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IDEAL AMENABILITY OF MODULE EXTENSIONS OF

BANACH ALGEBRAS

M. Eshaghi Gordji, F. Habibian, and B. Hayati

Abstract. Let A be a Banach algebra. A is called ideally amenable if for
every closed ideal I of A, the first cohomology group of A with coefficients in
I∗ is zero, i.e. H1(A, I∗) = {0}. Some examples show that ideal amenability
is different from weak amenability and amenability. Also for n ∈ N, A is
called n-ideally amenable if for every closed ideal I of A, H1(A, I(n)) = {0}.
In this paper we find the necessary and sufficient conditions for a module
extension Banach algebra to be 2-ideally amenable.

1. Introduction

Let A be a Banach algebra and let X be a Banach A-bimodule. Then X∗, the
dual space of X , with the following module actions is a Banach A-bimodule:

〈x, a · x∗〉 = 〈x · a, x∗〉 , 〈x, x∗ · a〉 = 〈a · x, x∗〉 , (a ∈ A, x ∈ X, x∗ ∈ X∗) .

In particular, if I is a closed ideal in A, then I and I∗ will be a Banach A-
bimodule and a dual Banach A-bimodule respectively. A bounded linear operator
D : A → X is called a derivation if

D(ab) = D(a) · b + a · D(b) (a, b ∈ A) .

For x ∈ X , we put δx : A → X by

δx(a) = a · x − x · a (a ∈ A) .

It is clear that δx is a derivation. Derivations of this form are called inner deriva-
tions. A Banach algebra A is amenable if for every Banach A-bimodule X , every
derivation from A into X∗ is inner; i.e., H1(A, X∗) = {0}, where H1(A, X∗) is
the first cohomology group of A with coefficients in X∗. Johnson has introduced
the concept of amenability of Banach algebras [12]. A Banach algebra A is weakly
amenable if H1(A,A∗) = {0} (see [3], [9], [10] and [13]). Bade, Curtis and Dales
[1] defined the concept of weak amenability for commutative Banach algebras. Let
n ∈ N; a Banach algebra A is called n-weakly amenable if H1(A,A(n)) = {0}.
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Dales, Ghahramani and Grønbæk brought the concept of n-weak amenability of
Banach algebras in [2].

Definition 1.1. A Banach algebra A is called ideally amenable if for every closed
ideal I of A; H1(A, I∗) = {0}.

Definition 1.2. A Banach algebra A is called n-ideally amenable if for every
closed ideal I of A; H1(A, I(n)) = {0}.

2. Some Examples

Obviously, amenability implies ideal amenability and ideal amenability implies
weak amenability. However, the following examples show that the converse is not
valid.

Example 2.1. Consider the algebra A = B(H) of bounded linear operators on
some infinite-dimensional separable Hilbert space H . Then A has exactly two
nonzero closed ideals I0 = K(H), the compact operators on H , and I1 = B(H).
Denoting by N(H) the space of nuclear or trace-class operators on H , we have

H1(A, I∗0 ) = H1(B(H), N(H)) = {0} ,(1)

H1(A, I∗1 ) = H1(B(H), (B(H))∗) = {0} .(2)

To prove (1), take any bounded derivation D : B(H) → N(H). The restriction of
D to K(H) is a derivation D0 : K(H) → N(H) = K(H)∗ and hence of the form
D0(T ) = AT − TA,

(

T ∈ K(H)
)

, for some A ∈ N(H) [11, Corollary 4.2]. But
D0 being weakly compact, the above equation extends to all of B(H), such that
D(T ) = AT −TA,

(

T ∈ B(H)
)

, showing that D is inner. The proof of (2) follows
directly from the result of Haagerup just quoted. Thus A = B(H) is an example
of an ideally amenable Banach algebra that is not amenable [15].

We know that B(H) is a C∗-algebra. So, one might wonder about the ideal
amenability of C∗-algebras. Here we have:

Example 2.2. All C∗-algebras A are ideally amenable. Indeed let I be a closed
two-sided ideal in A and let D : A → I∗ be a derivation. Since the restriction of
D to I is again a derivation and I is a C∗-algebra in its own right, there exists
by [11] an f ∈ I∗ such that Db = bf − fb for all b ∈ I. We have to show that
this holds true for all a ∈ A. For an approximate identity (eα) in I and b ∈ I and
a ∈ A we have

〈

eαb, D(a)
〉

=
〈

b, D(a)eα

〉

=
〈

b, D(aeα) − aD(eα)
〉

=
〈

b, (aeα)f − f(aeα)
〉

−
〈

ba, eαf − feα

〉

=
〈

(ba)eα − a(eαb), f
〉

−
〈

(ba)eα − eα(ba), f
〉

.

Such that in the limit
〈

b, D(a)
〉

= 〈ba − ab, f〉 = 〈b, af − fa〉 ,
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i.e. Da = af − fa for all a ∈ A. This means H1(A, I∗) = {0}. Therefore A is
ideally amenable.

Remark 2.3. A C∗-algebra is amenable if and only if it is nuclear [11]. So,
a non-nuclear C∗-algebra is not amenable, but ideally amenable.

Let n ∈ N, then the following assertions hold.

a) Every n-ideally amenable Banach algebra is n-weakly amenable.
b) An amenable Banach algebra is n-ideally amenable.
c) Every (n + 2)-ideally amenable Banach algebra is n-ideally amenable.
d) Every weakly amenable commutative Banach algebra is n-ideally amenable.
e) A commutative Banach algebra A is weakly amenable if and only if A is

(2n − 1)-ideally amenable.

The assertions (a) and (b) above are obvious. Assertion (c) is Theorem 1.5
of [7]. Also (d) and (e) follow from Theorem 1.5 of [1].

Example 2.4. Let α ∈ (0, 1
2 ), and let (K, d) be an infinite compact metric space.

Then A = lipα(K) is weakly amenable Banach algebra that is not amenable [1].
A is commutative, then by assertion (d) above, A is ideally amenable.

There are also some examples of Banach algebras which show that ideal amenabil-
ity is not equivalent to weak amenability. In the following we give one of them.

Example 2.5. Let A = L1(G), where G = SL(2, R), the set of elements in
M2(R) with determinant one. Also let I = {f ∈ L1(G) :

∫

G
f(g)dmG(g) = 0}, the

augmentation ideal of A. By Theorem 5.2 of [14]; H1(A, I∗) 6= {0}. So, A is not
ideally amenable. On the other hand, for every locally compact group G, L1(G)
is weakly amenable [13]. Thus A is weakly amenable.

For more examples see [5] and [8].

3. Module extension Banach algebras

Let A and X be a Banach algebra and a Banach A-bimodule respectively.
Consider A⊕ X as a Banach space with the following norm

∥

∥(a, x)
∥

∥ = ‖a‖ + ‖x‖ (a ∈ A , x ∈ X) .

Then A⊕ X is a Banach algebra with the product

(a1, x1)(a2, x2) = (a1a2, x1 · a2 + a1 · x2) .

A ⊕ X is called a module extension Banach algebra. Since (A ⊕ X)∗ = (0 ⊕
X)⊥ ∔ (A ⊕ 0)⊥, where ∔ denotes the direct A-bimodule l∞-sum, and (0 ⊕ X)⊥

(respectively, (A ⊕ 0)⊥ ) is isometrically isomorphic to A∗ (respectively, X∗) as
A-bimodules, for convenience, we simply identify the corresponding terms and
write

(A⊕ X)∗ = A∗ ∔ X∗ .

Take A(n)∔X(n) as the underlying space of (A⊕X)(n). The sum is an l1-sum when
n is even and is an l∞-sum when n is odd. One can verify that the (A⊕X)-bimodule
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actions on (A⊕X)(n) for (a, x) ∈ A⊕X and (a(n), x(n)) ∈ A(n)∔X(n) = (A⊕X)(n)

are formulated as follows:

(a, x)
(

a(n), x(n)
)

= (aa(n) + xx(n), ax(n))

and

(

a(n), x(n)
)

(a, x) =
(

a(n)a + x(n)x, x(n)a
)

where n is odd, and

(a, x)
(

a(n), x(n)
)

=
(

aa(n), ax(n) + xa(n)
)

and

(

a(n), x(n)
)

(a, x) =
(

a(n)a, a(n)x + x(n)a
)

where n is even.
We need the following lemma for the main result of paper.

Lemma 3.1. Let A be a Banach algebra and let X be a Banach A-bimodule. Then
J is a closed two sided ideal of A⊕X, if and only if there exist a closed ideal I of
A and a closed A-submodule Y of X such that J = I ⊕ Y and IX ∪ XI ⊆ Y .

Yong Zhang in [16] found a necessary and sufficient condition for a module
extension Banach algebra to be n-weakly amenable (n = 1, 2, . . . ). Also in [6,
Theorem 2.4], it has been proved that:

Theorem 3.2. A⊕X is ideally amenable if and only if for arbitrary ideal I ⊕ Y

of A⊕ X the following conditions hold:

1. H1(A, I∗) = {0};
2. H1(A, Y ∗) = {0};
3. For every continuous A-bimodule morphism Γ: X → I∗, there exists F ∈ Y ∗

such that aF − Fa = 0 for a ∈ A and Γ(x) = xF − Fx for x ∈ X;
4. The only continuous A-bimodule morphism T : X → Y ∗ for which xT (y) +

T (x)y = 0 (x, y ∈ X) in I∗ is T = 0.

We prove the similar argument for n-ideal amenability when n = 2.

Lemma 3.3. Suppose that T : X → Y ∗∗ is a continuous A-bimodule morphism.
Then T : A ⊕ X → (I ⊕ Y )∗∗, defined by T̄

(

(a, x)
)

=
(

0, T (x)
)

is a continuous

derivation. T̄ is inner if and only if there exists u ∈ I∗∗ such that ua = au for
a ∈ A and T (x) = xu − ux for all x ∈ X.

Proof. Let (a, x), (b, y) ∈ A⊕ X . We have

T̄
(

(a, x) · (b, y)
)

= T̄
(

(ab, ay + xb)
)

=
(

0, T (ay + xb)
)

=
(

0, aT (y) + T (x)b
)

.

On the other hand

T̄
(

(a, x)
)

· (b, y) =
(

0, T (x)
)

· (b, y) =
(

0, 0 + T (x)b
)
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and

(a, x) · T̄
(

(b, y)
)

= (a, x) ·
(

0, T (y)
)

=
(

0, aT (y) + 0
)

.

It is clear that T̄ is continuous and thus T̄ is a derivation. Let T̄ be inner, then
there exist u ∈ I∗∗ and F ∈ Y ∗∗ such that

T̄
(

(a, x)
)

= (a, x) · (u, F ) − (u, F ) · (a, x) = (au − ua, aF − Fa + xu − ux) ,

but
(

0, T (x)
)

= T̄
(

(0, x)
)

= (0, xu − ux)

and

(0, 0) = T̄
(

(a, 0)
)

= (au − ua, aF − Fa) .

It shows that au = ua and therefore there exists u ∈ I∗∗ such that T (x) = xu−ux

(x ∈ X). For converse, let au = ua and there exists u ∈ I∗∗ such that T (x) =
xu − ux (x ∈ X). We have

T̄
(

(a, x)
)

=
(

0, T (x)
)

= (au − ua, xu − ux)

and hence T̄
(

(a, x)
)

= (a, x) · (u, 0)− (u, 0) · (a, x), where (u, 0) ∈ (I ⊕Y )∗∗. Then

T̄ is inner and proof is complete.

If D : A → Y ∗∗ is a continuous derivation, we define D̄ : A⊕X → (I ⊕Y )∗∗ by
D̄((a, x)) = (0, D(a)). Also, if T : X → I∗∗ is a continuous A-bimodule morphism
such that xT (y) + T (x)y = 0, we define T̄ : A ⊕ X → (I ⊕ Y )∗∗ by T̄ ((a, x)) =
(T (x), 0).

Lemma 3.4. The operators D̄ and T̄ defined above are continuous derivations.
Furthermore, the derivation D̄ is inner if and only if D is inner, and T̄ is inner
if and only if T = 0.

Proof. It is clear that D̄ and T̄ are continuous derivations. Let D̄ be inner and
(a, x) ∈ A ⊕ X be arbitrary. There exist u ∈ I∗∗, F ∈ Y ∗∗ such that D̄

(

(a, x)
)

=
(a, x) · (u, F ) − (u, F ) · (a, x) = (au − ua, aF − Fa + xu − ux). But

(

0, D(a)
)

= D̄
(

(a, 0)
)

= (au − ua, aF − Fa)

and

(0, 0) = D̄
(

(0, x)
)

= (0, xu − ux) .

Then D(a) = aF − Fa for some F ∈ Y ∗∗ and so D is inner. For converse, let D

be inner. There exists F ∈ Y ∗∗ such that D(a) = aF − Fa (a ∈ A). Then

D̄
(

(a, x)
)

=
(

0, D(a)
)

= (0, aF − Fa) = (a, x) · (0, F ) − (0, F ) · (a, x) .

This means that there exists ξ = (0, F ) ∈ (I ⊕ Y )∗∗ such that D̄
(

(a, x)
)

= (a, x) ·

ξ − ξ · (a, x)
(

(a, x) ∈ A⊕ X
)

. Then D̄ is inner. Now let T̄ be inner. There exist
u ∈ I∗∗, F ∈ Y ∗∗ such that for each (a, x) ∈ A⊕ X ,

T̄
(

(a, x)
)

= (a, x) · (u, F ) − (u, F ) · (a, x) = (au − ua, aF − Fa + xu − ux) .



182 M. E. GORDJI, F. HABIBIAN, AND B. HAYATI

But
(

T (x), 0
)

= T̄
(

(0, x)
)

= (0, xu − ux)

and so T (x) = 0, for every x ∈ X . The converse is trivial.

Now we find a necessary and sufficient condition for a module extension Banach
algebra to be 2-ideally amenable.

Theorem 3.5. A⊕X is 2-ideally amenable if and only if for every arbitrary ideal
I ⊕ Y of A⊕ X the following conditions hold:

1. the only continuous derivations D : A → I∗∗ for which there is a continuous
operator T : X → Y ∗∗ such that T (ax) = D(a)x + aT (x) and T (xa) =
xD(a) + T (x)a (a ∈ A,x ∈ X) are the inner derivations;

2. H1(A, Y ∗∗) = {0};
3. the only continuous A-bimodule morphism Γ: X → I∗∗ for which xΓ(y) +

Γ(x)y = 0 (x, y ∈ X) in Y ∗∗ is zero;
4. for every continuous A-bimodule morphism T : X → Y ∗∗, there exists u ∈

I∗∗ for which au = ua for a ∈ A and T (x) = xu − ux for x ∈ X.

Proof. Let I⊕Y be an arbitrary ideal of A⊕X . Denote by τ1 and τ2 the inclusion
mappings from, respectively, A and X into A⊕X , and denote by ∆1 and ∆2 the
natural projections from (I ⊕ Y )∗∗ onto I∗∗ and Y ∗∗, respectively. These are A-
bimodule morphisms. To prove the sufficency we assume that Conditions 1–4 hold.
Let D : A⊕X → (I ⊕Y )∗∗ be a continuous derivation. Then ∆1 ◦D ◦τ1 : A → I∗∗

and ∆2 ◦ D ◦ τ1 : A → Y ∗∗ are continuous derivations.

Claim 1: ∆1 ◦ D ◦ τ2 : X → I∗∗ is trivial.
Let Γ = ∆1 ◦ D ◦ τ2. To prove Claim 1, by Condition 3 it suffices to show that Γ
is an A-bimodule morphism satisfying xΓ(y) + Γ(x)y = 0 (x, y ∈ X).

0 = D
(

(0, 0)
)

= D
(

(0, x) · (0, y)
)

= D
(

(0, x)
)

· (0, y) + (0, x) · D
(

(0, y)
)

=
(

0, Γ(x)y
)

+
(

0, xΓ(y)
)

Thus xΓ(y) + Γ(x)y = 0. On the other hand,

Γ(ax) = ∆1 ◦ D
(

(0, ax)
)

= ∆1 ◦ D
(

(a, 0) · (0, x)
)

= ∆1

(

D
(

(a, 0)
)

· (0, x) + (a, 0) · D
(

(0, x)
))

= ∆1

(

(a, 0) · D
(

(0, x)
))

= ∆1

(

aD ◦ τ2(x)
)

= aΓ(x) .

Similarly, Γ(xa) = Γ(x)a and so Γ is an A-bimodule morphism. Therefore claim
1 is true. Now let T = ∆2 ◦ D ◦ τ2 : X → Y ∗∗ and D1 = ∆1 ◦ D ◦ τ1 : A → I∗∗.

Claim 2: T (ax) = D1(a)x + aT (x) and T (xa) = xD1(a) + T (x)a for a ∈ A and
x ∈ X .

(

0, T (ax)
)

=
(

0, ∆2 ◦ D
(

(0, ax)
))

= D
(

(0, ax)
)

= D
(

(a, 0) · (0, x)
)

= D
(

(a, 0)
)

· (0, x) + (a, o) · D
(

(0, x)
)

=
(

0, D1(a)x
)

+ a
(

0, T (x)
)

=
(

0, D1(a)x + aT (x)
)

.



IDEAL AMENABILITY OF MODULE EXTENSIONS OF BANACH ALGEBRAS 183

Similarly, for every a ∈ A and x ∈ X , we have
(

0, T (ax)
)

=
(

0, xD1(a) + T (x)a
)

.
Thus Claim 2 holds. Therefore by Condition 1, D1 = ∆1 ◦ Dτ1 is inner.

Now suppose that u ∈ I∗∗ satisfies D1(a) = au−ua for a ∈ A. Let T1 : X → Y ∗∗

be defined by T1(x) = xu− ux for x ∈ X . Then T −T1 : X → Y ∗∗ is a continuous
A-bimodule morphisms. In fact, from Claim 2, for every a ∈ A and x ∈ X , we
have

(T − T1)(ax) = T (ax) − T1(ax) =
(

D1(a)x + aT (x)
)

− (axu − uax)

= (au − ua)x + aT (x) − (axu − uax) = a(ux − xu) + aT (x)

= a(T − T1)(x) .

Similarly, T − T1 is a right A-bimodule morphism. From Condition 4, there is a
v ∈ I∗∗ such that av = va for a ∈ A and (T − T1)(x) = xv − vx for x ∈ X . By
Lemma 3.2, we know that

T − T1 : A⊕ X → (I ⊕ Y )∗∗, (a, x) 7→
(

0, (T − T1)(x)
)

is an inner derivation. Since ∆2 ◦ D ◦ τ1 : A → Y ∗∗ is a continuous derivation, it
is inner by Condition 2. By Lemma 2.4, the mapping

∆2 ◦ D ◦ τ1 : A⊕ X → (I ⊕ Y )∗∗, (a, x) 7→
(

0, ∆2 ◦ D ◦ τ1(a)
)

is also inner derivation. Using Claim 1, we now have

D
(

(a, x)
)

=
(

D1(a), ∆2 ◦ D ◦ τ1(a) + T (x)
)

= ∆2 ◦ D ◦ τ1

(

(a, x)
)

+ (T − T1)
(

(a, x)
)

+
(

D1(a), T (x)
)

.

Since
(

D1(a), T1(x)
)

= (au − ua, xu − ux) = (a, x) · (u, 0) − (u, 0) · (a, x)

for a ∈ A and x ∈ X , it gives an inner derivation from A ⊕ X into (I ⊕ Y )∗∗.
Hence as a sum of three inner derivations, D is inner. Thus under Conditions 1-4,
A⊕ X is 2-ideally amenable.

Now we prove the necessity. Suppose that A ⊕ X is 2-ideally amenable. Let
D : A → I∗∗ be a continuous derivation with the property given in Condition 1.
We define D̄ : A⊕ X → (I ⊕ Y )∗∗ by

D̄
(

(a, x)
)

=
(

D(a), T (x)
) (

(a, x) ∈ A⊕ X
)

.

D̄ is a continuous derivation. D̄ is inner, so there exists (u, F ) ∈ (I ⊕ Y )∗∗ such
that

D̄
(

(a, x)
)

= (a, x) · (u · F ) − (u, F ) · (a, x) ,

and then for some u ∈ I∗∗, we have (D(a), T (x)) = (au − ua, xF − Fx), thus
D(a) = au − ua, this means that D is inner, and Condition 1 holds.
Conditions 2 and 3 hold by Lemma 3.4. Also Condition 4 holds by Lemma 3.3.
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