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τ-SUPPLEMENTED MODULES AND τ-WEAKLY

SUPPLEMENTED MODULES

Muhammet Tamer Koşan

Abstract. Given a hereditary torsion theory τ = (T, F) in Mod-R, a module
M is called τ -supplemented if every submodule A of M contains a direct
summand C of M with A/C τ−torsion. A submodule V of M is called τ-

supplement of U in M if U + V = M and U ∩ V ≤ τ(V ) and M is τ-weakly

supplemented if every submodule of M has a τ -supplement in M . Let M be a
τ -weakly supplemented module. Then M has a decomposition M = M1⊕M2

where M1 is a semisimple module and M2 is a module with τ(M2) ≤e M2.
Also, it is shown that; any finite sum of τ -weakly supplemented modules is
a τ -weakly supplemented module.

Introduction

Throughout this paper, we assume that R is an associative ring with unity,
M is a unital right R-module. The symbols, “≤” will denote a submodule, “≤d”
a module direct summand, “≤e” an essential submodule, “≪” small submodule
and “Rad (M)” the Jacobson radical of M .

Let τ = (T, F) be a torsion theory. Then τ is uniquely determined by its as-
sociated class T of τ -torsion modules T = {M ∈ Mod −R | τ(M) = M} where
for a module M , τ(M) =

∑

{N | N ≤ M, N ∈ T} and F is referred as τ -torsion
free class and F = {M ∈ Mod -R | τ(M) = 0}. A module in T (or F) is called
a τ -torsion module (or τ -torsionfree module). Every torsion class T determines in
every module M a unique maximal T-submodule τ(M), the τ-torsion submodule

of M , and τ(M/τ(M)) = 0. In what follows τ will represent a hereditary torsion
theory, that is, if τ = (T, F) then the class T is closed under taking submodules,
direct sums, homomorphic images and extensions by short exact sequences, equiv-
alently the class F is closed under submodules, direct products, injective hulls and
isomorphic copies.

Let N and K be submodules of M . N is said to be a supplement submodule of
K in M if M = N +K and N∩K ≪ N . M is called a weakly supplemented module

2000 Mathematics Subject Classification : 16D50, 16L60.
Key words and phrases : torsion theory, τ -supplement submodule.
Received March 5, 2006, revised February 2007.



252 M. T. KOŞAN

if every submodule of M has a supplement in M . The module M is called a ⊕-

supplemented module if every submodule of M has a supplement that is a direct
summand of M . Supplemented modules and its variations have been discussed
by several authors in the literature and these modules are useful in characterizing
semiperfect modules and rings.

Given a hereditary torsion theory τ = (T, F) in Mod -R, τ -complemented mod-
ules are studied in [8]. Dually, a module M is said to be a τ-supplemented module

if every submodule A of M contains a direct summand C of M with A/C τ -torsion
[4]. Some further properties of τ−supplemented were studied in [4] and [5].

In this note, we define τ -supplement and τ -weakly supplemented modules. In
Section 2, we will show that

Theorem. Let M be a τ-weakly supplemented module. Then

(1) If M is τ-torsionfree, then M is τ-weakly supplemented if and only if M is

semisimple.

(2) Every homomorphic image of M is again a τ-weakly supplemented module.

(3) M/τ(M) is semisimple

and

Theorem. Any finite sum of τ-weakly supplemented modules is a τ-weakly sup-

plemented module.

In [6], the authors defined and characterized perfect module and ring relative to
a torsion theory. In this note, we define semiperfect module relative to a torsion
theory and we will prove that

Theorem. M is a τ-semiperfect module if and only if M is a τ-weakly supple-

mented module and each τ-supplement submodule of M is a τ-projective cover.

We refer the reader to [3] and [9] as torsion theoretic sources sufficient for our
purposes and [1] and [10] for the other notations in this paper.

1. τ-suplemented modules and τ-weakly suplemented modules

Let τ = (T, F) be a hereditary torsion theory in Mod -R and M be a right
R-module. Following [4], M is said to be a τ-supplemented module if every
submodule A of M contains a direct summand C of M with A/C τ -torsion.

Firstly, we give some properties of τ -supplemented modules:

Theorem 1.1.

(1) Let M be a module. Then the following are equivalent

(a) M is a τ-supplemented module.

(b) Every submodule A of M can be written as A = B ⊕ C with B a direct

summand of M and τ(C) = C.

(c) For every submodule A of M , there exist a decomposition M = X ⊕ X ′

with X ≤ A and X ′ ∩ A ≤ τ(X ′).
(d) For every submodule A of M , there is an idempotent e ∈ End (MR) such

that e(M) ⊆ A and (1 − e)(A) ≤ τ
(

(1 − e)A
)

.
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(2) Let M be a τ-supplemented module. Then

(a) Every submodule of M is a τ-supplemented module.

(b) Every τ-torsionfree submodule of M is a direct summand of M .

(c) Every submodule N of M with N ∩ τ(M) = 0 is a direct summand of

M . In particular, if M is τ-torsionfree, then M is τ-supplemented if

and only if M is semisimple.

(d) M/τ(M) is semisimple.

(e) For any submodules K, N of M such that M = N + K, there exist

a submodule X of N with M = K + X and K ∩ X ⊆ τ(X).
(f) Rad (M) ≤ τ(M).
(g) If τ(M) 6= Rad (M), then M has a nonzero direct summand with τ-

torsion.

(h) τ(M) = Rad (M) or M has a nonzero τ-torsion submodule that is a di-

rect summand of M .

Proof. (1)(a)⇔(b) and (2)(a) are [4, Lemma 2.1].
(1)(a)⇔ (c) and (a)⇔(d) are obvious.
(2)(b) Is [4, Lemma 2.5].
(2)(c) Is [4, Corollary 2.6].
(2)(d) By [5, Theorem 4.8].
(2)(e) Let M be a τ -supplemented and K, N be submodules of M with M = N+K.
By (2)(a), N is a τ -supplemented module. Then there exist a submodule X of N
such that N = N ∩K + X and N ∩K ∩X is τ -torsion and so N ∩K ∩X ≤ τ(X).
Note that M = X + K. It is clear that K ∩ X = N ∩ K ∩ X ≤ τ(X).
(2)(f) By (2)(d), M/τ(M) is semisimple and so Rad (M) ≤ τ(M).
(2)(g) Assume that τ(M) 6= Rad (M). Then there exist a maximal submodule P
of M such that τ(M) is not contained in P . Since M is τ -supplemented, there
exists a submodule X of K such that M = X ⊕ X ′ and P ∩ X ′ ≤ τ(X ′) by
(1)(c). Note that P ∩ X ′ is also maximal submodule of X ′. We may assume that
τ(X ′) = X ′. Thus M = X ⊕ X ′, where X ′ = τ(X ′).
(2)(h) Clear from (2)(d) and (g). Also, it follows from [5, Theorem 4.9].

As we mentioned in introduction, a submodule V of M is called supplement of U
in M if V is a minimal element in the set of submodules L of M with U +L = M .
So V is a supplement of U if and only if U + V = M and U ∩ V is small in V . An
R-module M is weakly supplemented if every submodule of M has a supplement
in M .

After considering several possible definitions for a supplement module in a tor-
sion theory, by Theorem 2.1, we propose as; a submodule V of M is called τ-

supplement of U in M if U + V = M and U ∩ V ≤ τ(V ) and M is said to be
a τ-weakly supplemented module if every submodule of M has a τ -supplement in
M . Clearly, every τ -supplemented is a τ -weakly supplemented.
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Lemma 1.2. Let M be a module and V ≤ M .

(1) If V is a τ-torsionfree τ-supplement submodule, then V is a direct summand

of M .

(2) If τ(M) = 0, then every τ-supplement submodule of M is a direct summand.

(3) If V is a τ-supplement submodule of M and V ′ ⊆ V , then V/V ′ is also

τ-supplement submodule of M/M ′.

Proof. Trivial.

Theorem 1.3. Let M be a τ-weakly supplemented module. Then

(a) If M is τ-torsionfree, then M is τ-weakly supplemented if and only if M is

semisimple.

(b) Every homomorphic image of M is again a τ-weakly supplemented module.

(c) M/τ(M) is semisimple.

Proof. They are consequences of Lemma 2.2.

The class of τ -supplemented module is not closed under direct sums. Therefore,
there are some decompositions theorems for τ - supplemented modules, for example:
A τ -supplemented module M has a decomposition M = M1 ⊕ M2 where M1 is
a semisimple module and M2 is a τ -supplemented module with τ(M2) ≤e M2 (see
[4, Lemma 2.7]).

Lemma 1.4.

(1) Let M be a τ-weakly supplemented module. Then M has a decomposition

M = M1 ⊕ M2 where M1 is a semisimple module and M2 is a module with

τ(M2) ≤e M2.

(2) For submodules N, K of M , if N is a τ-weakly supplemented module and

N + K has a τ-supplement in M then K has a τ-supplement in M .

Proof. (1) For the proof, we completely follow the proof of [4, Lemma 2.7]. If
τ(M) ≤e M , then proof is clear. Assume not. Let N ≤ M be a complement of
τ(M). Therefore N ⊕ τ(M) ≤e M . By Theorem 2.3, N is a semisimple module.
Since M is τ -supplemented module, there exists a submodule X of M such that
M = N + X and N ∩X ≤ τ(X). Note that N ∩X = N ∩ (N ∩X) ≤ N ∩ τ(X) ≤
N ∩ τ(M) = 0. This implies M = N ⊕ X and τ(M) = τ(N) ⊕ τ(X) = τ(X)
because τ(N) = 0. Therefore, we have τ(X) ≤e X .
(2) Because N + K has a τ -supplement in M , let A be a submodule of M with
M = (N + K) + A and (N + K) ∩ A ≤ τ(A). Since N is τ -weakly supplemented
module, there exists a submodule B of N such that [(K + A) ∩ N ] + B = N and
[(K+A)∩N ]∩B ≤ τ(B). Hence M = K+A+B and B is a τ -supplement of K+A
in M . We claim that A+ B is a τ -supplement of K in M . Since B + K ≤ N + K,
we have A ∩ (B + K) ≤ τ(A). Now, (A + B)∩K ≤ τ(A) + τ(B) ≤ τ(A + B).

The following theorem generalizes a part of [2, 17.13].

Theorem 1.5. Any finite sum of τ-weakly supplemented modules is τ-weakly sup-

plemented module.
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Proof. Let M1 and M2 be τ -weakly supplemented modules and M = M1 + M2.
Let N be a submodule of M . Clearly, M1 + M2 + N has a τ -supplement 0 in M .
By Lemma 2.4, M2 + N has a τ -supplement in M . Again by Lemma 2.4, N has
a τ -supplement in M . This implies that M = M1 + M2 is τ -weakly supplemented
module.

We recall that a module M is τ-projective if and only if it is projective with
respect to every R-epimorphism having a τ -torsion kernel [3].

Lemma 1.6. Let M be a module and L a direct summand of M and K a submodule

of M such that M/K is τ−projective and M = L + K and L ∩ K is τ−torsion.

Then L ∩ K is direct summand of M .

Proof. Let M = L ⊕ L′ and α : M/L′ → L be the isomorphism and β : L →
M/K ∼= L/(L ∩ K) the epimorphism that having L ∩ K as kernel. Then we have
epimorphism βα : M/L′ → M/K having kernel ((L∩K)⊕L′)/L′ ∼= L∩K which is
τ−torsion. Since M/K is τ−projective, there exists g : M/K → M/L′ such that
1 = βαg. Hence L ∩ K is direct summand.

An epimorphism f : P → M is called a τ-projective cover of M if P is τ -
projective and Ker (f) is small τ -torsion submodule of P (see [3, Page 117]).

Lemma 1.7.

(1) If f : P → N is a τ-projective cover and g : N → M is a τ-projective cover,

then gf : P → M is a τ-projective cover.

(2) The following are equivalent for a module M and N ≤ M .

(a) If M/N has a τ-projective cover.

(b) N has a τ-supplement K in M which has a τ- projective cover.

(c) If N ′ is a submodule of M with M = N +N ′, then N has a τ-supplement

X such that X ≤ N ′ and X has a τ-projective cover.

Proof. (1) For the proof, we claim that Ker (gf) is small τ -torsion. By [7, Lemma
4.2], Ker (gf) is small. Let x ∈ Ker (gf). Then f(x) ∈ Ker (g) ≤ τ(N) = f

(

τ(P )
)

.
For any p ∈ τ(P ), we have f(x) = f(p), and so x−p ∈ (f)τ(P ), that is x ∈ τ(P ).
(2)(a)⇒(c) is [6, Lemma 3.1].
(2)(a)⇒(b) is [6, Lemma 3.3].
(2)(c)⇒(b) is clear.
(2)(b)⇒(a) assume N has a τ -supplement K in M which has a τ -projective cover,
that is f : P → K with Ker (f) is small τ -torsion. Let g : K → K/(N ∩ K). It
is easy to see that, Ker (g) small τ -torsion. Since N/N ∩ K = M/N , we have
gf : P → M/N is τ -projective cover of M/N by (1).

Following [6], a module M is said to be a τ − ⊕-supplemented when for every
submodule N of M there exists a direct summand K of M such that M = N + K
and N ∩K is τ -torsion, and M is called a completely τ −⊕-supplemented if every
direct summand of M is τ −⊕-supplemented and the module M is called strongly

τ −⊕-supplemented if for any submodule N of M there exists a direct summand
K of M with M = N + K and N ∩ K is small τ -torsion in K by [6].
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Theorem 1.8. Let P be a projective R−module. Then the following are equiva-

lent:

(1) P is τ−supplemented.

(2) P is τ −⊕−supplemented.

Proof. (1) ⇒ (2) Clear from definitions.
(2) ⇒ (1) Let N be submodule of P . By (2), there exists a direct summand K of
P such that P = N +K = K ′ ⊕K and N ∩K is τ− torsion. By [7, Lemma 4.47],
there exists a direct summand L of P such that P = L ⊕ K and L ≤ N . Since
N/L is isomorphic to N ∩ K, N/L is τ−torsion. (2) follows.

In [6], a ring R is called a right τ-perfect ring if every right R-module has a τ -
projective cover (compare with [11, Remark 4.5]). Every right τ -perfect ring is
right perfect, and any strongly τ−⊕-supplemented module is τ −⊕-supplemented.

Theorem 1.9. Let R be a ring. Then the following are equivalent.

(1) R is a right τ-perfect ring.

(2) Every projective R-module is a strongly τ −⊕-supplemented module.

Proof. (1) ⇒ (2) Let N be submodule of the projective module M . By (1), M/N
has τ -projective cover. By Lemma 2.7, there exists a submodule L of M such that
M = N + L with N ∩ L is small and τ -torsion in L. Again by Lemma 2.3, N
contains a submodule K such that M = K + L with K ∩L is small and τ -torsion
in K. By [6, Lemma 3.2], K ∩ L = 0. Hence M = N + L = K ⊕ L and N ∩ L is
small and τ−torsion in L. It follows that M is strongly τ −⊕-supplemented.
(2) ⇒ (1) Let M be any R-module, P a projective module and f an epimorphism
f : P −→ M . By (2), P has direct summands K and K ′ so that P = Ker (f)+K =
K ′ ⊕ K with Ker (f) ∩ K small and τ - torsion in K. Hence K is the required τ -
projective cover of M .

Similar to τ -perfect module, we call a module M τ-semiperfect if every homo-
morphic image of M has a τ -projective cover.

Theorem 1.10. The following are equivalent for a module M

(1) M is a τ-semiperfect module;

(2) M is a τ-weakly supplemented module and each τ-supplement submodule of

M has τ-projective cover.

(3) For any submodules K, N of M such that M = N + K, there exist a τ-

supplement submodule X of N that X has a τ-projective cover.

Proof. Clear from Lemma 2.7 and Theorem 2.1.
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