Archivum Mathematicum

Albert Ko; Martin Roček

A gravitational effective action on a finite triangulation as a discrete model of continuous concepts

Archivum Mathematicum, Vol. 42 (2006), No. 5, 245--251
Persistent URL: http://dml.cz/dmlcz/108031

Terms of use:

© Masaryk University, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A GRAVITATIONAL EFFECTIVE ACTION

ON A FINITE TRIANGULATION AS A DISCRETE MODEL OF CONTINUOUS CONCEPTS

ALBERT KO AND MARTIN ROČEK

Abstract

We recall how the Gauss-Bonnet theorem can be interpreted as a finite dimensional index theorem. We describe the construction given in hep-th/0512293 of a function that can be interpreted as a gravitational effective action on a triangulation. The variation of this function under local rescalings of the edge lengths sharing a vertex is the Euler density, and we use it to illustrate how continuous concepts can have natural discrete analogs.

1. Introduction

We want to study how we can translate concepts from continuum quantum field theories to discrete models with a finite number of degrees of freedom. The particular system that we explore is the theory of triangulations of a surface. This is a context that is well understood in both the discrete [1] and the continuous cases [2].

A nice example of such a translation is provided by the interpretation of the Euler character as an index. In the continuous case, we have the exterior derivative:

$$
\begin{equation*}
d: \omega_{0} \rightarrow \omega_{1} \rightarrow \omega_{2} \tag{1}
\end{equation*}
$$

where ω_{p} are p-forms, and the dual operator

$$
\begin{equation*}
* d *: \omega_{2} \rightarrow \omega_{1} \rightarrow \omega_{0} \tag{2}
\end{equation*}
$$

We now consider the operator $D \equiv d+* d *$ restricted to

$$
\begin{equation*}
D: \omega_{0} \oplus \omega_{2} \rightarrow \omega_{1} \tag{3}
\end{equation*}
$$

as well as its adjoint

$$
\begin{equation*}
D^{\dagger}: \omega_{1} \rightarrow \omega_{0} \oplus \omega_{2} \tag{4}
\end{equation*}
$$

The index of D is defined to be difference of the dimensions of the kernels of D and D^{\dagger}, and is known to be proportional to the Euler character χ of the surface [3, 2]:

$$
\begin{equation*}
\operatorname{dim}(\operatorname{Ker}(D))-\operatorname{dim}\left(\operatorname{Ker}\left(D^{\dagger}\right)\right) \propto \chi=2(1-g) \tag{5}
\end{equation*}
$$

The discrete version of this well known story is somewhat less familiar. We consider a triangulation with V vertices v_{i}, E oriented edges $e_{i j}$, and F oriented faces $f_{i j k}$. The discrete analogs of p-forms ω_{p} are elements of a vector space E_{p}, where E_{0} is associated to the vertices, E_{1} is associated to the edges, and E_{2} is associated to the faces. The sign associated to a edge or face depends on the orientation. There is an obvious notion of the exterior derivative d which obeys $d^{2}=0$; the dual operator in general will depend on a choice of metric as described in [4], but since the index is topological, we can ignore this dependence. Thus we choose our operators D and D^{\dagger} as follows:

$$
\begin{equation*}
(D \omega)_{i j}=\left(\omega_{i}-\omega_{j}\right) \oplus\left(\omega_{i j k}-\omega_{i j k^{\prime}}\right) \tag{6}
\end{equation*}
$$

on an oriented edge $e_{i j}$ between a vertex v_{i} and a vertex v_{j} or on an edge shared by oriented triangles $f_{i j k}$ and $f_{i j k^{\prime}}$. The adjoint operator is defined by, e.g., (see [4] for further discussion)

$$
\begin{equation*}
\left(D^{\dagger} \omega\right)_{i}=\sum_{j \in<i j>} \omega_{i j}, \quad\left(D^{\dagger} \omega\right)_{i j k}=\omega_{i j}+\omega_{j k}+\omega_{k i} \tag{7}
\end{equation*}
$$

where the sum is over all the edges $e_{i j}$ connected to a vertex v_{i} with a positive sign for edges leaving v_{i} and negative for edges coming into v_{i}, or over all the edges bounding the triangle $f_{i j k}$ with a positive sign if their orientation is compatible with the orientation of the triangle; D and D^{\dagger} are shown graphically in Figure 1. We may now compute the index of this discrete operator D; since it maps $E_{0} \oplus E_{2} \rightarrow E_{1}$, it is an $E \times(V+F)$ dimensional matrix, and the index is simply

$$
\begin{equation*}
V+F-E=\chi=2(1-g) \tag{8}
\end{equation*}
$$

This is clearly topological, as it does not depend on the values of the entries of D, only on its dimension.

Not only does the Euler character χ make sense on a triangulation of a surface, but its density $\sqrt{g} R$, where $R(g(x))$ is the scalar curvature ${ }^{1}$ of the two dimensional metric $g_{m n}$, has a sensible analog as well: since $\chi=\frac{1}{2 \pi} \sum_{i \in\{V\}} \epsilon_{i}$ where i runs over all vertices and ϵ_{i} is the defect at the i 'th vertex, one can identify the defect $\epsilon_{i}=$ $-\frac{1}{2} \sqrt{g} R_{i}$ with the curvature at the vertex [1]. Thus one has the correspondence:

$$
\begin{equation*}
-\frac{1}{4 \pi} \int d^{2} x \sqrt{g} R=\chi \leftrightarrow \frac{1}{2 \pi} \sum_{i \in\{V\}} \epsilon_{i}=V-E+F \tag{9}
\end{equation*}
$$

Anomalies are generally regarded as arising from the infinite numbers of degrees of freedom in continuous systems. For example, the action S of a scalar field Φ

[^0]

Figure 1. D and D^{\dagger}
coupled to a gravitational background on a two dimensional surface Σ,

$$
\begin{equation*}
S=\frac{1}{2} \int_{\Sigma} d^{2} x \sqrt{\operatorname{det}\left(g_{p q}\right)} g^{m n} \partial_{m} \Phi \partial_{n} \Phi \tag{10}
\end{equation*}
$$

has a classical symmetry under rescalings of the metric on $\Sigma: g_{m n} \rightarrow \lambda(x) g_{m n}$. This implies

$$
\begin{equation*}
g_{m n} \frac{\partial S}{\partial g_{m n}}=0 \tag{11}
\end{equation*}
$$

Upon quantization, this symmetry is anomalous; that is, if one defines the quantum effective action Γ as

$$
\begin{equation*}
e^{-\Gamma[g]}=\int[d \Phi] e^{-S[\Phi, g]} \tag{12}
\end{equation*}
$$

then one finds $[3,2]$

$$
\begin{equation*}
g_{m n} \frac{\partial \Gamma}{\partial g_{m n}}=-\frac{1}{24 \pi} \sqrt{\operatorname{det}\left(g_{m n}\right)} R(g(x)) \tag{13}
\end{equation*}
$$

If one integrates this over the surface, one finds

$$
\begin{equation*}
\int d^{2} x g_{m n} \frac{\partial \Gamma}{\partial g_{m n}}=-\frac{1}{24 \pi} \int d^{2} x \sqrt{\operatorname{det}\left(g_{m n}\right)} R(g(x))=\frac{1}{6} \chi . \tag{14}
\end{equation*}
$$

In [5], we extended this correspondence to the anomaly (13): we found an analog of the effective action Γ on a triangulation. That is, we found a function $\Gamma\left(l_{i j}\right)$ of the edge lengths $l_{i j}$ such that

$$
\begin{equation*}
\sum_{j \in<i j>} l_{i j} \frac{\partial \Gamma}{\partial l_{i j}}=\frac{1}{12 \pi} \epsilon_{i} \tag{15}
\end{equation*}
$$

for all vertices i (the sum is over all edges with one end at i).
We now present our construction; the remainder of the manuscript is taken verbatim from [5]. Our main result is

$$
\begin{equation*}
\Gamma=\frac{1}{12 \pi}\left[\sum_{厶_{i j k}} \int_{\frac{\pi}{2}}^{\alpha_{i j k}}\left(y-\frac{\pi}{3}\right) \cot (y) d y+\sum_{<i j>} 2 k_{i j} \pi \ln \left(\frac{l_{i j}}{l_{0}}\right)\right] \tag{16}
\end{equation*}
$$

where the first sum is over all internal angles $\alpha_{i j k}$, second sum is over all edges $\langle i j\rangle$ with lengths $l_{i j}$ (the explicit factor of two arises because every edge is shared by two triangles), l_{0} is a scale that we set to equal to one from now on, and the $k_{i j}$ are constants associated to the edges that satisfy

$$
\begin{equation*}
\sum_{j \in<i j>} k_{i j}=1-\frac{n_{i}}{6}, \quad n_{i}=\sum_{j \in<i j>} 1 \tag{17}
\end{equation*}
$$

at every vertex i; here n_{i} is the number of neighbors of the i 'th vertex. Note that the conditions (17) do not in general determine the constants $k_{i j}$ uniquely; one could add a subsidiary condition, e.g., that $\sum k_{i j}^{2}$ is minimized, to remove this ambiguity. Note also that the total Euler character, which comes from a uniform scaling of all lengths and thus does not change the angles $\alpha_{i j k}$, comes entirely from the last term, i.e., from $\partial \Gamma / \partial l_{0}$.

The strategy that we use to find this solution is as follows: we first consider the simplest case, a triangulation of the sphere with three vertices, three edges, and two faces, and prove the integrability conditions needed for Γ to exist are satisfied. We then find Γ for this case and show that it immediately generalizes to all triangulations with a certain homogeneity property, and finally generalize Γ to an arbitrary triangulation.

It would be interesting to complete the correspondence, and find a way to compute the result (16) as the anomalous effective action corresponding to a discrete analog of, e.g., the scalar action (10); a promising approach might be the work of S. Wilson on triangulated manifolds [4].

2. Integrability

We begin with a triangulation of the sphere with three vertices, three edges, and two (identical) faces (a triangular "pillow"); we label the edges by their lengths a, b, c and the opposite internal angles of the triangles by α, β and γ, respectively. We also abbreviate

$$
\begin{equation*}
a \frac{\partial \Gamma}{\partial a} \equiv D_{a}(\Gamma), \quad \text { etc. }, \tag{18}
\end{equation*}
$$

and, for simplicity, drop an overall factor of $1 /(12 \pi)$ in Γ. The defect at the vertex α in this case is just $2(\pi-\alpha)$, etc. Using this notation, the equations that we want Γ to satisfy in the triangle are:

$$
\begin{align*}
& D_{a}(\Gamma)+D_{b}(\Gamma)=2(\pi-\gamma), \\
& D_{a}(\Gamma)+D_{c}(\Gamma)=2(\pi-\beta) \\
& D_{b}(\Gamma)+D_{c}(\Gamma)=2(\pi-\alpha) . \tag{19}
\end{align*}
$$

If we add the first two equations, and subtract the third, we get $D_{a}(\Gamma)=(\pi-\gamma-$ $\beta+\alpha$). Since $\gamma+\beta+\alpha$ is π, we get

$$
\begin{equation*}
D_{a}(\Gamma)=2 \alpha, \quad D_{b}(\Gamma)=2 \beta, \quad D_{c}(\Gamma)=2 \gamma \tag{20}
\end{equation*}
$$

The function Γ can exist only if

$$
\begin{equation*}
D_{b}\left(D_{a}(\Gamma)\right)=D_{a}\left(D_{b}(\Gamma)\right) \tag{21}
\end{equation*}
$$

Using

$$
\begin{equation*}
\alpha=\arccos \left(\frac{-a^{2}+b^{2}+c^{2}}{2 b c}\right), \quad \beta=\arccos \left(\frac{a^{2}-b^{2}+c^{2}}{2 a c}\right) \tag{22}
\end{equation*}
$$

it is easy to see that (21) is satisfied. Thus the integrability conditions are satisfied for the triangle.

The tetrahedron and octahedron give results similar to those of the triangle. However, for a general triangulation, it is not easy to decouple the integrability conditions and reduce them to equations that may be checked straightforwardly. Instead, we construct Γ explicitly.

3. The effective action

Because the triangle is the simplest case, and can be related to any other system, we have examined it in detail. As noted above, in this case the defect at a vertex is directly related to the internal angle at that vertex; this suggests that in the general case, where the defect is related to the sum of the internal angles at a vertex, Γ should be just the sum of the Γ for each triangle. This is almost correct.

The basic strategy for the triangle was to rewrite the differential equations for Γ in terms of new variables: the angles α, β, and the edge length c between them. One can integrate some of the equations and finally arrive at Γ on a single triangle Δ :

$$
\begin{equation*}
\Gamma_{\Delta}=\sum_{i}\left[\left(\alpha_{i}-\frac{\pi}{3}\right) \ln \left(\sin \left(\alpha_{i}\right)\right)-\int_{\frac{\pi}{2}}^{\alpha_{i}} \ln (\sin (y)) d y+k_{i} \pi \ln \left(a_{i}\right)\right] \tag{23}
\end{equation*}
$$

where $\left\{a_{1}, a_{2}, a_{3} ; \alpha_{1}, \alpha_{2}, \alpha_{3}\right\}=\{a, b, c ; \alpha, \beta, \gamma\}$, and k_{i} are constants associated to each edge. This can be simplified by integration by parts:

$$
\begin{equation*}
\Gamma_{\Delta}=\sum_{i}\left[\int_{\frac{\pi}{2}}^{\alpha_{i}}\left(y-\frac{\pi}{3}\right) \cot (y) d y+k_{i} \pi \ln \left(a_{i}\right)\right] . \tag{24}
\end{equation*}
$$

Note that all terms are expressed in terms of the internal angles α_{i} except for the last term, which explicitly involves a_{i}. To prove that this is correct (and to determine k_{i}, we differentiate Γ :

$$
\begin{align*}
a_{i} \frac{\partial \Gamma}{\partial a_{i}} \equiv D_{a_{i}} \Gamma & =\sum_{j}\left[\left(\alpha_{j}-\frac{\pi}{3}\right) \cot \left(\alpha_{j}\right) D_{a_{i}} \alpha_{j}\right]+k_{i} \pi \\
& =\sum_{j}\left[-\left(\alpha_{j}-\frac{\pi}{3}\right) \frac{\cos \left(\alpha_{j}\right) D_{a_{i}} \cos \left(\alpha_{j}\right)}{1-\cos ^{2}\left(\alpha_{j}\right)}\right]+k_{i} \pi \tag{25}
\end{align*}
$$

Then the contribution of one triangle to the defect at vertex 1 is given by

$$
\begin{aligned}
\left(D_{b}+D_{c}\right) \Gamma= & -\left(\alpha-\frac{\pi}{3}\right) \frac{\cos (\alpha)\left(D_{b}+D_{c}\right) \cos (\alpha)}{1-\cos ^{2}(\alpha)}-\left(\beta-\frac{\pi}{3}\right) \frac{\cos (\beta)\left(D_{b}+D_{c}\right) \cos (\beta)}{1-\cos ^{2}(\beta)} \\
& -\left(\gamma-\frac{\pi}{3}\right) \frac{\cos (\gamma)\left(D_{b}+D_{c}\right) \cos (\gamma)}{1-\cos ^{2}(\gamma)}+\left(k_{b}+k_{c}\right) \pi
\end{aligned}
$$

which can be explicitly evaluated using $\gamma=\pi-\alpha-\beta$ and (22), and gives:

$$
\begin{equation*}
\left(D_{b}+D_{c}\right) \Gamma=\frac{\pi}{3}-\alpha+k_{b} \pi+k_{c} \pi \tag{26}
\end{equation*}
$$

This calculation works just as well for any triangle in a general triangulation to give Γ on any surface.

The constants k_{i} are assigned to every edge i. Clearly, in the case of the triangular pillow, there is a trivial solution to $k_{i}=\frac{1}{3}$ for all i (recall that $\pi-\alpha$ is half the defect at the vertex, but there are two triangles meeting at each vertex to sum over in this case). More generally, for any locally homogeneous triangulation in which all vertices have n nearest neighbors, we can choose

$$
\begin{equation*}
k_{i}=\frac{1}{n}-\frac{1}{6} . \tag{27}
\end{equation*}
$$

However, for a general triangulation, the edge may connect vertices with different numbers of edges connecting to them. In this case, it is not necessarily trivial to find the appropriate values for all the k_{i}.

4. A Problem in Graph Theory

On a general triangulated surface, the we have the condition

$$
\begin{equation*}
\sum_{j \in<i j>} k_{i j}=1-\frac{n_{i}}{6} \tag{28}
\end{equation*}
$$

at every vertex, where n_{i} is the number of neighbors of the i 'th vertex. This means we want to find labels for the edges of a graph such that the sum at each vertex is the same. The equations (28) are a system V linear equations on the E variables $k_{i j}$, where V is the total number of vertices and E is the total number of edges; note that $E \geq V$ for all triangulations. We can rewrite this in terms of the $V \times E$ dimensional matrix that describes the connections between vertices. This matrix has exactly two ones, which correspond to two vertices, in each column, which corresponds to the edge connecting the vertices.

We are happy to thank L. Motl [6] for the following proof that a solution to these equations always exists. The system of equations would not have a solution only if there were a linear combination of the rows that vanishes, that is, if there existed a vector that is perpendicular to all the columns. Because every column contains exactly two ones, it suffices to consider a submatrix that defines a triangle:

$$
\left(\begin{array}{lll}
1 & 1 & 0 \tag{29}\\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right)
$$

Since this matrix is nondegenerate, no nontrivial vector is annihilated by it. Since every edge sits on a triangle, no such vector can exist for the whole triangulation. Therefore, there must always be at least one way to label the edges.

Acknowledgement. We are grateful to the 2005 Simons Workshop for providing a stimulating atmosphere. MR is grateful to the organizers of the 26th Winter School Geometry and Physics at Srní for the opportunity to present this work. We are happy to thank Luboš Motl for providing the proof in section 4 as well as many helpful comments on the manuscript, and Ulf Lindström for his comments. The work of MR was supported in part by NSF grant no. PHY-0354776, by the University of Amsterdam, and by Stichting FOM.

References

[1] Regge, T., General Relativity Without Coordinates, Nuovo Cimento 19 (1961), 558.
[2] Polyakov, A. M., Quantum Geometry Of Bosonic Strings, Phys. Lett. B 103 (1981), 207.
[3] Capper, D. M. and Duff, M. J., Trace Anomalies In Dimensional Regularization, Nuovo Cimento A 23 (1974), 173;
Duff, M. J., Observations On Conformal Anomalies, Nuclear Phys. B 125 (1977), 334.
[4] Wilson, S., Geometric Structures on the Cochains of a Manifold, (2005). [math.GT/0505227]
[5] Ko, A. and Roček, M., A gravitational effective action on a finite triangulation JHEP 0603 (2006), 021 [arXiv:hep-th/0512293].
[6] Motl, L., private communication.
A. Ko, Ward Melville High School
M. Roček, C. N. Yang Institute for Theoretical Physics

SUNY, Stony Brook, NY 11794-3840, USA
And
Institute for Theoretical Physics, University of Amsterdam
1018 XE Amsterdam, The Netherlands
E-mail: rocek@insti.physics.sunysb.edu

[^0]: ${ }^{1}$ We use the convention that the scalar curvature is minus twice the Gaussian curvature, and hence is negative on the sphere [2].

