivial. If there exists a semigroup
S ∈ V with a subsemigroup isomorphic to a nontrivial left zero-semigroup then
ZS ∨ LNB ⊆ V – hence V = ZS ∨ LNB. If there exists a semigroup S ∈ V with a
subsemigroup isomorphic to a nontrivial right zero-semigroup then ZS∨RNB ⊆ V

– hence V = ZS ∨ RNB. By Proposition 3.2, if V does not satisfy the identity
x2 = x3 then M2 ∈ V – hence V = SL ∨ Var (M2). Thus we can assume that
V satisfies the identity x2 = x3 and then the J -classes and D-classes coincide
for every semigroup S ∈ V. By Proposition 3.3, if M2 /∈ V and there exists a
semigroup S ∈ V such that r(S) is not right ideal (or left ideal) then M1 ∈ V (or
M

op
1 ∈ V) – in this case V = Var (M1) (or Var (Mop

1 ) ∈ V). Thus we can assume
that r(S) is a two-sided ideal of S and for any element s ∈ r(S) the J -class of S

containing s is a singleton. If the Rees quotient of S by r(S) is not zero-semigroup
then M2 ∈ V (see, [10]) and hence V = SL ∨ Var (M2). If the Rees quotient of
S by r(S) is a zero-semigroup then S satisfies identities x2 = x3, xy = (xy)2 and
x2y2 = y2x2. Choose s, t ∈ S. Then st, ts ∈ r(S) and st = stst, ts = tsts imply
that st and ts belong to the same J -class of S. Hence st = ts and S satisfies
identities xy = yx – whence S ∈ ZS ∨ SL. �

Let M4 be the semigroup given in Table 2.
To solve problems (a), (b) and (c) for nearly J -trivial semigroup varieties,

it is necessary to describe semigroup varieties covering Var (M1) and Var (Mop
1 )

(observe that Var (M1) and Var (Mop
1 ) are nearly J -trivial). This is the subject

of the following theorem.

Theorem 3.5. If V covers Var (M1), then either V = LZ∨Var (M1) or V = RZ∨
Var (M1) or V = ABp ∨ Var (M1) or Var (M4) = V or V = Var ({M1,M

op
1 }) =

Var ({M1,M2}) = Var ({Mop
1 ,M2}).
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M4 a b c d 0
a b b c d 0
b b b c d 0
c d 0 0 0 0
d 0 0 0 0 0
0 0 0 0 0 0

Table 2. Multiplicative table of the semigroup M4.

If V covers Var (Mop
1 ), then either V = LZ∨Var (Mop

1 ) or V = RZ∨Var (Mop
1 )

or V = ABp ∨ Var (Mop
1 ) or Var (Mop

4 ) = V or V = Var ({M1,M
op
1 }) =

Var ({M1,M2}) = Var ({Mop
1 ,M2}).

Proof. Let V be a variety covering Var (M1). Clearly, LZ ∨ Var (M1), RZ ∨
Var (M1) and ABp ∨ Var (M1) for prime p cover Var (M1). By Propositions 3.2
and 3.3, if the identities x2 = x3 and x2y2 = y2x2 fail in V and there exists a
semigroup S ∈ V such that r(S) is not a right ideal of S, then M2 ∈ V. Thus
for any semigroup S ∈ V, any element of r(S) is idempotent and J -classes and
D-classes of S coincide. Therefore r(S) is a semilattice and any J -class having a
non-empty intersection with r(S) is a singleton for all semigroups S ∈ V. Consider
a semigroup S = (S, ·) ∈ V \ Var (M1). Then there exist x, y ∈ S with xy 6= x2y
or else S satisfies the identities xy = x2y and x2y2 = y2x2 = (xy)2 (because
xyxy = x2y2x2y = x4y3 = x2y2) and S ∈ Var (M1), see [10]. Then necessarily
x /∈ r(S) or else x2 = x. First we prove that xy /∈ r(S). Assume that xy ∈ r(S).
Since r(S) is a right ideal we conclude that xy = (xy)2. Then xy and xyx belong
to the same J -class of S and thus xy = xyx. Then xy = xyxxyx and thus xy
and x2y belong to the same J -class of S, whence xy = x2y. Therefore xy /∈ r(S)
and we conclude that y /∈ r(S). Consider a subsemigroup S′ of S generated by
{x, y}. Let T denote the underlying set of S′. It is clear that x2y2 is a zero of
S′. First we prove that if x = α in S′ for some non-empty word α over {x, y}
then α = x or α = ykx for some k ≥ 1. Assume the opposite. Clearly, α 6= y;
else xy = x2 ∈ r(S) - a contradiction. Thus α = α′z for some z ∈ {x, y} and a
non-empty word α′ over {x, y}. If z = y then xy = α′y2 ∈ r(S) - a contradiction.
If z = x then x = α′x = (α′)2x. If x occurs in α′ then x and (α′)2 belong to the
same J -class of S′ and (α′)2 ∈ r(S′). Thus x = (α′)2 ∈ r(S′) - a contradiction.
Hence we conclude that if x = α in S′ for some word α over {x, y} then α = x or
α = ykx. Assume that x = yx in S′. Then y2x2 = x2 and hence yx2 = x2. From
xy2 ∈ r(S′) and (xy2)2 = x2y2 = x2 we conclude that S′ is isomorphic to the
semigroup M4. Consider that x = y2x. Then x = y2x = yy2x = yx and again S′

is isomorphic to M4. Therefore we can assume that if x = α in S′ for a non-empty
word over {x, y} then α = x.

Next we prove that if y = α in S′ for a non-empty word α over {x, y} then
α = y. Assume the contrary. Observe that α = x implies x2 = xy – this is a
contradiction. Thus α = zα′ for some z ∈ {x, y} and a non-empty word α′ over
{x, y}. If z = x then xy = xxα = xxxα = x2y – a contradiction. If z = y then
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y = yα′ = y(α′)2 ∈ r(S) – a contradiction. Thus if α = y in S′ for some non-empty
word α over {x, y} then y = α. If xy 6= α in S′ for all non-empty words α 6= xy
over {x, y} then T \ {x, y, xy} is a two-sided ideal in S′ and the Rees quotient of
S′ by this ideal and Proposition 3.2(f) imply that M2 ∈ V. Thus we can assume
that xy = α in S′ for some non-empty word α over {x, y} distinct from x, y and
xy. First assume that α = x2α′ for some word α′ over {x, y} (α′ can be an empty
word). Then

xy = α = x2α′ = x3α′ = xα = x2y

and this is a contradiction. Secondly, assume that α = xyα′ for some non-empty
word over {x, y}. Then

xy = α = xyα′ = αα′ = xy(α′)2 ∈ r(S),

again a contradiction. Thirdly, assume that α = y2α′ for some non-empty word
over {x, y} (if α′ is an empty word then xy = y2 ∈ r(S) – a contradiction).
Since V satisfies the identity x2 = x3 we can assume that the first letter of α′ is
x. Thus α′ = xα′′ for some non-empty word α′′ over {x, y} (if α′′ is an empty
word then xy = y2x = y4x = y2xy and hence y2xy2 = (y2xy)y = y2xy =
xy ∈ r(S) – a contradiction). Then α′′ 6= xα′′′ for some word α′′′ over {x, y}
because xy = y2x2α′′′ in S′ implies x2y = x2xy = x2y2x2α′′′ = y2x2α′′′ = xy –
a contradiction. If α′′ = yα′′′ for a non-empty word α′′′ over {x, y} then xy =
y2xyα′′′ = y2xy(α′′′)2 ∈ r(S) – a contradiction. Hence α = y2xy. From xy = y2xy
in S′ it follows that yxy = y2xy = xy and x2y2 = xy2xy = x2y. Let ∼ be the
least equivalence on S′ such that yx ∼ y2x, x2 ∼ x2y2 and x ∼ yx. By a routine
calculation we obtain that ∼ is a congruence of S′ and S′/ ∼ is isomorphic to
M4. Finally consider that α = yxα′ for some word α′ over {x, y}. If α′ is an
empty word then T \ {x, y, xy} is a two-sided ideal in S′ and the Rees quotient
of S′ by this ideal is isomorphic to M2. Thus we can assume that α′ is non-
empty. If α′ = y then in S′ xy = yxy = y2xy and, by the foregoing case, M4

is isomorphic to a quotient semigroup of S′. If α′ = x then xy = yx2 ∈ r(S) –
this is a contradiction. If α′ = yα′′ for a non-empty word α′′ over {x, y} then
xy = yxyα′′ = y2xy(α′′)2 ∈ r(S) – a contradiction. Analogously, if α′ = xyα′′

for a non-empty word α′′over {x, y} then xy = yx2yα′′ = yx2y(α′′)2 ∈ r(S′) –
a contradiction. It remains that α = yx2y. Clearly, x2y2 is a zero of S′. Since
r(S) is a right ideal of S and x2 ∈ r(S) we conclude that yx2 ∈ r(S) and hence
(yx2)2 = yx2. Then yx2 and yx2y belong to the same J -class of S and whence
yx2 = yx2y = yx2y2 = x2y2. Hence xy = yx2y = x2y2 – a contradiction. Thus
we proved that if a variety V covers Var (M1) then either V = Var (M1) ∨ LZ or
V = Var (M1) ∨ RZ or V = Var (M1) ∨ ABp for a prime p or M2 ∈ V or M4 ∈ V.
Since Var (M1)∨LZ, Var (M1)∨RZ, Var (M1)∨ABp for prime p, Var ({M1,M2}),
and Var (M4) are pairwise distinct semigroup varieties and since Var (M1) is a
proper subvariety of Var (M4) the proof of the first statement is complete because,
by Proposition 3.3, Var ({M1,M

op
1 }) = Var ({M1,M2}) = Var ({Mop

1 ,M2}). The
proof of the second statement is dual. �
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Clearly, if V is a nearly J -trivial semigroup variety then V ∩ LZ = V ∩ RZ =
V ∩ ABp = T for all primes p. On the other hand, if S is a semigroup such that
r(S) is a band and any J -class of S having the non-empty intersection with r(S)
is a singleton then, by a direct verification, the variety Var (S) is nearly J -trivial.
Thus the varieties Var (M1), Var (Mop

1 ), Var (M2), Var (M4), and Var (Mop
4 ) are

nearly J -trivial. Whence from Theorem 3.5 we immediately obtain

Corollary 3.6. Let V be a nearly J -trivial semigroup variety. Then one of the
following holds:

(1) V ⊆ Var (M1) or V ⊆ Var (Mop
1 );

(2) Var (M2) ⊆ V or Var (M4) ⊆ V or Var (Mop
4 ) ⊆ V.

4. The variety Var (M4)

In this section we show that Var (M4) is Var (M1)-relatively ff -alg universal,
Q-universal and α-determined for no cardinal α.

We recall that GR is a category of all undirected graphs and their homomor-
phisms. Let DG be a category of all directed graphs and their homomorphisms.
If we identify any undirected graph (V,E) with a directed graph (V,R) where
R = {(u, v) | {u, v} ∈ E} then it is well-known that GR is a full subcategory of
DG. We exploit this fact in this section without a further reference. We give an
outline of the proof for the following folklore statement:

Theorem 4.1. For every finite, irreflexive, asymmetric digraph Z = (Z, S) there
exists an ff -alg-universal full subcategory DGZ of DG such that

(1) if (X,R) is a digraph from DGZ then Z ( X, (X,R) is irreflexive, asym-
metric and strongly connected digraph, S = R ∩ (Z × Z), and for every
z ∈ Z there exist x, y ∈ X \ Z with (x, z), (z, y) ∈ R;

(2) if (X,R) and (X ′, R′) are digraphs from DGZ then f−1(z) = {z} for all
z ∈ Z and for every digraph homomorphism f : (X,R) −→ (X ′, R′), there
exists no digraph homomorphism f : (X,R) −→ (X ′, S′) for S′ = {(x, y) |
(y, x) ∈ R′}.

We recall that a digraph (X,R) is

irreflexive if (x, x) ∈ R for no x ∈ X ;
asymmetric if (x, y) /∈ R for all (y, x) ∈ R;
strongly connected if for every ordered pair (x, y) ∈ X ×X there exists a
sequence x0, x1, . . . , xk of nodes from X such that x0 = x, xk = y and
(xi, xi+1) ∈ R for all i = 0, 1, . . . , k − 1.

Outline of the proof of Theorem 4.1. By [10], there exists an ff -alg-universal
full subcategory DGs of DG such that

(1) if (X,R) ∈ DGs then (X,R) is irreflexive, asymmetric and strongly con-
nected and for every edge (x, y) ∈ R there exist edges (y, z), (z, x) ∈ R;

(2) for every X = (X,R) ∈ DGs there exist distinct nodes aX , bX ∈ X such
that f(aX ) = aX ′ and f(bX ) = bX ′ for every digraph homomorphism
f : X −→ X ′ ∈ DGs;
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(3) if (X,R), (X ′, R′) ∈ DGs then there exists no digraph homomorphism
f : (X,R) −→ (X ′, S′) for S′ = {(u, v) | (v, u) ∈ R′}.

Let Z = (Z, S) be a finite irreflexive and asymmetric digraph. Then there exist
finite rigid digraphs Z1 = (Z1, S1),Z2 = (Z2, S2) ∈ DGs such that there exists no
digraph homomorphism between Z1 and Z2 and |Z1|, |Z2| > |Z| + 2. Choose an
injective mapping φi : Z −→ Zi such that aZi

, bZi
/∈ Im(φi) for i = 1, 2. Define a

functor Ω : DGs −→ DG so that Ω(X,R) = (Y, T ) where Y = X ∪ Z ∪ Z1 ∪ Z2

(we assume that X , Z, Z1, and Z2 are pairwise disjoint) and T = R ∪ S ∪ S1 ∪
S2 ∪ {(φ1(z), z), (z, φ2(z) | z ∈ Z} ∪ {(aX , aZ1

), (aZ2
, aX )}. Clearly Ω(X,R) is

irreflexive, asymmetric, strongly connected, Z ( Y , S = T ∩ (Z × Z), and for
every z ∈ Z there exist x, y ∈ Y \Z with (x, z), (z, y) ∈ T . Thus Ω(X,R) satisfies
the first requirement.

Let (X,R) and (X ′, R′) be digraphs from DGs and let Ω(X,R) = (Y, T ) and
Ω(X ′, R′) = (Y ′, T ′). Set S′ = {(u, v) | (v, u) ∈ T ′}. Let f : (Y, T ) −→ (Y ′, T ′)
or f : (Y, T ) −→ (Y ′, S′) be a digraph homomorphism. The induced subgraphs
of (Y, T ) on the sets X , Zi for i = 1, 2 are strongly connected and for every arc
(x, y) of the subgraph there exist arcs (y, z) and (z, x) of the subgraph. Hence we
conclude that f(X), f(Z1) and f(Z2) are subsets of one of the sets X ′, Z1, Z2,
Z. Since there exists exactly one arc from X to Z1 and exactly one arc from Z2

to X and for every z ∈ Z there exists exactly one arc from Z1 to z and one arc
from z to Z2 we conclude that f(X) ⊆ X ′, f(Zi) ⊆ Zi for i = 1, 2 and f(Z) = Z.
By the properties of Z1 and Z2, we conclude that f(z) = z for all z ∈ Z1 ∪ Z2

and thus also f(z) = z for all z ∈ Z. Hence f−1{z} = {z} for all z ∈ Z. The
domain-range restriction g of f on X and X ′ is a digraph homomorphism from
(X,R) into (X ′, R′) or from (X,R) into (X ′, U ′) where U ′ = {(u, v) | (v, u) ∈ R′}.
In the first case f = Ωg and the second case is impossible by the properties of DGs.
Thus Ω is a full embedding satisfying the second requirement. To complete the
proof it suffices to take DGZ as a full subcategory formed by ΩX for X ∈ DGs.�

Choose a finite irreflexive, asymmetric, strongly connected graph Z = (Z, S)
and two disjoint sets Z1 and Z2 such that Z = Z1 ∪ Z2 and S ∩ (Z1 × Z1) 6= ∅ 6=
S ∩ (Z2 × Z2). Fix a triple Z = (Z, Z1, Z2). For a digraph X = (X,R) ∈ DGZ we
shall construct a groupoid ΛZX = (Y, ·) where Y = X∪R∪{a0, a1, a2, a3, a4, 0} (we
assume that X ∩R = ∅, {a0, a1, a2, a3, a4, 0} ∩ (X ∪R) = ∅ and a0, a1, a2, a3, a4, 0
are pairwise distinct elements) and

x · y =



























































a4 if x, y ∈ {a0, a1, a2, a3, a4} ,

0 if x, y ∈ X ∪R ∪ {0} or x ∈ X ∪ {0} or 0 ∈ {x, y} ,

y if x ∈ {a0, a1, a2, a3, a4} and y ∈ X ∪R ,

u if x = (u, v) ∈ R and y = a0 ,

v if x = (u, v) ∈ R and y = a1 ,

u if x = (u, v) ∈ R ∩ (Zi × Zi) and y = a1+i for i = 1, 2,

0 if x = (u, v) ∈ R \ (Zi × Zi) and y = a1+i for i = 1, 2,

0 if x = (u, v) ∈ R and y = a4 .
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It is routine to verify the correctness of the definition.

Proposition 4.2. ΛZX ∈ Var (M4) for every digraph X ∈ DGZ .

Proof. Consider a subsemigroup S1 of the semigroup (M4)
4 on the set

S1 = {a0 = (a, b, b, b), a1= (b, a, b, b), a2= (b, b, a, b), a3= (b, b, b, a), a4= (b, b, b, b),

c = (c, c, c, c), d0 = (d, 0, 0, 0), d1 = (0, d, 0, 0), d2 = (0, 0, d, 0), d3 = (0, 0, 0, d),

0 = (0, 0, 0, 0)} .

Assume that X = (X,R) ∈ DGZ is a digraph. Let SX be the subsemigroup of
(S1)

R on the set SX consisting of mappings α : R −→ S1 such that

(1) α is a constant mapping with the value ai for i = 0, 1, 2, 3;
(2) mappings α such that there exists r ∈ R and α(r) ∈ {c, d0, d1, d2, d3} and

α(q) = 0 for all q ∈ R \ {r};
(3) the constant mapping with value 0.

By a straightforward calculation, we obtain that this set is closed under multipli-
cation, thus it is a semigroup from Var (M4). Consider the least equivalence ∼ on
SX such that α ∼ β whenever one of the following cases occurs

there exist (x, y), (x, z) ∈ R such that α(x, y) = d0 and β(x, z) = d0;
there exist (z, x), (x, y) ∈ R such that α(z, x) = d1 and β(x, y) = d0;
there exist (y, x), (z, x) ∈ R such that α(y, x) = d1 and β(z, x) = d1;
there exists (x, y) ∈ R∩(Zi×Zi) such that α(x, y) = d0 and β(x, y) = d1+i

for i = 1, 2;
there exists (x, y) ∈ R \ (Zi ×Zi) such that α(x, y) = di+1 for i = 1, 2 and
β is the constant mapping with value 0.

By a direct verification, we find that if α and β are distinct mappings from SX with
α ∼ β then α · β is the constant mapping with value 0. Hence ∼ is a congruence
of SX and, by a simple calculation, we find that SX/ ∼ is isomorphic to ΛZX .
Whence ΛZX ∈ Var (M4). �

Observe that if X = (X,R) ∈ DGZ is a digraph then R 6= ∅, and for every
(x, y) ∈ R the subsemigroup of ΛZX generated by {a0, (x, y)} is isomorphic to
M4.

Let X1 = (X1, R1),X2 = (X2, R2) ∈ DGZ be digraphs and let f : X1 −→ X2 be
a digraph homomorphism. Let us define ΛZf : ΛZX1 −→ ΛZX2 by

ΛZf(x) =











x if x ∈ {a0, a1, a2, a3, a4, 0} ,

f(x) if x ∈ X1 ,

(f(u), f(v)) if x = (u, v) ∈ R1 .

It is easy to see that ΛZf is a semigroup homomorphism from ΛZX1 into ΛZX2.
Then we can summarize
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Proposition 4.3. ΛZ is a faithful functor from DGZ into Var (M4) such that
ΛZX is a finite semigroup for every finite digraph X . For every digraph homomor-
phism f : X1 −→ X2 ∈ DGZ , the variety Var (M4) is generated by the subsemigroup
of ΛZX2 on the set Im(ΛZf).

Next we give a simple technical lemma.

Lemma 4.4. For every digraph (X,R) ∈ DGZ and for every congruence ∼ on
ΛZ(X,R) such that x ∼ 0 for all x ∈ X we have ΛZ(X,R)/ ∼∈ Var (M1).

Proof. By a direct verification, ΛZ(X,R)/ ∼ satisfies the identities x2 = x3,
xy = x2y and x2y2 = y2x2 = (xy)2. Thus, by [10], ΛZ(X,R)/ ∼∈ Var (M1) and
the proof is complete. �

Assume that digraphs X1 = (X1, R1) and X2 = (X2, R2) from DGZ are given.
First we investigate semigroup homomorphisms from ΛZX1 = (Y1, ·) to ΛZX2 =
(Y2, ·).

Lemma 4.5. Let f : ΛZX1 −→ ΛZX2 be a semigroup homomorphism. If f(ai) = ai

for i = 0, 1 and f(0) = 0 then one of the following cases occurs

(1) there exists a digraph homomorphism g : X1 −→ X2 with ΛZg = f ;
(2) f(a2), f(a3) ∈ {a0, a1, a2, a3, a4}, f(a4) = a4, f(X1∪{0}) = {0}, f(R1) ⊆

X2 ∪ {0}.

Conversely, any mapping satisfying these conditions is a semigroup homomorphism
from ΛZX1 into ΛZX2.

Proof. Assume that f : ΛZX1 −→ ΛZX2 is a semigroup homomorphism with
f(a0) = a0, f(a1) = a1 and f(0) = 0. Then f(a4) = a4 and f(a2), f(a3) ∈
{a0, a1, a2, a3, a4}. From f(0) = 0 it follows that f(R1 ∪ X1) ⊆ R2 ∪ X2 ∪ {0}.
Since (x, y) ∈ R2 is irreducible we conclude that f(X1)∩R2 = ∅. Assume that there
exists (x, y) ∈ R1 with f(x, y) = (u, v) ∈ R2. From (x, y)a0 = x and (x, y)a1 = y
it follows f(x) = u and f(y) = v. If f(x) = u ∈ X2 then for (x, y), (z, x) ∈ R1

we have f(x, y)a0 = u = f(z, x)a1 and thus there exist (u, v), (w, u) ∈ R2 with
f(x, y) = (u, v) and f(z, x) = (w, u). Since X1 is strongly connected, by an easy
induction we obtain that f(X1) ⊆ X2, f(R1) ⊆ R2 and f(x, y) = (f(x), f(y)) for
all (x, y) ∈ R1. Let g be the domain-range restriction of f to X1 and X2. Then
g : X1 −→ X2 is a digraph homomorphism such that if f(a2) = a2 and f(a3) = a3

then ΛZg = f . If (x, y) ∈ R1 ∩ (Zi × Zi) for i = 1, 2 then f(x, y)f(a1+i) = f(x)
implies that f(a2), f(a3) ∈ {a0, a2, a3}. If (x, y) ∈ R1\(Z×Z) then (x, y)a1+i = 0.
Since (x, y)a0 = x and f(0) = 0, we conclude that f(a2), f(a3) 6= a0. Since
R1 ∩ (Z1 × Z1) and R ∩ (Z2 × Z2) are non-empty and disjoint we analogously
obtain that f(a1+i) = ai+i for i = 1, 2, thus f = ΛZg.

If f(x, y) ∈ X2 ∪{0} for some (x, y) ∈ R1 then f(x) = f(y) = 0. If f(x) = 0 for
some x ∈ X1 then for every (x, y), (z, x) ∈ R1 we have f(x, y)a0 = f(z, x)a1 = 0
and hence f(x, y), f(z, x) ∈ X2 ∪ {0}. Since X1 is strongly connected, by an easy
induction we obtain that f(X1 ∪ {0}) = {0} and f(R1) ⊆ X2 ∪ {0}. The first
statement is proved.

The proof of the converse statement is obtained by a direct computation. �
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Lemma 4.6. Let f : ΛZX1 −→ ΛZX2 be a semigroup homomorphism. If f(ai) =
a1−i for i = 0, 1 and f(0) = 0 then f(a2), f(a3) ∈ {a0, a1, a2, a3, a4}, f(a4) = a4,
f(X1 ∪ {0}) = {0}, and f(R1) ⊆ X2 ∪ {0}.

Conversely, any mapping satisfying these conditions is a semigroup homomor-
phism from ΛZX1 into ΛZX2.

Proof. Assume that f : ΛZX1 −→ ΛZX2 is a semigroup homomorphism with
f(a0) = a1, f(a1) = a0 and f(0) = 0. Then f(a4) = a4 and f(a2), f(a3) ∈
{a0, a1, a2, a3, a4}. From f(0) = 0 it follows that f(R1∪X1) ⊆ R2∪X2∪{0}. Since
(x, y) ∈ R2 is irreducible, we conclude that f(X1) ∩ R2 = ∅. Assume that there
exists (x, y) ∈ R1 with f(x, y) = (u, v) ∈ R2. From (x, y)a0 = x and (x, y)a1 = y
it follows that f(x) = v and f(y) = u. If f(x) = u ∈ X2 then for (x, y), (z, x) ∈ R1

we have f(x, y)a1 = u, f(z, x)a0 = v and thus there exist (u, v), (w, u) ∈ R2 with
f(x, y) = (w, u) and f(z, x) = (u, v). Since X1 is strongly connected, by an easy
induction we obtain that f(X1) ⊆ X2, f(R1) ⊆ R2 and f(x, y) = (f(y), f(x)) for
all (x, y) ∈ R1. Let g be the domain-range restriction of f to X1 and X2. Then
g : X1 −→ (X2, S2) is a digraph homomorphism for S2 = {(u, v) | (v, u) ∈ R2}.
By the properties of DGZ , such digraph homomorphism does not exist. Thus
f(R1) ∩R2 = ∅.

If f(x, y) ∈ X2 ∪ {0} for some (x, y) ∈ R1 then f(x) = f(y) = 0 and hence we
obtain that f(X1 ∪ {0}) = {0}, f(R1) ⊆ X2 ∪ {0}. The first statement is proved.

The proof of the converse statement is obtained by a direct computation. �

Lemma 4.7. Let f : ΛZX1 −→ ΛZX2 be a semigroup homomorphism with f(0) =
0. If f(a0) = f(a1) ∈ {a0, a1, a2, a3, a4} or a4 ∈ {f(a0), f(a1)} or f(a0), f(a1) ∈
{a0, a2, a3} then f(X1) ⊆ {0} and one of the following cases occurs

(1) f(a0), f(a1)f(a2), f(a3) ∈ {a0, a1, a2, a3, a4}, f(a4) = a4, f(R1) ⊆ X2 ∪
{0};

(2) for some i = 1, 2 f(a0) = a1+i, f(a1) ∈ {ai+1, a4} f(a2), f(a3) ∈ {a0, a1,
a2, a3, a4}, f(a4) = a4, f(R1) ⊆

(

R2 \ (Zi × Zi)
)

∪ X2 ∪ {0} and the
following conditions hold:
– if f(R1 ∩ (Zj × Zj)) ∩R2 6= ∅ for some j = 1, 2 then f(a1+j) 6= a0, a1,
– if f(R1 ∩ (Zj × Zj)) ∩

(

R2 \ (Zi × Zi)
)

6= ∅ for some j = 1, 2 then
f(a1+j) 6= a0, a1, a4−i;

(3) f(a0) = f(a1) = f(a4) = a4, f(a2), f(a3) ∈ {a0, a1, a2, a3, a4}, f(X1 ∪
{0}) = {0}, f(R1) ⊆ R2 ∪X2 ∪ {0} and the following conditions hold:
– if f(R1 ∩ (Zi × Zi)) ∩R2 6= ∅ for some i = 1, 2 then f(a1+i) 6= a0, a1,
– if f(R1∩ (Zi ×Zi))∩

(

R2 \ (Zj ×Zj)
)

6= ∅ for some i = 1, 2 and j = 1, 2
then f(a1+i) 6= a0, a1, a1+j.

Conversely, any mapping satisfying these conditions is a semigroup homomorphism
from ΛZX1 into ΛZX2.

Proof. Let f : (Y1, ·) −→ (Y2, ·) be a semigroup homomorphism with f(0) = 0 and
one of the following conditions holds: f(a0) = f(a1) ∈ {a0, a1, a2, a3, a4} or a4 ∈
{f(a0), f(a1)} or f(a0), f(a1) ∈ {a0, a2, a3}. Then f(a4) = a4 and f(a2), f(a3) ∈
{a0, a1, a2, a3, a4}. From f(0) = 0 it follows that f(R1 ∪ X1) ⊆ R2 ∪ X2 ∪ {0}.
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Since (x, y) ∈ R2 is irreducible we conclude that f(X1) ∩ R2 = ∅. First we prove
that f(X1) = {0}. This is clear if f(a0) = a4 or f(a1) = a4 because (x, y)a4 = 0
and (X1, R1) is strongly connected (it suffices that for every x ∈ X1 there exist
y, z ∈ X1 with (x, y)(z, x) ∈ R1). Secondly assume that f(a0) = f(a1). Consider
that f(x) = u for some x ∈ X1. Then

u = f(x) = f((x, y)a0) = f(x, y)f(a0) = f((z, x)a1) = f(z, x)f(a1)

for all (x, y), (z, x) ∈ R1. From f(a0) = f(a1) it follows that

u = f(x, y)f(a1) = f((x, y)a1) = f(y) = f(z, x)f(a0) = f((z, x)a0) = f(z).

¿From the fact that X1 is strongly connected we conclude that f(X) = {u} and
one of the following possibilities occurs:

(a) f(a0) = a0 and f(R1) ⊆ {(u, v) | (u, v) ∈ R2};
(b) f(a0) = a1 and f(R1) ⊆ {(v, u) | (v, u) ∈ R2};
(c) f(a0) = a2 and f(R1) ⊆ {(u, v) | (u, v) ∈ R2 ∩ (Z1 × Z1)};
(d) f(a0) = a3 and f(R1) ⊆ {(u, v) | (u, v) ∈ R2 ∩ (Z2 × Z2)}.

Choose j = 2, 3. Then there exists (x, y) ∈ R1 with (x, y)a0 = x 6= 0 = (x, y)aj .
Hence f(x, y)f(a0) = u 6= 0 = f(x, y)f(aj) and thus f(aj) 6= a0, a1, f(a0). Since
there exists (x′, y′) ∈ R1 with (x′, y′)a0 = (x′, y′)aj we conclude that the case
f(a0), f(aj) ∈ {a2, a3} does not occur. Thus the cases (b), (c) and (d) are not
possible. Consider the case (a). If u /∈ Zi and f(aj) = ai+1 for some i = 1, 2
then (x′, y′)a0 = (x′, y′)aj imply that f(a0) = f(aj) – a contradiction. Thus we
can assume that u ∈ Zi and f(a2) = f(a3) = ai+1 for some i = 1, 2. Then the
existence of an arc (x′′, y′′) ∈ R1 with (x′′, y′′)a2 6= (x′′, y′′)a3 yields a contradiction
because {(x′′, y′′)a2, (x

′′, y′′)a3} = {x′′, 0}. This contradicts the assumption that
f(x) = u ∈ X2 for some x ∈ X1. Hence f(a0) = f(a1) implies f(X1) = {0}. In
the remaining case f(a0) 6= f(a1) and a4 /∈ {f(a0), f(a1)}. Then f(a0), f(a1) ∈
{a0, a2, a3}. If {f(a0), f(a1)} = {a2, a3} and f(X1) 6= {0} then there exist x ∈ X1

and i = 1, 2 such that f(x) = u ∈ X2 \ Zi. Since there exist (x, y), (z, x) ∈ R1

with x = (x, y)a0 = (z, x)a1 and there exists j = 0, 1 with f(aj) = ai+1 we
find a contradiction because tai+1 6= u for all t ∈ Y2. Whence {f(a0), f(a1)} =
{a2, a3} implies f(X1) = {0}. If {f(a0), f(a1)} = {a0, ai+1} for some i = 1, 2 and
f(X1) 6= {0} then there exists x ∈ X1 with f(x) = u ∈ X2. Since there exist
(x, y), (z, x) ∈ R1 we conclude that u = f(x, y)f(a0) = f(z, x)f(a1) and since
tai+1 ∈ X2 for t ∈ Y2 just when t ∈ R2 ∩ (Zi × Zi) and tai+1 ∈ Zi we state that
u ∈ Zi and the following is true:
if f(a0) = ai+1 then f(x, y) ∈ R2 ∩ (Zi × Zi) and f(y) = u,
if f(a1) = ai+1 then f(z, x) ∈ R2 ∩ (Zi × Zi) and f(z) = u.
Since (X1, R1) is strongly connected we obtain, by an easy induction that f(X1) =
{u} and f(R1) ⊆ R2 ∩ (Zi × Zi). If f(a2) ∈ {a4−i, a4} then for (x′, y′) ∈ R1

with (x′, y′)a2 = x′ we have u = f(x′) = f(x′, y′)f(a2) = 0 – a contradiction,
if f(a2) = a1 then for (x′, y′) ∈ R1 with (x′, y′)a2 = x′ we have u = f(x′) =
f(x′, y′)a1 6= u – a contradiction because f(x′, y′) ∈ R2 and ta1 /∈ {ta0, ta2, ta3}
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for all t ∈ R2, if f(a2) ∈ {a0, ai+1} then for (x′, y′) ∈ R1 with (x′, y′)a2 = 0
we have 0 = f(0) = f(x′, y′)f(a2) = u – a contradiction. Thus we prove that
f(X1) = {0}.

If f(a0) ∈ {a0, a1} or f(a1) ∈ {a0, a1} then f(R1) ⊆ X2 ∪ {0} because
f(x, y)f(a0) = 0 or f(x, y)f(a1) = 0 for all (x, y) ∈ R1. If f(a0) = a1+1 for
i = 1, 2 then, by the same argument, f(R1) ⊆

(

R2 \ (Zi × Zi)
)

∪ X2 ∪ {0}, if

{f(a0), f(a1)} = {a2, a3} then f(R1) ⊆ R2 \
(

(Z1 × Z1) ∪ (Z2 × Z2)
)

∪X2 ∪ {0}
and if f(a0) = f(a1) = a4 then f(R1) ⊆ R2 ∪X2 ∪ {0}. If (x, y) ∈ R1 ∩ (Zj × Zj)
for j = 1, 2 then (x, y)a1+j = x therefore if f(x, y) ∈ R2 then f(a1+j) 6= a0, a1,
if f(x, y) ∈ R2 ∩ (Zi × Zi) for i = 1, 2 then f(a1+j) 6= a0, a1, a1+i. Thus the
first statement is proved and the second statement is proved by verification of all
possibilities. �

Lemma 4.8. Let f : ΛZX1 −→ ΛZX2 be a semigroup homomorphism. If f(a0) = ai

for i = 2, 3, f(a1) = a1 and f(0) = 0 then f(a2), f(a3) ∈ {a0, a1, a2, a3, a4},
f(a4) = a4, f(X1 ∪ {0}) = {0}, f(R1) ⊆ X2 ∪ {0}.

Conversely, any mapping satisfying these conditions is a semigroup homomor-
phism from ΛZX1 into ΛZX2.

Proof. Assume that f : ΛZX1 −→ ΛZX2 is a semigroup homomorphism with
f(a0) = ai for i = 2, 3, f(a1) = a1 and f(0) = 0. Then f(a4) = a4 and
f(a2), f(a3) ∈ {a0, a1, a2, a3, a4}. ¿From f(0) = 0 it follows that f(R1 ∪ X1) ⊆
R2 ∪X2 ∪ {0}. Since (x, y) ∈ R2 is irreducible, we conclude that f(X1) ∩R2 = ∅.
Observe that if there exists (x, y) ∈ R1 with f(x, y) ∈ R2 ∩ (Zi−1 × Zi−1) then
f(x), f(y) ∈ Zi−1 and f(x, y) = (f(x), f(y)) and if f(x) ∈ Zi−1 then f(x, y) ∈
R2 ∩ (Zi−1 × Zi−1) for all (x, y) ∈ R1. Since (X1, R1) is strongly connected, by
an easy induction we obtain that f(X1) ⊆ Zi−1 ⊆ Z, f(R1) ⊆ R2 ∩ (Zi−1 ×Zi−1)
with f(x, y) = (f(x), f(y)). Thus the domain-range restriction g of f to X1 and
X2 is a digraph homomorphism from X1 into X2 with Im(g) ⊆ Z – this contra-
dicts to the property of DGZ . Hence f(R1) ∩ R2 ∩ (Zi−1 × Zi−1) = ∅. Thus for
every (x, y) ∈ R, f(x) = f(x, y)f(a0) = 0 and we conclude that f(X1) = {0} and
f(R1) ⊆ X2 ∪ {0} because f(x, y)a1 = 0. The first statement is proved and the
second statement follows by a direct verification. �

Lemma 4.9. Let f : ΛZX1 −→ ΛZX2 be a semigroup homomorphism. If f(a1) = ai

for i = 2, 3, f(a0) = a1 and f(0) = 0 then f(a2), f(a3) ∈ {a0, a1, a2, a3, a4},
f(a4) = a4, f(X1 ∪ {0}) = {0}, and f(R1) ⊆ X2 ∪ {0}.

Conversely, any mapping satisfying these conditions is a semigroup homomor-
phism from ΛZX1 to ΛZX2.

Proof. Assume that f : ΛZX1 −→ ΛZX2 is a semigroup homomorphism with
f(a1) = ai for i = 2, 3, f(a0) = a1 and f(0) = 0. Then f(a4) = a4 and
f(a2), f(a3) ∈ {a0, a1, a2, a3, a4}. ¿From f(0) = 0 it follows that f(R1 ∪ X1) ⊆
R2 ∪X2 ∪ {0}. Since (x, y) ∈ R2 is irreducible, we conclude that f(X1) ∩R2 = ∅.
Observe that if there exists (x, y) ∈ R1 with f(x, y) ∈ R2 ∩ (Zi−1 × Zi−1)
then f(x), f(y) ∈ Zi−1 and f(x, y) = (f(y), f(x)) and if f(y) ∈ Zi−1 then
f(x, y) ∈ R2 ∩ (Zi−1 × Zi−1) for all (x, y) ∈ R1. Since (X1, R1) is strongly



M. DEMLOVÁ, V. KOUBEK 379

connected, by an easy induction we obtain that f(X1) ⊆ Zi−1 ⊆ Z, f(R1) ⊆
R2 ∩ (Zi−1 × Zi−1) with f(x, y) = (f(y), f(x)). Thus the domain-range restric-
tion g of f to X1 and X2 is a digraph homomorphism from X1 into (X2, U2) for
U2 = {(u, v) | (v, u) ∈ R2} with Im(g) ⊆ Z – this contradicts to the property
of DGZ . Hence f(R1) ∩ R2 ∩ (Zi−1 × Zi−1) = ∅. Thus for every (x, y) ∈ R,
f(y) = f(x, y)f(a1) = 0 and we conclude that f(X1) = {0} and f(R1) ⊆ X2 ∪{0}
because f(x, y)a0 = 0. The first statement is proved, and the second statement
follows by a direct verification. �

Lemma 4.10. Let f : ΛZX1 −→ ΛZX2 be a semigroup homomorphism. If f(a4) =
f(0) = a4 then f({a0, a1, a2, a3}) ⊆ {a0, a1, a2, a3, a4} and f(R1 ∪ X1 ∪ {a4}) =
{a4}.

Conversely, any mapping satisfying these conditions is a semigroup homomor-
phism from ΛZX1 into ΛZX2.

Proof. Let f : (Y1, ·) −→ (Y2, ·) be a semigroup homomorphism with f(a4) =
f(0) = a4. Clearly, f(R1 ∪ X1 ∪ {a0, a1, a2, a3}) ⊆ {a0, a1, a2, a3, a4}. Since
a4x = x for all x ∈ X1 and a4(x, y) = (x, y) for all (x, y) ∈ R1 and because
aiaj = a4 for all i, j ∈ {0, 1, 2, 3, 4}, we conclude that f(R1 ∪ X1) = {a4} and
the first statement is proved. A straightforward calculation proves the second
statement. �

Lemma 4.11. Let f : ΛZX1 −→ ΛZX2 be a semigroup homomorphism. If f(a4) =
0 then f(R1 ∪X1 ∪ {0}) = {0} and f({a0, a1, a2, a3}) ⊆ R2 ∪X2 ∪ {0}.

Conversely, any mapping satisfying these conditions is a semigroup homomor-
phism from ΛZX1 into ΛZX2.

Proof. Let f : (Y1, ·) −→ (Y2, ·) be a semigroup homomorphism with f(a4) = 0.
From a40 = 0 it follows f(0) = 0 and f(Y1) ⊆ R2 ∪X2 ∪{0}. From a4x = x for all
x ∈ X1 and a4(x, y) = (x, y) for all (x, y) ∈ R1 it follows that f(R1 ∪X1 ∪ {0}) =
{0} and the first statement is proved. A direct verification proves the second
statement. �

Theorem 4.12. The variety Var (M4) is Var (M1)-relatively ff -alg-universal.

Proof. For digraphs X1,X2 ∈ DGZ let f : ΛZX1 −→ ΛZX2 be a semigroup homo-
morphism. Then idempotents of ΛZXi are only 0 and a4 and hence f({0, a4}) ⊆
{0, a4}. Thus Proposition 4.3 and Lemmas 4.4 – 4.11 imply that ΛZ is Var (M1)-
relatively full embedding, and Theorem 4.1 completes the proof. �

Theorem 4.13. The variety Var (M4) is α-determined for no cardinal α.

Proof. Let (X1, R1) and (X2, R2) be digraphs from DGZ such that X1 and X2

have the same cardinality and R1 and R2 have the same cardinality. Choose
bijections φ : X1 −→ X2 and ψ : R1 −→ R2. Then, by Lemmas 4.5 – 4.11, these
bijections induce a semigroup isomorphism between transformation semigroups

{f ∈ ΛZ(X1, R1) | the subsemigroup of ΛZ(X1, R1)

on Im(f) belongs to Var (M1)}
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and

{f ∈ ΛZ(X2, R2) | the subsemigroup of ΛZ(X2, R2)

on Im(f) belongs to Var (M1)} .

The proof is completed by the fact that for every infinite cardinal α there exist 2α

non-isomorphic rigid digraphs (X,R) in DGZ such that the cardinality of X and
the cardinality of R are α. �

Let P (ω) be the set of non-empty finite subsets of natural numbers (we recall
that P (ω0) = P (ω) ∪ {∅}). We recall a construction from [11]. There exists a
family {GA | A ∈ P (ω)} of unordered finite connected graphs such that

(1) if A ⊆ B then there exists an extremal epimorphism gB,A : GB −→ GA;
(2) if f : GA −→ GB is a graph homomorphism then B ⊆ A and f = gA,B

(thus gA,A is the identity);
(3) a finite family {gA,Bi

: GA −→ GBi
| i ∈ I} of graph homomorphisms is

separating if and only if A =
⋃

i∈I Bi (A,Bi ∈ P (ω) for all i ∈ I).

Let N be the category whose objects are sets from P (ω) and there exists a N-
morphism from B to A just when A ⊆ B – and there is only one such morphism,
denoted by gB,A. Thus the construction is a functor from N into GR. For a
graph GA = (VA, EA) consider RA = {(x, y) | {x, y} ∈ EA} and a groupoid
Θ(A) = (UA, ·) where UA = {a0, a1, a2, 0}∪ VA ∪RA (assume that VA ∩RA = ∅ =
{a0, a1, a2, 0} ∩ (VA ∪RA) and a0, a1, a2, 0 are pairwise distinct elements) and

xy =







































a2 if x, y ∈ {a0, a1, a2} ,

y if y ∈ VA ∪RA ∪ {0} and x ∈ {a1, a2, a3} ,

0 if 0 ∈ {x, y} or x ∈ VA ∪ {0} or x, y ∈ VA ∪RA ,

u if x = (u, v) ∈ RA and y = a0 ,

v if x = (u, v) ∈ RA and y = a1 ,

0 if x = (u, v) ∈ RA and y = a2 .

By a direct verification, we obtain the correctness of the definition. For A,B ∈
P (ω) with B ⊆ A define ΘgA,B such that

ΘgA,B(x) =











x if x ∈ {a0, a1, a2, 0} ,

gB,A(x) if x ∈ VA ,

(gB,A(u), gB,A(v)) if x = (u, v) ∈ RB .

Proposition 4.14. Θ : N −→ Var (M4) is a functor such that ΘgB,A is surjective
for all B,A ∈ P (ω) with A ⊆ B, and a finite family {ΘgB,Ai

| i ∈ I} is separating
for B,Ai ∈ P (ω) for i ∈ I if and only if B =

⋃

i∈I Ai.

Proof. Consider the subsemigroup S2 of the semigroup S1 from the proof of
Proposition 4.2 on the set S2 = {a0, a1, a4, c, d0, d1, 0}. By a direct calculation
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we obtain that S2 is a subsemigroup of S1, thus S2 ∈ Var (M4). Consider a
subsemigroup SA of (S2)

RA consisting of mappings α : RA −→ S2 such that

α is the constant mapping with the value ai for i = 0, 1, 2;
there exists r ∈ RA such that α(r) ∈ {c, d0, d1} and α(q) = 0 for all
q ∈ RA \ {r};
α is the constant mapping with the value 0.

It is easy to prove that SA is a subsemigroup of (S2)
RA . Let ∼ be the least

equivalence such that

there exist (x, y), (x, z) ∈ RA such that α(x, y) = d0 and β(x, z) = d0;
there exist (z, x), (x, y) ∈ RA such that α(z, x) = d1 and β(x, y) = d0;
there exist (y, x), (z, x) ∈ RA such that α(y, x) = d1 and β(z, x) = d1.

It is routine to verify that ∼ is a congruence and SA/ ∼ is isomorphic to ΘA
for every A ∈ P (ω). The correctness of ΘgA,B is clear and by a straightforward
computation, ΘgA,B : ΘA −→ ΘB is a semigroup homomorphism whenever B ⊆
A. These homomorphisms are closed under composition, and hence Θ : N −→
Var (M4) is a functor. The other statements immediately follow from the definition
of Θ and from the properties of {GA | A ∈ P (ω)}. �

Lemma 4.15. Let f : ΘA −→ ΘB be a semigroup homomorphism for A,B ∈
P (ω). Then one of the following cases occurs:

(1) {f(a0), f(a1)} = {a0, a1}, f(a2) = a2, f(0) = 0 and there exists a graph
homomorphism g : GA −→ GB such that f(v) = g(v) for all v ∈ VA and
either f((u, v)) = (g(u), g(v)) or f((u, v)) = (g(v), g(u)) for all (u, v) ∈
RA;

(2) f(a0) = f(a1) ∈ {a0, a1}, f(a2) = a2, f(0) = 0 and there exists v ∈ VB

such that f(VA) = {v} and either f(RA) ⊆ {(u, v) | (u, v) ∈ RB} or
f(RA) ⊆ {(v, u) | (v, u) ∈ RB};

(3) f(a0) = f(a1) = f(a2) = a2, f(VA ∪ {0}) = {0} and f(RA) ⊆ RB ∪ VB ∪
{0};

(4) f(a0), f(a1) ∈ {a0, a1, a2}, f(a2) = a2, f(VA ∪ {0}) = {0} and f(RA) ⊆
VB ∪ {0};

(5) f(a0), f(a1) ∈ {a0, a1, a2} and f(RA ∪ VA ∪ {0, a2}) = {a2};
(6) f({a0, a1} ∪RA) ⊆ RB ∪ VB ∪ {0} and f(VA ∪ {0, a2}) = {0}.

Proof. Observe that f({a2, 0}) ⊆ {0, a2} and

if {f(a0), f(a1)} ∩ {a0, a1, a2} 6= ∅ then f(a0), f(a1) ∈ {a0, a1, a2} and
f(a2) = a2,
if {f(a0), f(a1)}∩ (RB ∪VB ∪{0}) 6= ∅ then f(a0), f(a1) ∈ RB ∪VB ∪{0}
and f(a2) = 0,
if f(RA ∪ VA ∪ {0})∩ {a0, a1, a2} 6= ∅ then f(RA ∪ VA) ⊆ {a0, a1, a2} and
f(0) = a2,
if f(RA∪VA∪{0})∩(RB∪VB ∪{0}) 6= ∅ then f(RA∪VA) ⊆ RB∪VB ∪{0}
and f(0) = 0.

Since (u, v)a0 = u and (u, v)a1 = v for all (u, v) ∈ RA and since a0, a1 and
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elements of VB are irreducible and GA is connected, we conclude that f(VA) ∩
(RB ∪ {a0, a1}) = ∅.

Steps below are simple modifications of Lemmas 4.5 – 4.11. First let f(a0),
f(a1) ∈ {a0, a1, a2} and f(RA ∪ VA ∪ {0}) ⊆ RB ∪ VB ∪ {0}. Then f(a2) = a2,
f(0) = 0 and f(VA) ⊆ VB∪{0}. From (u, v)a0 = u, (u, v)a1 = v for all (u, v) ∈ RA

and from the fact that (VA, RA) is strongly connected (because GA is connected)
we conclude that if f(a0), f(a1) ∈ {a0, a1} then of the following cases occurs:

(1) f(a0) = a0, f(a1) = a1 and there exists a graph homomorphism g : GA −→
GB such that f(v) = g(v) for all v ∈ VA and f(u, v) = (f(u), f(v)) =
(g(u), g(v)) for all (u, v) ∈ RA;

(2) f(a0) = a1, f(a1) = a0 and there exists a graph homomorphism g : GA −→
GB such that f(v) = g(v) for all v ∈ VA and f(u, v) = (f(v), f(u)) =
(g(v), g(u)) for all (u, v) ∈ RA (because (VA, RA) is a symmetric digraph
we conclude that g is a graph homomorphism);

(3) f(a0) = f(a1) = a0 and there exists v ∈ VB such that f(VA) = {v} and
f(RA) ⊆ {(v, u) | (v, u) ∈ RB};

(4) f(a0) = f(a1) = a1 and there exists v ∈ VB such that f(VA) = {v} and
f(RA) ⊆ {(u, v) | (u, v) ∈ RB};

(5) f(VA) = {0} and f(RA) ⊆ VB ∪ {0}.

If a2 ∈ {f(a0), f(a1)} then (u, v)a0 = u, (u, v)a1 = v for all (u, v) ∈ RA, and hence
the facts that (VA, RA) is strongly connected and ta2 = 0 for all t ∈ RB ∪VB ∪{0}
imply that f(VA) = {0}. If {f(a0, f(a1)} \ {a2} 6= ∅ then, moreover, we deduce
that f(RA) ⊆ VB ∪ {0} (because f(u, v)a2 = 0 for all (u, v) ∈ RA) and if f(a0) =
f(a1) = a2 then f(RA) ⊆ RB ∪ VB ∪ {0}.

Secondly if f(a2) = f(0) then a2t = t for all t ∈ RA ∪ VA implies that f(RA ∪
VA) = {f(0)} and the rest follows from the foregoing observations. Since f(a2) = 0
and f(0) = a2 is impossible the proof is complete. �

Lemma 4.15 is exploited for the proof that the family {ΘA | A ∈ P (ω)} ex-
tended by the terminal object satisfies Dziobiak’s conditions. Formally define S∅

is a singleton semigroup and SA = ΘA for all A ∈ P (ω). Then

Theorem 4.16. The family {SA | A ∈ P (ω0)} of finite semigroups from the
variety Var (M4) satisfies Dziobiak’s conditions (P1)–(P4) from Theorem 1.3. The
variety Var (M4) is Q-universal.

Proof. Clearly, (P1) holds. From Proposition 4.14 follows the condition (P2). To
prove (P3), suppose that SA ∈ Qua(SB) for A ∈ P (ω). Then the family of all
semigroup homomorphism from SA into SB is separating. By Lemma 4.15, then
there exists an injective graph homomorphism from GA into GB and this is true
just when A = B. Thus (P3) holds.

We prove (P4). Let T and U be finite semigroups from Qua({SA | A ∈ F}
for a finite set F ⊆ P (ω)} such that there exists an injective homomorphism
f : SA −→ T×U for some A ∈ P (ω). Let π0 : T×U −→ T and π1 : T×U −→ U be
the two projections. We can assume that π0 ◦f and π1 ◦f are surjective – it is easy
to see that if the statement of (P4) holds for the restricted case then (P4) is true.
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Let {gi : T −→ SBi
| i ∈ I} and {hj : U −→ SCj

| j ∈ J} be separating families
of semigroup homomorphisms (these exist because T,U ∈ Qua({SA | A ∈ F}, for
finite F ⊆ P (ω)}) where Bi, Cj ∈ P (ω) for all i ∈ I and j ∈ J . We can assume
that I and J are finite because T and U and F are finite. Set

I ′ = {i ∈ I | the domain-range restriction of gi ◦ π0 ◦ f

is a graph homomorphism from GA into GBi
} ,

J ′ = {j ∈ J | the domain-range restriction of hj ◦ π1 ◦ f

is a graph homomorphism from GA into GCj
} .

Set B =
⋃

i∈I′ Bi and C =
⋃

j∈J′ Cj . By Lemma 4.15, {gi ◦ π0 ◦ f | i ∈ I ′} ∪ {hj ◦

π1 ◦f | j ∈ J ′} is a separating family, and from the properties of {GA | A ∈ P (ω)}
we conclude that A = B∪C. According to Lemma 4.15, for every i ∈ I ′ (or j ∈ J ′)
there exists a semigroup homomorphism ḡi : SB −→ SBi

(or h̄j : SC −→ SCj
) such

that the domain-range restriction of ḡi (or h̄j) to VB and VBi
(or VC and VCj

) is
a graph homomorphism from GB into GBi

(or from GC into GCj
), gi ◦ π0 ◦ f =

ḡi ◦ ΘgA,B (or hj ◦ π1 ◦ f = h̄j ◦ ΘgA,C) and the family {ḡi | i ∈ I} (or {h̄j | j ∈
J}) is separating. Thus, by the diagonalization property, there exist semigroup
homomorphisms g0 : T −→ SB and h0 : U −→ SC such that g0 ◦ π0 ◦ f = ΘgA,B,
h0 ◦ π1 ◦ f = ΘgA,C , ḡi ◦ g0 = gi for all i ∈ I ′, h̄j ◦ h0 = hj for all j ∈ J ′ because
π0 ◦f and π1 ◦f are surjective. Since ΘgA,B and ΘgA,C are surjective, we conclude

that g0 and h0 are also surjective. Since Θg−1
A,B(ai) and Θg−1

A,C(ai) are singletons

for i = 0, 1, 2 we find that (g0)
−1(ai) and (h0)

−1(ai) are singletons for i = 0, 1, 2.
By Lemma 4.15, (g0)

−1(u) is a singleton for all u ∈ VB and (h0)
−1(v) is a singleton

for all v ∈ VC (because (ΘgA,B)−1(u), (ΘgA,C)−1(v) ⊆ VA and gi ◦ π0 ◦ f(VA) is
a singleton for all i ∈ I \ I ′, hj ◦ π1 ◦ f(VA) is a singleton for all j ∈ J \ J ′).
Then T ′ = (g0)

−1({a0, a1, a2} ∪ VB) ∪ {π0 ◦ f(0)} is a subsemigroup of T such
that elements from the complement of T ′ are irreducible and analogously U ′ =
(h0)

−1({a0, a1, a2} ∪ VC) ∪ {π1 ◦ f(0)} is a subsemigroup of U such that elements
from the complement of U ′ are irreducible. Therefore mappings g1 : SB −→ T and
h1 : SC −→ U such that g0 ◦g1 and h0 ◦h1 are the identity mappings are semigroup
homomorphisms, and (P4) is proved. The second statement follows from Theorem
1.4. �

By the duality, we obtain

Corollary 4.17. The semigroup variety Var (Mop
4 ) is Var (Mop

1 )-relatively ff -alg-
universal, Q-universal and α-determined for no cardinal α.

5. Conclusion

Main results of the paper concern nearly J -trivial varieties. By Corollary
3.6, the varieties Var (M1), Var (Mop

1 ), Var (M2), Var (M4), and Var (Mop
4 ) play

the key role. The solutions of problems (a), (b) and (c) for varieties Var (M1),
Var (Mop

1 ) and Var (M2) are known, see Theorem 3.1. The solution for the va-
rieties Var (M4) and Var (Mop

4 ) is presented in the fourth section, see Theorems
4.12, 4.13, 4.16 and Corollary 4.17. As a combination of these facts we obtain
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Theorem 5.1. For a nearly J -trivial variety V the following are equivalent

(1) V contains one of the semigroups M2, M4, M
op
4 ;

(2) V is var-relatively ff -alg-universal (more precisely, V is Var (M1)-rela-
tively ff -alg-universal or Var (Mop

1 )-relatively ff -alg-universal or ZS-rela-
tively ff -alg-universal);

(3) V is Q-universal;
(4) there exists a sublattice of QL(V) isomorphic to the lattice of all ideals of

the free lattice over an infinite countable set;
(5) V is α-determined for no cardinal α.

Theorem 5.2. For a nearly J -trivial variety V the following are equivalent

(1) V is a subvariety of Var (M1) or of Var (Mop
1 );

(2) V is not var-relatively alg-universal;
(3) V is not Q-universal;
(4) QL(V) is finite;
(5) V is 3-determined.

The second section contains solutions of problems (a), (b) and (c) for inflations
of band quasivarieties. First we recall a partial solution of these problems for
band varieties. The characterization of var-relatively alg-universal band varieties
is complete, to characterize Q-universal band varieties it is necessary to decide
Q-universality for the varieties SLZ and SRZ. It is known that the varieties LQN

and RQN are 5-determined, but for larger band varieties this problem is open.
We hope that a solution of these problems for band varieties would help us fully
understand properties of homomorphisms. Sapir’s results [S1,S2] say that the
lattice QL(RNB ∨ Var (M1)) is finite and the lattices QL(LNB ∨ Var (M1)) and
QL(SLZ ∨ Var (M1)) are uncountably infinite. Therefore it would be interesting
to solve problems (a), (b) and (c) for these varieties.
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