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PERIODIC SOLUTIONS OF SECOND ORDER NONLINEAR

FUNCTIONAL DIFFERENCE EQUATIONS

Yuji Liu

Abstract. Sufficient conditions for the existence of at least one T−periodic
solution of second order nonlinear functional difference equations are estab-
lished. We allow f to be at most linear, superlinear or sublinear in obtained
results.

1. Introduction

The development of the study of periodic solution of functional difference equa-
tions is relatively rapid. There has been many approaches to study periodic solu-
tions of difference equations, such as critical point theory, fixed point theorems in
Banach spaces or in cones of Banach spaces, coincidence degree theory, Kaplan-
Yorke method, and so on, one may see [3-7,11,13-15] and the references therein.

In papers [5,7,11,13,14], the authors studied the existence of periodic solutions
of first order functional difference equations using different fixed point theorems
in cones of Banach spaces. Zhu and Li in [15] used fixed point theorems in cones
of Banach spaces to obtain positive periodic solutions of higher order functional
difference equations. In [4], the authors studied the existence of periodic solutions
of a second order nonlinear difference equation by using the critical point theory.
Papers [1,2,8-10,12] concerned with the solvability (existence of positive solutions)
of periodic boundary value problems for second order difference equations on a
finite discrete segment.

In this paper, we, by using coincidence degree theory, study the second order
nonlinear functional difference equation

(1) ∆2x(n − 1) = f(n, x(n), x(n − τ1(n)), . . . , x(n − τm(n)) , n ∈ Z ,
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where τi(n), i = 1, . . . , m, are T -periodic sequences with T ≥ 1, f(n, u) is T -
periodic about n for each u = (x0, . . . , xm, xm+1) ∈ Rm+2, and is continuous
about u for each n ∈ Z.

The purpose is to establish sufficient conditions for the existence of at least one
T -periodic solution of equation (1).

We suppose

(A1) f : Z × Rm+1 → R, f(n, x0, . . . , xm+1) is continuous about u = (x0, . . . ,
xm+1) and T−periodic about n;

(A2) τi : Z → Z, i = 1, . . . , m, are T -periodic;

This paper is organized as follows. In section 2, we give the main result and in
Section 3, an example to illustrate the main result will be presented.

2. Main results

To get existence results for T -periodic solutions of equation (1), we need the
following fixed point theorems.

Let X and Y be Banach spaces, L : Dom L ⊂ X → Y be a Fredholm operator
of index zero, P : X → X , Q : Y → Y be projectors such that

Im P = Ker L, Ker Q = Im L, X = Ker L ⊕ Ker P, Y = Im L ⊕ Im Q .

It follows that
L|Dom L∩Ker P : Dom L ∩ Ker P → Im L

is invertible, we denote the inverse of that map by Kp.

If Ω is an open bounded subset of X , Dom L ∩ Ω 6= ∅, the map N : X → Y
will be called L−compact on Ω if QN(Ω) is bounded and Kp(I − Q)N : Ω → X
is compact.

Proposition 1 ([3]). Let L be a Fredholm operator of index zero and let N be

L-compact on Ω. Assume that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈
[

(domL \ KerL) ∩ ∂Ω
]

× (0, 1);

(ii) Nx /∈ Im L for every x ∈ KerL ∩ ∂Ω;

(iii) deg (∧QN
∣

∣

KerL , Ω ∩ KerL, 0) 6= 0, where ∧ : Y/Im L → KerL is the

isomorphism.

Then the equation Lx = Nx has at least one solution in domL ∩ Ω.

Let X =
{

x(n) : x(n + T ) = x(n) for all n ∈ Z
}

be endowed with the norm

‖x‖ = maxn∈[0,T−1]

∣

∣x(n)
∣

∣. It is easy to see that X is a Banach space.
For equation (1), set

L : DomL ∩ X → X , L • x(n) = ∆2x(n − 1) ,

and

N : X → X , N • x(n) = f
(

n, x(n), x(n − τ1(n)), . . . , x(n − τm(n)
)

,

for all x ∈ X and n ∈ N . It is easy to check the results.

(i) KerL =
{

x(n) = c, n ∈ Z, c ∈ R
}

.

(ii) ImL =
{

y ∈ X,
∑T−1

n=0 y(n) = 0
}

.
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(iii) L is a Fredholm operator of index zero.
(iv) There are projectors P : X → X and Q : Y → Y such that KerL = Im P ,

KerQ = Im L. Furthermore, let Ω ⊂ X be an open bounded subset with
Ω ∩ D(L) 6= ∅, then N is L-compact on Ω.

The projectors P : X → X and Q : X → X , the isomorphism ∧ : KerL →
X/ImL and the generalized inverse Kp : Im L → D(L) ∩ Im P are as follows:

Px(n) = x(0) for x ∈ X ,

Q
(

y(n)
)

=
1

T

T−1
∑

n=0

y(n) , for y ∈ X ,

∧(c) = c , c ∈ R ,

Kp

(

y(n)
)

=

n−1
∑

s=0

s−1
∑

j=0

y(j) −
1

T

T
∑

n=1

n−1
∑

s=0

y(s) for y ∈ X .

(v) x ∈ D(L) is a solution of equation (1) if and only if x is a solution of the
operator equation Lx = Nx in D(L).

Suppose
(B) There a constant M > 0 so that

c
[

T−1
∑

n=0

f (n, c, c, . . . , c)
]

> 0 for all |c| > M

or

c
[

T−1
∑

n=0

f (n, c, c, . . . , c)
]

< 0 for all |c| > M .

Theorem 1. Suppose that (A1), (A2), (B) hold and that there is numbers β > 0,
θ > 1, nonnegative sequences pi(n) (i = 0, . . . , m), r(n), functions g(n, x0, . . . , xm),
h(n, x0, . . . , xm) such that f(n, x0, . . . , xm) = g(n, x0, . . . , xm) + h(n, x0, . . . , xm)
and

g(n, x0, x1, . . . , xm)x0 ≥ β|x0|
θ+1 ,

and

|h(n, x0, . . . , xm)| ≤
m

∑

s=0

pi(n) |xi|
µ + r(n) ,

for all n ∈ {1, . . . , T}, (x0, x1, . . . , xm) ∈ Rm+1. Then equation (1) has at least

one T−periodic solution if

‖p0‖ + T

m
∑

i=1

(

T
∑

n=1

[pi(n)]
θ+1

θ−1

)

θ−1

θ+1

< β .
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Proof. To apply Proposition 1, we should define an open bounded subset Ω of X
so that (i), (ii) and (iii) of Proposition 1 hold. To obtain Ω, we do three steps.
The proof of this theorem is divided into four steps, which are as follows:
Step 1. Prove that the set

{

x : Lx = λNx, (x, λ) ∈ [(DomL \KerL)]× (0, 1)
}

is
bounded.
Step 2. Prove that the set {x ∈ KerL : Nx ∈ Im L} is bounded.
Step 3. Prove the set

{

x ∈ KerL : ±λx+(1−λ)QNx = 0, λ ∈ [0, 1]
}

is bounded.
Step 4. Obtain open bounded set Ω such that (i), (ii) and (iii) of Proposition 1
hold. Using Proposition 1, we get the solution of equation (1).

Step 1. Let Ω1 =
{

x : Lx = λNx, (x, λ) ∈ [(DomL\KerL)]× (0, 1)
}

. For x ∈ Ω1,
we have L • x = λN • x, λ ∈ (0, 1), so

∆2x(n − 1) = λf
(

n, x(n), x(n − τ1(n)), . . . , x(n − τm(n))
)

.(2)

So
[

∆2x(n − 1)
]

x(n) = λf
(

n, x(n), x(n − τ1(n)), . . . , x(n − τm(n))
)

x(n) .

Since

2

T
∑

n=1

[

∆x(n)
]

x(n) = 2

T
∑

n=1

[

x(n + 1)x(n) − x(n)2
]

= x(T + 1)2 −
T

∑

i=1

[

x(i + 1) − x(i)
]2

− x(1)2

≤ 0 ,

and

−2

T
∑

n=1

[

∆x(n − 1)
]

x(n) = −2

T
∑

n=1

[

x(n − 1)x(n) − x(n)2
]

= −x(T )2 −
T−1
∑

i=0

[

x(i + 1) − x(i)
]2

+ x(0)2

≤ 0 ,

we get
T

∑

n=1

f
(

n, x(n), x(n − τ1(n)), . . . , x(n − τm(n))
)

x(n) ≤ 0 .

It follows that

β

T
∑

n=1

|x(n)|θ+1 ≤
T

∑

n=1

g
(

n, x(n), x(n − τ1(n)), . . . , x(n − τm(n))
)

x(n)

≤ −
T

∑

n=1

h
(

n, x(n), x(n − τ1(n)), . . . , x(n − τm(n))
)

x(n)
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≤
T

∑

n=1

∣

∣h
(

n, x(n), x(n − τ1(n)), . . . , x(n − τm(n))
)
∣

∣ |x(n)|

≤
T

∑

n=1

p0(n)|x(n)|θ+1 +
m

∑

i=1

T
∑

n=1

pi(n)|x(n − τi(n))|θ|x(n)| +
T

∑

n=1

r(n)|x(n)|

≤ ‖p0‖
T

∑

n=1

|x(n)|θ+1 +

m
∑

i=1

T
∑

n=1

pi(n)|x(n − τi(n))|θ |x(n)| +
T

∑

n=1

r(n)|x(n)| .

For xi ≥ 0, yi ≥ 0, Holder inequality implies

s
∑

i=1

xiyi ≤
(

s
∑

i=1

xp
i

)1/p( s
∑

i=1

yq
i

)1/q

, 1/p + 1/q = 1, q > 0, p > 0 .

It follows that

β

T
∑

n=1

|x(n)|θ+1 ≤ ‖p0‖
T

∑

n=1

|x(n)|θ+1 +

m
∑

i=1

[

T
∑

n=1

(pi(n)|x(n − τi(n))|θ)
θ+1

θ

]
θ

θ+1

×
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

+
(

T
∑

n=1

[r(n)]
θ+1

θ

)
θ

θ+1
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

≤ ‖p0‖
T

∑

n=1

|x(n)|θ+1 +

m
∑

i=1

[(

T
∑

n=1

[pi(n)]
θ+1

θ−1

)

θ−1

θ
(

T
∑

n=1

|x(n − τi(n))|θ+1
)]

θ

θ+1

×
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

+
(

T
∑

n=1

[r(n)]
θ+1

θ

)
θ

θ+1
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

= ‖p0‖
T

∑

n=1

|x(n)|θ+1 +

m
∑

i=1

(

T
∑

n=1

[pi(n)]
θ+1

θ−1

)
θ−1

θ+1
(

T
∑

n=1

|x(n − τi(n))|θ+1
)

θ

θ+1

×
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

+
(

T
∑

n=1

[r(n)]
θ+1

θ

)
θ

θ+1
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

= ‖p0‖
T

∑

n=1

|x(n)|θ+1 +

m
∑

i=1

(

T
∑

n=1

[pi(n)]
θ+1

θ−1

)
θ−1

θ+1

×
(

∑

u∈{n−τi(n): n=1,··· ,T}

|x(u)|θ+1
)

θ

θ+1
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

+
(

T
∑

n=1

[r(n)]
θ+1

θ

)
θ

θ+1
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1
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≤ ‖p0‖
T

∑

n=1

|x(n)|θ+1 + T

m
∑

i=1

(

T
∑

n=1

[pi(n)]
θ+1

θ−1

)

θ−1

θ+1
(

T
∑

u=1

|x(u)|θ+1
)

θ

θ+1

×
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

+
(

T
∑

n=1

[r(n)]
θ+1

θ

)
θ

θ+1
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

= ‖p0‖
T

∑

n=1

|x(n)|θ+1 + T

m
∑

i=1

(

T
∑

n=1

[pi(n)]
θ+1

θ−1

)
θ−1

θ+1
(

T
∑

u=1

|x(u)|θ+1
)

+
(

T
∑

n=1

[r(n)]
θ+1

θ

)
θ

θ+1
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

.

We get

(

β − ‖p0‖ − T

m
∑

i=1

(

T
∑

n=1

[pi(n)]
θ+1

θ−1

)

θ−1

θ+1
)

T
∑

u=1

|x(u)|θ+1

≤
(

T
∑

n=1

[r(n)]
θ+1

θ

)
θ

θ+1
(

T
∑

n=1

|x(n)|θ+1
)

1
θ+1

.

It follows that there is M1 > 0 such that
∑T

u=1 |x(u)|θ+1 ≤ M1.

It follows from above discussion that |x(n)| ≤ M
1/(θ+1)
1 for all n ∈ {1, . . . , T}.

So Ω1 is bounded. This completes the Step 1.

Step 2. Prove that the set Ω2 = {x ∈ KerL : Nx ∈ Im L} is bounded.
For x ∈ KerL, we have x(n) = c. Thus

Nx(t) = f (n, c, c, . . . , c) for x ∈ X .

Nx ∈ Im L implies that
T−1
∑

n=0

f (n, c, c, . . . , c) = 0 .

It follows from condition (B) that |c| ≤ M . Thus Ω2 is bounded.

Step 3. Prove the set Ω3 = {x ∈ KerL : ±λx + (1 − λ)QNx = 0, λ ∈ [0, 1]} is
bounded.

If the first inequality of (B) holds, let

Ω3 = {x ∈ KerL : λx + (1 − λ)QNx = 0, λ ∈ [0, 1]} .

We will prove that Ω3 is bounded. To the contrary that Ω3 is unbounded, there
are sequences xn(k) = an and λn such that ‖an‖∞ → ∞ as n tends to infinity.
Thus we have |an| > M for sufficiently large n. Since xn ∈ Ω3, we get

−(1 − λn)
(

T−1
∑

n=0

f (n, c, c, . . . , c)
)

= λncT .
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If λn = 1, then an = 0, a contradiction. Hence

−(1 − λn)c
(

T−1
∑

n=0

f (n, c, c, . . . , c)
)

= λnc2T ≤ 0 ,

from (B), a contradiction.
If the second inequality of (B) holds, let

Ω3 = {x ∈ KerL : −λx + (1 − λ)QNx = 0, λ ∈ [0, 1]} .

Similarly, we can get a contradiction. So Ω3 is bounded.

Step 4. Obtain open bounded set Ω such that (i), (ii) and (iii) of Proposition 1.
In the following, we shall show that all conditions of Proposition 1 are satisfied.

Set Ω be a open bounded subset of X such that Ω ⊃ ∪3
i=1Ωi. We know that L is

a Fredholm operator of index zero and N is L-compact on Ω. By the definition of
Ω, we have Ω ⊃ Ω1 and Ω ⊃ Ω2, thus Lx 6= λNx for x ∈ (D(L)/KerL) ∩ ∂Ω and
λ ∈ (0, 1); Nx /∈ Im L for x ∈ KerL ∩ ∂Ω.

In fact, let H(x, λ) = ±λx + (1 − λ)QNx. According the definition of Ω, we
know Ω ⊃ Ω3, thus H(x, λ) 6= 0 for x ∈ ∂Ω ∩ KerL, thus by homotopy property
of degree,

deg
(

QN | KerL, Ω ∩ KerL, 0
)

= deg
(

H(·, 0), Ω ∩ KerL, 0)

= deg
(

H(·, 1), Ω ∩ KerL, 0
)

= deg
(

± ∧, Ω ∩ KerL, 0
)

6= 0 .

Thus by Proposition 1, Lx = Nx has at least one solution in D(L) ∩ Ω, which is
a solution of equation (1). The proof is completed.

3. An examples

In this section, we present an example to illustrate the main result in Section 2.

Example 1. Consider the following equation

(3) ∆2x(n − 1) = β[x(n)]2k+1 +

m
∑

i=1

pi(n)[x(n − τi(n))]2k+1 + r(n), n ∈ Z ,

where k is a positive integer, β > 0, pi(n), r(n) are 2T -periodic sequences. Corre-
sponding to the assumptions of Theorem L, we set

g(n, x0, . . . , xm) = β[x0]
2k+1 ,

and

h(, x0, . . . , xm) =

m
∑

i=1

pi(n)[xi]
2k+1 + r(n)

with θ = 2k + 1. It is easy to see that (A1) and (A2) hold, and

cf(n, c, . . . , c) = c2k+2
(

β +

m
∑

i=1

pi(n)
)

+ cr(n)
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implies that there is M > 0 such that cf(n, c, . . . , c) > 0 for all n ∈ Z and |c| > M
if β +

∑m
i=1 pi(n) > 0.

It follows from Theorem 1 that (3) has at least one 2T -periodic solution if

‖p0‖ + T

m
∑

i=1

(

T
∑

n=1

[pi(n)]
2k+2

2k

)
2k

2k+2

< β

and β +
∑m

i=1 pi(n) > 0.
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