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A CHARACTERIZATION PROPERTY OF THE SIMPLE GROUP

PSL4(5) BY THE SET OF ITS ELEMENT ORDERS

Mohammad Reza Darafsheh, Yaghoub Farjami, Abdollah Sadrudini

Abstract. Let ω(G) denote the set of element orders of a finite group G. If
H is a finite non-abelian simple group and ω(H) = ω(G) implies G contains
a unique non-abelian composition factor isomorphic to H, then G is called
quasirecognizable by the set of its element orders. In this paper we will prove
that the group PSL4(5) is quasirecognizable.

1. Introduction

Given a finite group G, we denote by ω(G) the set of orders of elements of
G. This set is closed and partially ordered by divisibility relation, and hence
is uniquely determined by the set µ(G) of elements in ω(G) which are maximal
under the divisibility relation. Let h(G) denote the number of non-isomorphic
finite groups G having ω(G) as the set of their element orders. A group G is said
to be characterizable or recognizable by ω(G) if h(G) = 1, the group G is called
k−recognizable if h(G) = k and is called irrecognizable if h(G) = ∞. A finite
simple non-abelian group P is said to be quasirecognizable if any finite group G

with ω(G) = ω(P ) has a composition factor isomorphic to P .
The set ω(G) of a finite group G defines a graph whose vertices are prime

divisors of the order of G and two primes p and q are adjacent if G contains an
element of order pq. This graph is defined by Gruenberg and Kegel and hence it
is denoted by GK(G) and is called the Gruenberg-Kegel graph of G. We also call
GK(G) the prime graph of G. The connected components of the graph GK(G) are
denoted by πi, 1 ≤ i ≤ t(G), where t(G) is the number of connected components
of the graph. We define π1 the component containing the prime 2 for a group of
even order.

In [2] and [15-18], it has been proved that the groups L2(q), q > 3, q 6= 9 are
characterizable. The groups L3(q), q = 7, 2m are recognizable by [12]. Concerning
the groups G = PSL3(q), q odd, it is shown in [4] that h(G) = 1 for q = 11, 13, 19,
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23, 25 and 27; h(G) = 2 for q = 17 and 29. The group PSL4(3) is characterizable
by [11].

The goal of this article is to study the recognizability property of the simple
group PSL4(5) by its set of element orders. In particular we prove that the
simple group PSL4(5) is quasirecognizable. This will imply that a conjecture of
W. Shi and J. Bi holds for PSL4(5). That is to say if ω(G) = ω

(
PSL4(5)

)
and

|G| = |PSL4(5)| , then G ∼= PSL4(5).

2. Preliminary results

First we quote some results which are used to deduce the main result of this
paper.

Lemma 1 ([8]). If G is a finite solvable group all of whose elements are of prime

power order, then |π(G)| ≤ 2.

In the following we list some properties of the Frobenius groups whose proofs
can be found in [14].

Lemma 2. Let G be a Frobenius group with kernel F and complement C. Then

the following assertions hold.

(a) F is a nilpotent group; in particular, the prime graph of F is complete.

(b) |F | ≡ 1 (mod |C|).
(c) Every subgroup of C of order pq, with p and q (not necessarily distinct)

primes, is cyclic. In particular, every Sylow subgroup of C of odd order is cyclic

and a Sylow 2−subgroup of C is either cyclic or a generalized quaternion group.

If C is non-solvable then C has a subgroup of index at most 2 isomorphic to

SL2(5)×M , where M has cyclic Sylow p-subgroups and order coprime to 2,3 and

5.

Definition 1. A 2-Frobenius group is a group G having a normal series 1 E

H E K E G such that K and G
H

are Frobenius groups with kernels H and K
H

respectively.

Lemma 3. Let G be a 2−Frobenius group, then G is a solvable group.

Proof. By definition, there exists a normal series, 1 E H E K E G, such that
K and G

H
are Frobenius groups with kernels H and K

H
respectively. Then K

H
is

isomorphic to kernel of a Frobenius group and complement of another Frobenius
group, therefore K

H
is nilpotent, hence K is solvable. Now G

K
is isomorphic to a

subgroup of the automorphism group of a cyclic group, hence G
K

is abelian. Since

both K and G
K

are solvable, then G is a solvable group.

For the groups with disconnected prime graph the following result is a useful
tool.

Lemma 4 ([20]). If G is a group such that t(G) ≥ 2, then G has one of the

following structures.

(a) A Frobenius or a 2−Frobenius group.



A CHARACTERIZATION PROPERTY OF PSL4(5) 33

(b) G has a normal series 1 E N ⊳ G1 E G, such that π(N) ∪ π( G
G1

) ⊆ π1 and

G1 = G1

N
is a non-abelian simple group.

Lemma 5 ([13]). Let G be a finite group, N ⊳G and G
N

be a Frobenius group with

kernel F and cyclic complement C. If (|F |, |N |) = 1 and F is not contained in
NCG(N)

N
, then p|C| ∈ ω(G) for some prime divisor p of |N |.

Definition 2. Let A ∈ GLn(q). Then δA : SLn(q) → SLn(q) defined by B 7→
A−1BA, B ∈ SLn(q), is an automorphism of SLn(q) and it is called a diagonal
automorphism of SLn(q). It is possible to choose A so that δA induces an outer
automorphism of order (n, q − 1) of the group PSLn(q) if n 6= 2.

Definition 3. Let θ : GLn(q) → GLn(q) be the mapping sending A to (At)−1

where At denotes the transpose of A. Then θ is an involuntary outer automor-
phism of G = GLn(q) if (n, q) 6= (2, 2). This automorphism is called a graph
automorphism of G. It also induces an outer automorphism of the group PSLn(q)
if (n, q) 6= (2, 2).

Definition 4. Let q = pf be a power of the prime p. Then σp : GF (q) → GF (q)
defined by σp(a) = ap is an automorphism of the Galois field GF (q), called the
Frobenius automorphism. If for A = (aij)1≤i,j≤n ∈ GLn(q) we define σp(A) =
(ap

ij)1≤i,j≤n, then σp induces an automorphism of the group GLn(q) which is

called a field automorphism of GLn(q) and it is denoted by σp again. σp induces
an automorphism of the group PSLn(q) in the natural way.

Now in the following we give the structure of the group of outer automorphisms
of the group PSLn(q).

Lemma 6 ([9]). Let n ≥ 2, and q = pf . Then

(a) Out (PSLn(q)=̃Z(n,q−1) : Zf : Z2; if n ≥ 3.

(b) Out
(
PSL2(q)

)
=̃Z(2,q−1) × Zf .

Suppose δ, σp and θ are diagonal, field and graph outomorphisms of PSLn(q),
q = pf , respectively. Then we have O(δ) = (n, q − 1), O(σp) = f , O(θ) = 2, and
furthermore [σp, θ] = 1, δσp = δp and δθ = δ−1.

According to [10] and [20] the prime graph of the group PSLp(5), where p is a

prime number, has two components. The first component is π1 = π
(
5

∏p−1
i=1 (qi−1)

)

and the second component is π2 = π(5p−1
4 ).

Now for the group PSL4(5) we have |PSL4(5)| = 27 · 32 · 56 · 13 · 31. Therefore
the components of the prime graph of this group are as follows: π1 = {2, 3, 5, 13}
and π2 = {31}.

By [6] we have µ
(
PSL4(5)

)
= {20, 24, 30, 31, 39}. Therefore ω

(
PSL4(5)

)
=

{1, 2, 3, 4, 5, 6, 8, 10, 12, 13, 15, 20, 24, 30, 31, 39} and the prime graph of
the group PSL4(5) is as in Figure 1.
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Figure 1. The prime graph of the group PSL4(5)

Lemma 7. Let G be a simple group of Lie type. If {31} ⊆ π(G) ⊆ {2, 3, 5, 13, 31},
then G is isomorphic to A1(31) ∼= PSL2(31), A2(5) ∼= PSL3(5) or A3(5) ∼=
PSL4(5).

Proof. Suppose G = L(q) is a simple group of Lie type over the finite field of
order q = ps, where p is a prime number and s is a natural number. The orders of
these groups are given in [3] and are multiples of numbers of the form pk±1, where
k ∈ N. Since p divides |G|, therefore p must be one of the numbers 2, 3, 5, 13 or 31.

If p = 2, then it is clear that the order of 2 modulo 31 is 5. But 7 | 23 − 1 and
7 ∤ |G|. Hence by [3] no candidates for G will arise.

If p = 3, then the least integer k for which 3k + 1 ≡ 0(mod 31) is 15. But
7 | 33 + 1 and 7 ∤ |G|.We don’t obtain a possibility for G on this case.

If p = 5, then the order of 5 modulo 31 is 3. Since 11 | 55 − 1 and 7 | 56 − 1,
hence by [3] the only candidates are the groups A2(5) and A3(5).

If p = 13, then the least integer k for which 13k + 1 ≡ 0(mod 31) is 15. But
7 | 13 + 1 and 7 ∤ |G|. Then by [3] no candidate for G will arise.

If p = 31, then since 37 | 312 + 1 and 331 | 313 − 1,we don’t get a possibility for
a finite simple group G except A1(31).

3. Proof of the main theorem

In this section we prove that the simple group PSL4(5) is quasirecognizable by
the set of its element orders.

Theorem 1. Let G be a finite group . If ω(G) = ω
(
PSL4(5)

)
, then G has a nor-

mal 5−subgroup N such that G
N

∼= PSL4(5). In particular G is quasirecognizable

by its set of element orders.

Proof. We have µ
(
PSL4(5)

)
= {20, 21, 30, 31, 39}. Let G be a finite group

such that µ(G) = µ
(
PSL4(5)

)
. Then components of prime graph of G are

π1 = {2, 3, 5, 13} and π2 = {31}. Since G has a disconnected Gruenberg-Kegel
graph, we can use Lemma 4 for the structure of G. But by [1] only Case (b) of
the Lemma 4 may hold (we also could use Lemmas 1,2 and 3 to prove that a
group with the given set of element orders is not Frobenius or 2-Frobenius group).
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Therefore there exists a normal series 1 E N ⊳ G1 E G, such that G
G1

and N are

π1-groups, G1 := G1

N
is a non-abelian simple π1(G)-group and, t(G1) ≥ 2. We

may assume that G
N

≤ Aut (G1). Note that one of the components of the prime

graph of G1 must be {31}, hence 31 |
∣∣G1

∣∣.
Now according to the classification of finite non-abelian simple groups we know

that the possibilities for G1 are the alternating groups An, n ≥ 5, one of the 26
sporadic simple groups and finite simple groups of Lie type. We deal with the
above cases separately.

Case (1). Suppose G1 is an alternating group An, n ≥ 5. Since 31 ∈ ω(G1),
then n ≥ 31, which implies that for example 7 ∈ ω(G), a contradiction.

Case (2). By [3] it is easy to see that G1 can not be isomorphic to a sporadic
simple group.

Case (3). Finally suppose that G1 is a simple group of Lie type . From Lemma
7, G1 may be isomorphic to one of the following groups A1(31), A2(5) or A3(5).

Since 16 ∈ ω
(
A1(31)

)
but 16 6∈ ω(G), then G1 is not isomorphic to A1(31).

Suppose G1
∼= A2(5) and G1 = G1

N
. If N 6= 1, we may assume that N is an

elementary abelian p−group, where p ∈ {2, 3, 5, 13}. Since π
(
A2(5)

)
= {2, 3, 5, 31}

and G
N

≤ Aut (G1) = A2(5) : 2, hence 13 | |N |. Therefore N is an elementary

abelian 13−group . Now G1

N
= G1

∼= A2(5) and A2(5) ∼= PSL3(5) contains a

Frobenius subgroup of the shape 52 : 24. Now it is easy to verify that all conditions
of Lemma 5 are fulfilled, hence G1 must contain an element of order 13×24, which
is a contradiction.

Finally assume G1
∼= A3(5). Our aim is to show that G has a normal 5−subgroup

N such that G
N

∼= A3(5) ∼= PSL4(5). Suppose N 6= 1. By the prime graph of G,
Figure 1, an element of order 31 of G acts fixed-point-freely on N , hence by ([7],
page 337) N is a nilpotent π1(G)-group. Therefore N is the product of p-groups
for p ∈ π1 = {2, 3, 5, 13}. Then we may assume that N is a p−group for some
prime p ∈ π1 = {2, 3, 5, 13}. G1 contains a Frobenius group of the shape 53 : 31.
First assume p 6= 5. We let H

N
= 53 : 31 = F : C be the Frobenius subgroup of

G1. Since NCH(N)
N

∼=
CH(N)

N∩CH(N) and CH(N) ≤ CG(N) = N , we deduce that F is

not contained in NCH(N)
N

. Therefore by Lemma 5 we obtain an element of order
31× p in G, a contradiction. Therefore p = 5 and G has a normal 5−subgroup N

(possibly N = 1) such that G1 = G1

N
∼= PSL4(5). But then G1

N
E

G
N

and hence

G1 ≤ G
N

≤ Aut (G1). By Lemma 6 we have Out (G1) ∼= D8, the dihedral group of

order 8, which can be given by Out (G1) = 〈θ, δ : δ4 = θ2 = 1, θ−1δθ = δ−1〉. We
assume δ = diag (2, 1, 1, 1). Let T be a subgroup of Out (G1), then T may be one
of the following groups:
T1 = {1, θ}, T2 = {1, δθ}, T3 = {1, δ2θ}, T4 = {1, δ3θ}, T5 = {1, δ2}, T6 =
{1, δ, δ2, δ3}, T7 = {1, δ2, θ, δ2θ}, T8 = {1, δ2, δθ, δ3θ}, T9 = Out (G1), T10 = {1}.
Therefore G

N
∼= G1 : Ti, for some i, i = 1, . . . , 10.
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Let G
+

1 = G1 : 〈θ〉. Then by [5], 13 |
∣∣C

G
+

1

(θ)
∣∣, therefore 26 ∈ ω( G

N
), a

contradiction. Therefore G
N

∼= G1 : Ti, i = 1, 7, 9 are impossible.

If G
N

∼= G1 : T6 = G1 : 〈δ〉, then by [9], G
N

∼= PGL4(5), therefore by [6]

26 ∈ ω( G
N

), a contradiction.

If G
N

= G1 : Ti, i = 5, 8, then we have CSL4(5)(δ
2) = {A ∈ SL4(5) | Aδ2 =

δ2A} =









(detX)−1 0

0 X


 | X ∈ GL3(5)





∼= GL3(5), then CPSL4(5)(δ

2) =

PGL3(5), therefore by [6], 62 ∈ ω( G
N

), a contradiction.

If G
N

∼= G1 : T2, we have CSL4(5)(δθ)
∼= SO−

4 (5). By [3], 52 ∈ ω( G
N

), contradict-

ing ω( G
N

).

If G
N

∼= G1 : T3, we have CSL4(5)(θδ
2) ∼= SO+

4 (5) ∼= SL2(5) × SL2(5), therefore

60 ∈ ω( G
N

), that is a contradiction.

If G
N

∼= G1 : T4, we have CSL4(5)(θδ
3) = SO−

4 (5), then by [3], 52 ∈ ω( G
N

), which

is a contradiction. Therefore we only have G
N

∼= G1
∼= PSL4(5), and the theorem

is proved.

Corollary 1. Let G be a finite group with ω(G) = ω
(
PSL4(5)

)
and |G| =

|PSL4(5)| . Then G ∼= PSL4(5).

Proof. By the main theorem G has a normal subgroup N such that G
N

= PSL4(5).
Now |G| = |PSL4(5)| implies N = 1 and G ∼= PSL4(5).

There is a conjecture due to W. Shi and H. Bi [19], which states:

Conjecture 1. Let G be a group and M a finite simple group. Then G ∼= M if

and only if:

(a) |G| = |M | and

(b) ω(G) = ω(M).

Therefore according to Corollary 1, the conjecture of Shi and Bi holds for the
simple group PSL4(5) .

Acknowledgement. Part of this research was carried out while the first author
held a visiting position at the Mathematics Department of the University of North
Carolina at Charlotte, USA. The first author would like to thank the hospitality
of the Math. Dept. of UNCC during this visit in 2006–2007.

References

[1] Aleeva, M. R., On finite simple groups with the set of element orders as in a Frobenius

group or a double Frobenius group, Math. Notes 73 3-4 (2003), 299–313.

[2] Brandl, R. and Shi, W. J., The characterization of PSL(2, q) by its element orders, J.
Algebra, 163 (1) (1994), 109–114.



A CHARACTERIZATION PROPERTY OF PSL4(5) 37

[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite

Groups, Clarendon Press, Oxford, 1985.

[4] Darafsheh, M. R., Karamzadeh, N. S., A characterization of groups PSL(3, q) by their

element orders for certain q, J. Appl. Math. Comput. (old KJCAM) 9 (2) (2002), 409–421.

[5] Darafsheh, M. R., Some conjugacy classes in groups associated with the general linear

groups, Algebras Groups Geom. 15 (1998), 183–199.

[6] Darafsheh, M. R., Farjami, Y., Calculating the set of orders of elements in the finite linear

groups, submitted.

[7] Gorenstein, D., Finite groups, Harper and Row, New York, 1968.

[8] Higman, G., Finite groups in which every element has prime power order, J. London Math.
Soc. 32 (1957), 335–342.

[9] Kleidman, P. and Liebeck, M., The subgroup structure of finite classical groups, Cambridge
University Press, 1990.

[10] Kondratjev, A. S., On prime graph components of simple groups, Math. Sb. 180 (6) (1989),
787–797.

[11] Lipschutz, S. and Shi, W. J., Finite groups whose element orders do not exceed twenty,
Progr. Natur. Sci. 10 (1) (2000), 11–21.

[12] Mazurov, V. D., Xu, M. C. and Cao, H. P., Recognition of finite simple groups L3(2m) and

U3(2m) by their element orders, Algebra Logika 39 (5) (2000), 567–585.

[13] Mazurov, V. D., Characterization of finite groups by sets of orders of their elements, Algebra
Logika 36 (1) (1997), 37–53.

[14] Passman, D. S., Permutation groups, W. A. Bengamin, New York, 1968.

[15] Shi, W. J., A characteristic property of A5, J. Southwest-China Teachers Univ. (B) 3 (1986),
11–14.

[16] Shi, W. J., A characteristic property of PSL2(7), J. Austral. Math. Soc. (A) 36 (3) (1984),
354–356.

[17] Shi, W. J., A characterization of some projective special linear groups, J. Southwest-China
Teachers Univ. (B) 2 (1985), 2–10.

[18] Shi, W. J., A characteristic property of J1 and PSL2(2n), Adv. Math. (in Chinese) 16 (4)
(1987), 397–401.

[19] Shi, W. and Bi, J., A characteristic property for each finite projective special linear group,
Lecture Notes in Math. 1456 (1990), 171–180.

[20] Willams, J. S., Prime graph components of finite groups, J. Algebra 69 (2) (1981), 487–513.

Department of Mathematics, Statistics and Computer Science

Faculty of Science, University of Tehran

Tehran, Iran

E-mail : darafsheh@ut.ac.ir

Department of Mathematics, Statistics and Computer Science

Faculty of Science, University of Tehran

E-mail : farjami@khayam.ut.ac.ir

Department of Mathematics, Tarbiat Modarres University

P.O. Box 14115-137, Tehran, Iran

E-mail : asadr@modares.ac.ir


		webmaster@dml.cz
	2012-05-10T17:09:15+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




