Archivum Mathematicum

Mohammad Reza Darafsheh; Yaghoub Farjami; Abdollah Sadrudini
A characterization property of the simple group $\mathrm{PSL}_{4}(5)$ by the set of its element orders

Archivum Mathematicum, Vol. 43 (2007), No. 1, 31--37
Persistent URL: http://dml.cz/dmlcz/108047

Terms of use:

© Masaryk University, 2007

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

A CHARACTERIZATION PROPERTY OF THE SIMPLE GROUP $P S L_{4}(5)$ BY THE SET OF ITS ELEMENT ORDERS

Mohammad Reza Darafsheh, Yaghoub Farjami, Abdollah Sadrudini

Abstract

Let $\omega(G)$ denote the set of element orders of a finite group G. If H is a finite non-abelian simple group and $\omega(H)=\omega(G)$ implies G contains a unique non-abelian composition factor isomorphic to H, then G is called quasirecognizable by the set of its element orders. In this paper we will prove that the group $P S L_{4}(5)$ is quasirecognizable.

1. Introduction

Given a finite group G, we denote by $\omega(G)$ the set of orders of elements of G. This set is closed and partially ordered by divisibility relation, and hence is uniquely determined by the set $\mu(G)$ of elements in $\omega(G)$ which are maximal under the divisibility relation. Let $h(G)$ denote the number of non-isomorphic finite groups G having $\omega(G)$ as the set of their element orders. A group G is said to be characterizable or recognizable by $\omega(G)$ if $h(G)=1$, the group G is called k-recognizable if $h(G)=k$ and is called irrecognizable if $h(G)=\infty$. A finite simple non-abelian group P is said to be quasirecognizable if any finite group G with $\omega(G)=\omega(P)$ has a composition factor isomorphic to P.

The set $\omega(G)$ of a finite group G defines a graph whose vertices are prime divisors of the order of G and two primes p and q are adjacent if G contains an element of order $p q$. This graph is defined by Gruenberg and Kegel and hence it is denoted by $G K(G)$ and is called the Gruenberg-Kegel graph of G. We also call $G K(G)$ the prime graph of G. The connected components of the graph $G K(G)$ are denoted by $\pi_{i}, 1 \leq i \leq t(G)$, where $t(G)$ is the number of connected components of the graph. We define π_{1} the component containing the prime 2 for a group of even order.

In [2] and [15-18], it has been proved that the groups $L_{2}(q), q>3, q \neq 9$ are characterizable. The groups $L_{3}(q), q=7,2^{m}$ are recognizable by [12]. Concerning the groups $G=P S L_{3}(q), q$ odd, it is shown in [4] that $h(G)=1$ for $q=11,13,19$,

[^0]23, 25 and $27 ; h(G)=2$ for $q=17$ and 29. The group $P S L_{4}(3)$ is characterizable by [11].

The goal of this article is to study the recognizability property of the simple group $P S L_{4}(5)$ by its set of element orders. In particular we prove that the simple group $P S L_{4}(5)$ is quasirecognizable. This will imply that a conjecture of W. Shi and J. Bi holds for $P S L_{4}(5)$. That is to say if $\omega(G)=\omega\left(P S L_{4}(5)\right)$ and $|G|=\left|P S L_{4}(5)\right|$, then $G \cong P S L_{4}(5)$.

2. Preliminary results

First we quote some results which are used to deduce the main result of this paper.

Lemma 1 ([8]). If G is a finite solvable group all of whose elements are of prime power order, then $|\pi(G)| \leq 2$.

In the following we list some properties of the Frobenius groups whose proofs can be found in [14].

Lemma 2. Let G be a Frobenius group with kernel F and complement C. Then the following assertions hold.
(a) F is a nilpotent group; in particular, the prime graph of F is complete.
(b) $|F| \equiv 1(\bmod |C|)$.
(c) Every subgroup of C of order pq, with p and q (not necessarily distinct) primes, is cyclic. In particular, every Sylow subgroup of C of odd order is cyclic and a Sylow 2-subgroup of C is either cyclic or a generalized quaternion group. If C is non-solvable then C has a subgroup of index at most 2 isomorphic to $S L_{2}(5) \times M$, where M has cyclic Sylow p-subgroups and order coprime to 2,3 and 5.

Definition 1. A 2-Frobenius group is a group G having a normal series $1 \unlhd$ $H \unlhd K \unlhd G$ such that K and $\frac{G}{H}$ are Frobenius groups with kernels H and $\frac{\bar{K}}{H}$ respectively.

Lemma 3. Let G be a 2 -Frobenius group, then G is a solvable group.
Proof. By definition, there exists a normal series, $1 \unlhd H \unlhd K \unlhd G$, such that K and $\frac{G}{H}$ are Frobenius groups with kernels H and $\frac{K}{H}$ respectively. Then $\frac{K}{H}$ is isomorphic to kernel of a Frobenius group and complement of another Frobenius group, therefore $\frac{K}{H}$ is nilpotent, hence K is solvable. Now $\frac{G}{K}$ is isomorphic to a subgroup of the automorphism group of a cyclic group, hence $\frac{G}{K}$ is abelian. Since both K and $\frac{G}{K}$ are solvable, then G is a solvable group.

For the groups with disconnected prime graph the following result is a useful tool.

Lemma 4 ([20]). If G is a group such that $t(G) \geq 2$, then G has one of the following structures.
(a) A Frobenius or a 2-Frobenius group.
(b) G has a normal series $1 \unlhd N \triangleleft G_{1} \unlhd G$, such that $\pi(N) \cup \pi\left(\frac{G}{G_{1}}\right) \subseteq \pi_{1}$ and $\bar{G}_{1}=\frac{G_{1}}{N}$ is a non-abelian simple group.

Lemma 5 ([13]). Let G be a finite group, $N \triangleleft G$ and $\frac{G}{N}$ be a Frobenius group with kernel F and cyclic complement C. If $(|F|,|N|)=1$ and F is not contained in $\frac{N C_{G}(N)}{N}$, then $p|C| \in \omega(G)$ for some prime divisor p of $|N|$.

Definition 2. Let $A \in G L_{n}(q)$. Then $\delta_{A}: S L_{n}(q) \rightarrow S L_{n}(q)$ defined by $B \mapsto$ $A^{-1} B A, B \in S L_{n}(q)$, is an automorphism of $S L_{n}(q)$ and it is called a diagonal automorphism of $S L_{n}(q)$. It is possible to choose A so that δ_{A} induces an outer automorphism of order $(n, q-1)$ of the group $P S L_{n}(q)$ if $n \neq 2$.

Definition 3. Let $\theta: G L_{n}(q) \rightarrow G L_{n}(q)$ be the mapping sending A to $\left(A^{t}\right)^{-1}$ where A^{t} denotes the transpose of A. Then θ is an involuntary outer automorphism of $G=G L_{n}(q)$ if $(n, q) \neq(2,2)$. This automorphism is called a graph automorphism of G. It also induces an outer automorphism of the group $P S L_{n}(q)$ if $(n, q) \neq(2,2)$.

Definition 4. Let $q=p^{f}$ be a power of the prime p. Then $\sigma_{p}: G F(q) \rightarrow G F(q)$ defined by $\sigma_{p}(a)=a^{p}$ is an automorphism of the Galois field $\operatorname{GF}(q)$, called the Frobenius automorphism. If for $A=\left(a_{i j}\right)_{1 \leq i, j \leq n} \in G L_{n}(q)$ we define $\sigma_{p}(A)=$ $\left(a_{i j}^{p}\right)_{1 \leq i, j \leq n}$, then σ_{p} induces an automorphism of the group $G L_{n}(q)$ which is called a field automorphism of $G L_{n}(q)$ and it is denoted by σ_{p} again. σ_{p} induces an automorphism of the group $P S L_{n}(q)$ in the natural way.

Now in the following we give the structure of the group of outer automorphisms of the group $P S L_{n}(q)$.

Lemma 6 ([9]). Let $n \geq 2$, and $q=p^{f}$. Then
(a) $\operatorname{Out}\left(P S L_{n}(q) \cong Z_{(n, q-1)}: Z_{f}: Z_{2}\right.$; if $n \geq 3$.
(b) $\operatorname{Out}\left(P S L_{2}(q)\right) \cong Z_{(2, q-1)} \times Z_{f}$.

Suppose δ, σ_{p} and θ are diagonal, field and graph outomorphisms of $P S L_{n}(q)$, $q=p^{f}$, respectively. Then we have $O(\delta)=(n, q-1), O\left(\sigma_{p}\right)=f, O(\theta)=2$, and furthermore $\left[\sigma_{p}, \theta\right]=1, \delta^{\sigma_{p}}=\delta^{p}$ and $\delta^{\theta}=\delta^{-1}$.

According to [10] and [20] the prime graph of the group $P S L_{p}(5)$, where p is a prime number, has two components. The first component is $\pi_{1}=\pi\left(5 \prod_{i=1}^{p-1}\left(q^{i}-1\right)\right)$ and the second component is $\pi_{2}=\pi\left(\frac{5^{p}-1}{4}\right)$.

Now for the group $P S L_{4}(5)$ we have $\left|P S L_{4}(5)\right|=2^{7} \cdot 3^{2} \cdot 5^{6} \cdot 13 \cdot 31$. Therefore the components of the prime graph of this group are as follows: $\pi_{1}=\{2,3,5,13\}$ and $\pi_{2}=\{31\}$.

By [6] we have $\mu\left(P S L_{4}(5)\right)=\{20,24,30,31,39\}$. Therefore $\omega\left(P S L_{4}(5)\right)=$ $\{1,2,3,4,5,6,8,10,12,13,15,20,24,30,31,39\}$ and the prime graph of the group $P S L_{4}(5)$ is as in Figure 1.

Figure 1. The prime graph of the group $\mathrm{PSL}_{4}(5)$
Lemma 7. Let G be a simple group of Lie type. If $\{31\} \subseteq \pi(G) \subseteq\{2,3,5,13,31\}$, then G is isomorphic to $A_{1}(31) \cong P S L_{2}(31), A_{2}(5) \cong P S L_{3}(5)$ or $A_{3}(5) \cong$ PSL L_{4} (5).

Proof. Suppose $G=L(q)$ is a simple group of Lie type over the finite field of order $q=p^{s}$, where p is a prime number and s is a natural number. The orders of these groups are given in [3] and are multiples of numbers of the form $p^{k} \pm 1$, where $k \in \mathbb{N}$. Since p divides $|G|$, therefore p must be one of the numbers $2,3,5,13$ or 31 .

If $p=2$, then it is clear that the order of 2 modulo 31 is 5 . But $7 \mid 2^{3}-1$ and $7 \nmid|G|$. Hence by [3] no candidates for G will arise.

If $p=3$, then the least integer k for which $3^{k}+1 \equiv 0(\bmod 31)$ is 15 . But $7 \mid 3^{3}+1$ and $7 \nmid|G|$. We don't obtain a possibility for G on this case.

If $p=5$, then the order of 5 modulo 31 is 3 . Since $11 \mid 5^{5}-1$ and $7 \mid 5^{6}-1$, hence by [3] the only candidates are the groups $A_{2}(5)$ and $A_{3}(5)$.

If $p=13$, then the least integer k for which $13^{k}+1 \equiv 0(\bmod 31)$ is 15 . But $7 \mid 13+1$ and $7 \nmid|G|$. Then by [3] no candidate for G will arise.

If $p=31$, then since $37 \mid 31^{2}+1$ and $331 \mid 31^{3}-1$, we don't get a possibility for a finite simple group G except $A_{1}(31)$.

3. Proof of the main theorem

In this section we prove that the simple group $P S L_{4}(5)$ is quasirecognizable by the set of its element orders.

Theorem 1. Let G be a finite group. If $\omega(G)=\omega\left(P S L_{4}(5)\right)$, then G has a normal 5 -subgroup N such that $\frac{G}{N} \cong P S L_{4}(5)$. In particular G is quasirecognizable by its set of element orders.

Proof. We have $\mu\left(P S L_{4}(5)\right)=\{20,21,30,31,39\}$. Let G be a finite group such that $\mu(G)=\mu\left(P S L_{4}(5)\right)$. Then components of prime graph of G are $\pi_{1}=\{2,3,5,13\}$ and $\pi_{2}=\{31\}$. Since G has a disconnected Gruenberg-Kegel graph, we can use Lemma 4 for the structure of G. But by [1] only Case (b) of the Lemma 4 may hold (we also could use Lemmas 1,2 and 3 to prove that a group with the given set of element orders is not Frobenius or 2-Frobenius group).

Therefore there exists a normal series $1 \unlhd N \triangleleft G_{1} \unlhd G$, such that $\frac{G}{G_{1}}$ and N are π_{1}-groups, $\bar{G}_{1}:=\frac{G_{1}}{N}$ is a non-abelian simple $\pi_{1}(G)$-group and, $t\left(\bar{G}_{1}\right) \geq 2$. We may assume that $\frac{G}{N} \leq$ Aut $\left(\bar{G}_{1}\right)$. Note that one of the components of the prime graph of \bar{G}_{1} must be $\{31\}$, hence $31\left|\left|\bar{G}_{1}\right|\right.$.

Now according to the classification of finite non-abelian simple groups we know that the possibilities for \bar{G}_{1} are the alternating groups $\mathbb{A}_{n}, n \geq 5$, one of the 26 sporadic simple groups and finite simple groups of Lie type. We deal with the above cases separately.

Case (1). Suppose \bar{G}_{1} is an alternating group $\mathbb{A}_{n}, n \geq 5$. Since $31 \in \omega\left(\bar{G}_{1}\right)$, then $n \geq 31$, which implies that for example $7 \in \omega(G)$, a contradiction.

Case (2). By [3] it is easy to see that \bar{G}_{1} can not be isomorphic to a sporadic simple group.

Case (3). Finally suppose that \bar{G}_{1} is a simple group of Lie type. From Lemma $7, \bar{G}_{1}$ may be isomorphic to one of the following groups $A_{1}(31), A_{2}(5)$ or $A_{3}(5)$.

Since $16 \in \omega\left(A_{1}(31)\right)$ but $16 \notin \omega(G)$, then \bar{G}_{1} is not isomorphic to $A_{1}(31)$. Suppose $\bar{G}_{1} \cong A_{2}(5)$ and $\bar{G}_{1}=\frac{G_{1}}{N}$. If $N \neq 1$, we may assume that N is an elementary abelian p-group, where $p \in\{2,3,5,13\}$. Since $\pi\left(A_{2}(5)\right)=\{2,3,5,31\}$ and $\frac{G}{N} \leq \operatorname{Aut}\left(\bar{G}_{1}\right)=A_{2}(5): 2$, hence $13||N|$. Therefore N is an elementary abelian 13 -group . Now $\frac{G_{1}}{N}=\bar{G}_{1} \cong A_{2}(5)$ and $A_{2}(5) \cong P S L_{3}(5)$ contains a Frobenius subgroup of the shape $5^{2}: 24$. Now it is easy to verify that all conditions of Lemma 5 are fulfilled, hence G_{1} must contain an element of order 13×24, which is a contradiction.

Finally assume $\bar{G}_{1} \cong A_{3}(5)$. Our aim is to show that G has a normal 5 -subgroup N such that $\frac{G}{N} \cong A_{3}(5) \cong P S L_{4}(5)$. Suppose $N \neq 1$. By the prime graph of G, Figure 1, an element of order 31 of G acts fixed-point-freely on N, hence by ($[7]$, page 337) N is a nilpotent $\pi_{1}(G)$-group. Therefore N is the product of p-groups for $p \in \pi_{1}=\{2,3,5,13\}$. Then we may assume that N is a p-group for some prime $p \in \pi_{1}=\{2,3,5,13\}$. \bar{G}_{1} contains a Frobenius group of the shape $5^{3}: 31$. First assume $p \neq 5$. We let $\frac{H}{N}=5^{3}: 31=F: C$ be the Frobenius subgroup of \bar{G}_{1}. Since $\frac{N C_{H}(N)}{N} \cong \frac{C_{H}(N)}{N \cap C_{H}(N)}$ and $C_{H}(N) \leq C_{G}(N)=N$, we deduce that F is not contained in $\frac{N C_{H}(N)}{N}$. Therefore by Lemma 5 we obtain an element of order $31 \times p$ in G, a contradiction. Therefore $p=5$ and G has a normal $5-$ subgroup N (possibly $N=1$) such that $\bar{G}_{1}=\frac{G_{1}}{N} \cong P S L_{4}(5)$. But then $\frac{G_{1}}{N} \unlhd \frac{G}{N}$ and hence $\bar{G}_{1} \leq \frac{G}{N} \leq \operatorname{Aut}\left(\bar{G}_{1}\right)$. By Lemma 6 we have Out $\left(\bar{G}_{1}\right) \cong D_{8}$, the dihedral group of order 8 , which can be given by Out $\left(\bar{G}_{1}\right)=\left\langle\theta, \delta: \delta^{4}=\theta^{2}=1, \theta^{-1} \delta \theta=\delta^{-1}\right\rangle$. We assume $\delta=\operatorname{diag}(2,1,1,1)$. Let T be a subgroup of $\operatorname{Out}\left(\bar{G}_{1}\right)$, then T may be one of the following groups:
$T_{1}=\{1, \theta\}, T_{2}=\{1, \delta \theta\}, T_{3}=\left\{1, \delta^{2} \theta\right\}, T_{4}=\left\{1, \delta^{3} \theta\right\}, T_{5}=\left\{1, \delta^{2}\right\}, T_{6}=$ $\left\{1, \delta, \delta^{2}, \delta^{3}\right\}, T_{7}=\left\{1, \delta^{2}, \theta, \delta^{2} \theta\right\}, T_{8}=\left\{1, \delta^{2}, \delta \theta, \delta^{3} \theta\right\}, T_{9}=\operatorname{Out}\left(\bar{G}_{1}\right), T_{10}=\{1\}$. Therefore $\frac{G}{N} \cong \bar{G}_{1}: T_{i}$, for some $i, i=1, \ldots, 10$.

Let $\bar{G}_{1}^{+}=\bar{G}_{1}:\langle\theta\rangle$. Then by [5], $13\left|\left|C_{\bar{G}_{1}^{+}}(\theta)\right|\right.$, therefore $26 \in \omega\left(\frac{G}{N}\right)$, a contradiction. Therefore $\frac{G}{N} \cong \bar{G}_{1}: T_{i}, i=1,7,9$ are impossible.

If $\frac{G}{N} \cong \bar{G}_{1}: T_{6}=\bar{G}_{1}:\langle\delta\rangle$, then by [9], $\frac{G}{N} \cong P G L_{4}(5)$, therefore by [6] $26 \in \omega\left(\frac{G}{N}\right)$, a contradiction.

If $\frac{G}{N}=\bar{G}_{1}: T_{i}, i=5,8$, then we have $C_{S L_{4}(5)}\left(\delta^{2}\right)=\left\{A \in S L_{4}(5) \mid A \delta^{2}=\right.$ $\left.\delta^{2} A\right\}=\left\{\left.\left[\begin{array}{c|c}(\operatorname{det} X)^{-1} & 0 \\ \hline 0 & X\end{array}\right] \right\rvert\, X \in G L_{3}(5)\right\} \cong G L_{3}(5)$, then $C_{P S L_{4}(5)}\left(\delta^{2}\right)=$ $P G L_{3}(5)$, therefore by [6], $62 \in \omega\left(\frac{G}{N}\right)$, a contradiction.

If $\frac{G}{N} \cong \bar{G}_{1}: T_{2}$, we have $C_{S L_{4}(5)}(\delta \theta) \cong S O_{4}^{-}(5)$. By [3], $52 \in \omega\left(\frac{G}{N}\right)$, contradict$\operatorname{ing} \omega\left(\frac{G}{N}\right)$.

If $\frac{G}{N} \cong \bar{G}_{1}: T_{3}$, we have $C_{S L_{4}(5)}\left(\theta \delta^{2}\right) \cong S O_{4}^{+}(5) \cong S L_{2}(5) \times S L_{2}(5)$, therefore $60 \in \omega\left(\frac{G}{N}\right)$, that is a contradiction.

If $\frac{G}{N} \cong \bar{G}_{1}: T_{4}$, we have $C_{S L_{4}(5)}\left(\theta \delta^{3}\right)=S O_{4}^{-}(5)$, then by [3], $52 \in \omega\left(\frac{G}{N}\right)$, which is a contradiction. Therefore we only have $\frac{G}{N} \cong \bar{G}_{1} \cong P S L_{4}(5)$, and the theorem is proved.

Corollary 1. Let G be a finite group with $\omega(G)=\omega\left(P S L_{4}(5)\right)$ and $|G|=$ $\left|P S L_{4}(5)\right|$. Then $G \cong P S L_{4}(5)$.
Proof. By the main theorem G has a normal subgroup N such that $\frac{G}{N}=P S L_{4}(5)$. Now $|G|=\left|P S L_{4}(5)\right|$ implies $N=1$ and $G \cong P S L_{4}(5)$.

There is a conjecture due to W. Shi and H. Bi [19], which states:
Conjecture 1. Let G be a group and M a finite simple group. Then $G \cong M$ if and only if:
(a) $|G|=|M|$ and
(b) $\omega(G)=\omega(M)$.

Therefore according to Corollary 1, the conjecture of Shi and Bi holds for the simple group $P S L_{4}(5)$.

Acknowledgement. Part of this research was carried out while the first author held a visiting position at the Mathematics Department of the University of North Carolina at Charlotte, USA. The first author would like to thank the hospitality of the Math. Dept. of UNCC during this visit in 2006-2007.

References

[1] Aleeva, M. R., On finite simple groups with the set of element orders as in a Frobenius group or a double Frobenius group, Math. Notes 73 3-4 (2003), 299-313.
[2] Brandl, R. and Shi, W. J., The characterization of $\operatorname{PSL}(2, q)$ by its element orders, J. Algebra, 163 (1) (1994), 109-114.
[3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A., Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[4] Darafsheh, M. R., Karamzadeh, N. S., A characterization of groups $\operatorname{PSL}(3, q)$ by their element orders for certain q, J. Appl. Math. Comput. (old KJCAM) 9 (2) (2002), 409-421.
[5] Darafsheh, M. R., Some conjugacy classes in groups associated with the general linear groups, Algebras Groups Geom. 15 (1998), 183-199.
[6] Darafsheh, M. R., Farjami, Y., Calculating the set of orders of elements in the finite linear groups, submitted.
[7] Gorenstein, D., Finite groups, Harper and Row, New York, 1968.
[8] Higman, G., Finite groups in which every element has prime power order, J. London Math. Soc. 32 (1957), 335-342.
[9] Kleidman, P. and Liebeck, M., The subgroup structure of finite classical groups, Cambridge University Press, 1990.
[10] Kondratjev, A. S., On prime graph components of simple groups, Math. Sb. 180 (6) (1989), 787-797.
[11] Lipschutz, S. and Shi, W. J., Finite groups whose element orders do not exceed twenty, Progr. Natur. Sci. 10 (1) (2000), 11-21.
[12] Mazurov, V. D., Xu, M. C. and Cao, H. P., Recognition of finite simple groups $L_{3}\left(2^{m}\right)$ and $U_{3}\left(2^{m}\right)$ by their element orders, Algebra Logika 39 (5) (2000), 567-585.
[13] Mazurov, V. D., Characterization of finite groups by sets of orders of their elements, Algebra Logika 36 (1) (1997), 37-53.
[14] Passman, D. S., Permutation groups, W. A. Bengamin, New York, 1968.
[15] Shi, W. J., A characteristic property of \mathbb{A}_{5}, J. Southwest-China Teachers Univ. (B) 3 (1986), 11-14.
[16] Shi, W. J., A characteristic property of $P S L_{2}(7)$, J. Austral. Math. Soc. (A) 36 (3) (1984), 354-356.
[17] Shi, W. J., A characterization of some projective special linear groups, J. Southwest-China Teachers Univ. (B) 2 (1985), 2-10.
[18] Shi, W. J., A characteristic property of J_{1} and $P S L_{2}\left(2^{n}\right)$, Adv. Math. (in Chinese) 16 (4) (1987), 397-401.
[19] Shi, W. and Bi, J., A characteristic property for each finite projective special linear group, Lecture Notes in Math. 1456 (1990), 171-180.
[20] Willams, J. S., Prime graph components of finite groups, J. Algebra 69 (2) (1981), 487-513.

Department of Mathematics, Statistics and Computer Science
Faculty of Science, University of Tehran
Tehran, Iran
E-mail: darafsheh@ut.ac.ir
Department of Mathematics, Statistics and Computer Science
Faculty of Science, University of Tehran
E-mail: farjami@khayam.ut.ac.ir
Department of Mathematics, Tarbiat Modarres University
P.O. Box 14115-137, Tehran, Iran

E-mail: asadr@modares.ac.ir

[^0]: 2000 Mathematics Subject Classification: Primary 20D06, Secondary 20H30.
 Key words and phrases: projective special linear group, element order.
 Received June 20, 2005, revised October 2006.

