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časopis pro pěstování matematiky, roč. 92 (1967), Praha 

ON CERTAIN PROPERTIES CHARACTERIZING LOCALLY 
SEPARABLE METRIC SPACES 

TIBOR NEUBRUNN, JAROSLAV SMITAL and TIBOR SALAT, Bratislava 

(Received January 6, 1966) 

A metric space (X9 Q) is called locally separable (see [l]) if to each peX there 
exists S > 0 such that (S(p9 5), Q) is a separable metric space (S(p9 8) = {xeX; 
Q(P> X) < 8}). Each separable space is locally separable. The space (P, Q)9 where P 
is an uncountable set and Q the trivial metric is an example of a locally separable 
and non separable space. 

If A is a subset of a metric space, then Ac will denote the set of all condensation 
points of the set A. Further Acc = (Ac)c. A point x is called a point of condensation 
of the set A if the intersection of each neighbourhood of the point x with the set A 
is uncountable. If (X9 Q) is a separable space, then (see [2] p. 79) Ac » Acc holds. It 
will be shown that the last property characterises locally separable spaces (among all 
metric spaces). A set A c X will be called s-isolated (e > 0) in X9 if A n S(p9 e) = {p} 
for each p € A. 

Theorem 1. A metric space (X9 Q) is locally separable if and only if Ac == Acc 

for each set i d . 

Lemma. Let the metric space (P, Q) not be separable. Then there exists et > 0 
and an uncountable set B c P such that B is ̂ -isolated in P. 

Proof. It is known (see [2] p. 80) that (P, Q) IS separable if and only if correspond
ing to each s > 0 there exists a countable set A a P such that 

dist (P, A) -*. sup Q(X9 A) < e . 
xmP 

Hence if (P, Q) is not separable there exists e > 0 such that 

(1) dist (P, A) » sup Q(X9 A) g> e, 

where A c P is an arbitrary countable set 
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Let us choose x0 € P and put A = {x0}. In view of (1) there exists xt e P such that 
-?(*ixo) > e/2« Let cot denote the first uncountable ordinal number and let £ < cot. 
Let us suppose that the points xn, t\ < ^ were constucted so that for fj', rf < £, 
r\' =t= rf, Q(xn>, x r ) > e/2 holds. Then A = {x0, xt,..., xn,...}, t\ < £ is countable 
and in view of (1) there exists x$eP such that Q(X%, xn) > e/2 for each r\ < £. Thus, 
by means of transfinite induction a set B = {x0, xt9..., x$,...}, £ < cot is obtained 
which is evidently uncountable and erisolated if we put et = e/2. 

Proof of theorem 1. a) Let (X, Q) be a locally separable metric space and let 
A cz X. It is sufficient to proove the inclusion Ac a Acc. The other inclusion follows 
from the fact that Ac is closed. 

Let x0 e Ac. From the theorem of Sierpinski concerning the structure of locally 
separable spaces (see [1]), we have X = (J Gt where Gt (t e T) are pariwise disjoint 

teT 

open-closed sets in X and (Gt, Q) for each t e T is a locally separable space. Hence 
x0 e Gt0 and there exists <5 > 0 such that S(x0, S) <= Gt0. As the point x0 is a con
densation point of the set A, the set S(x0, <5) n A, and what is more, the set At = 
== A n Gt0 is uncountable and x0 e A\. A\ denotes the set of all condensation points 
of the set At in X or, (which is the same in view of the closedness of the set GtQ) the 
set of all condensation points of At in Gt0. The symbol Ac

t has a similar meaning. 
(GtQ9 Q) is separable, At c Gt0, hence A\ « Ac

t and consequently x0 € Ac
t c ,ACC. 

The inclusion _4C c y4cc is proved. 
b) Let (X, Q) not be locally separable. We shall prove the existence of a set A c X 

such that Ac # Acc. There exists a point p e l such that (S(p, 8), Q) is not separable 
for each 8 > 0. In particular (S(p, %), Q is not separable. In view of our lemma there 
exists an uncountable set Bt which is erisolated in S(p, i), et > 0. 

As it is easily seen the set Bt as an isolated set has not a condensation point, hence 
there exists nt > 2 such that Bt n S(p, l\nx) is countable and consequently: 

At = Bt n (S(p, i) - S(p, ljnt)) = {x € Bu ljnt = Q(p, x) < i} 

is uncountable and erisolated set in S(p, 1). So we have A\ = 0 (A\ denotes the set 
of all condensation points of the set At in X or in S(p, 1)). Since (S(p, ljnt), Q) is 
not separable, there exists on the base of the above lemma an uncountable set B2 

which is e2-isolated in S(pf ljnt) (e2 > 0). Quite a similar procedure to the above one 
leads to the number nz > nt such that the set A2 = {x sB2; \\n2 g Q(P, X) < 
< ljnt} is uncountable. Evidently A2 is e2-isolated in S(p, 1) and Ac

2 = 0. Using 
induction we construct a sequence of natural numbers 

2 = n0 < nt < ... nk < ... 

and a sequence {Ak} of uncountable efc-isolated (e* > 0) sets in S(p91) such that 
0 0 • 

Ac
k ** 0. Let us put A = U Ak Evidently p € Ac. If q e X, q * p, let us put Q(P, q) = 

**- %n and let us take the spaces S(p» ^), S(q, rj). Since for all fc, begining from certain 



k09 l/n*_i < ^ holds, we have U Ak c S(p9 rj) and consequently 
fc = feo+l 

(2) A n S(^, if) = (A t u ... u _4fco) n S(q, if). 

We shall show that q §§ ylc. 
The case qe Ac leads to the inclusion 

(3) {q} a (An S(q9 i?))c . 

From (2) on the base of the known properties of condensation points (see [3] 
p. 140) we get 

(A n S(q9 i?))c c (A, u ... u 4 j " n (S(q, i/))c = (Ac u ... u O n (%, i/))c 

and since A£ = 0 (fc = 1, 2,...) we have (A n S(q9 iy))c = 0 and this is a contradiction 
with (3). Consequently q $ Ac and we have Ac =- {p}, ylcc = 0 # Ac. The proof is 
finished. 

It is not difficult to construct examples of metric spaces (which are in view of 
theorem 1 not separable) in which there exist sets A such that Ac =t= Acc. We shall 
show some such examples. 

Example 1. Let m denote the space of all bounded sequences of real numbers 
with the metric 

e(x,j>)= sup l^-if ,! , * = {£„}?, y = W ? G m -
n = l , 2 , . . . 

Let An be the set of all sequences of the form {ek/n}*=1 where ek = 1 or —1 (k = 

= 1,2,...). Let us put A = (J Au. Then ^ c = {{0}fe°°=1} and Acc = 0 4= -4C. 
n = l 

Example 2. Let a be some symbol, let X denote the set of all triples (a, q>9 r), 
where 0 ^ q> < 2n9 r —• 0, r, <p are real numbers. If r = 0 then we shall identify the 
triple (a, </>, 0) with a. If ^ = (a, <p1? r t), £2 = (a, cp2, r2) we define Q(£19 <J2) = 
= r t + r2, if <?>! * <p2 and Q(£19 <J2) = |rx - r2| if <?! = <p2. 

It is easily seen that Q is a metric on X (see [4]). Let Ak denote the set of all triples 
oo • ' ' • 

£ = (a, (p91/fc). Let us put yt = (J Ak. Then ALC = {(a, <p9 0)} = a. Hence Acc = 
fe=i 

= 0 * Ac. 
Example 3. Let X be the set of all real numbers. Let us put Q(X9 X) = 0 and 

Q(X9 y) = |x| + \y\ if x * y. Then Kc = {0} and Kcc = 0 4= Kc. 
In a separable metric space there may not exist an uncountable isolated set. In 

a locally separable space an uncountable isolated set may evidently exist. As an 
example it suffices to take an uncountable set with trivial metric. Whe shall show 
that if A is isolated in a locally separable space then Ac = 0 holds. The last property 
characteristes the locally separable spaces. 
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Theorem 2. A metric space (J , Q) is locally separable if and only if Ac == 0/or 
each isolated set A in X. 

Proof, a) Let (X9 Q) not be locally separable. Then there exists a point peX such 
that for eaeh 8 > 0 (S(p9 8)9 Q) is not separable. In S(p91) we shall construct the sets 
Ak (k -» 1,2,...) in the same way as in the proof of theorem 1. Let us put again 

00 

A «6 U Ak. From the construction of the sets At it follows that A is an isolated set in X. 
k - l oo 

In fact, if q e A = U ^4k, then # 4= p and there exists k such that q e Ak. Let us put 
* « i 

Q(P> 4) m 2*1 > 0 and let us take S(p91\)9 S(q9 r\). Then there exists m > k such that, 
00 

U A8 c S(p, if). Consequently 

(4)- S(q,r,)nVA3 = S(q,r,)niJAs. 
S - = l S « l 

Each of the sets As is es-isolated (es > 0), so if we put e = min (q9 ei9 el9..., sm), we 
have 
(5) S(q9 e)n\JAs~\j(Asn S(q9 e)) = {q} . 

s -=l s= - l 

From (4) and (5) immediately follows that q is an isolated point of the set A = 
00 

•* U As. From the proof of theorem 1 we have that p e Ac. Hence A is isolated (in X) 
»m 1 

with the property Ac # 0. 
b) Let A c X9 A isolated in X and Ac 4= 0. Let p e Ac. Then for each 8 > 0, 

B «* AL r\ S(p, 5) is uncountable and isolated, B c S(p, 5). Let us put 

B, * { x e B ; g(x, B - {x}) > 1/n} . 
• 00 

Evidently B =-= U #«> hence a natural number n exists such that Bn is uncountable. 
» » i 

Bm is l/n-isolated and Bw c S(p, 5). From these facts it follows that (S(p, <5), g) is 
not separable. Since 8 > 0 was arbitrary chosen (J!f, #) is not locally separable. 
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Výťah 

O ISTÝCH VLASTNOSTIACH, KTORÉ CHARAKTERIZUJÍ! 
LOKÁLNĚ SEPARABILNÉ METRICKÉ PRIĚSTORY 

TIBOR NEUBRUNN, JAROSLAV SMÍTAL a TIBOR SALÁT, Bratislava 

Nech Ac je množina všetkých kondenzačných bodo v množiny A v metrickom priesto-
re (X, Q). Nasledujúce vlastnosti su ekvivalentně: 

a) (X, Q) je lokálně separabilný. 
b) pre každú množinu A c X je (Ac)c = Ac. 
c) pře každú izolovánu množinu A c X je Ac = 0. 

Резюме 

О НЕКОТОРЫХ СВОЙСТВАХ, ХАРАКТЕРИЗУЮЩИХ ЛОКАЛЬНО 
СЕПАРАБЕЛЬНЫЕ МЕТРИЧЕСКИЕ ПРОСТРАНСТВА 

ТИБОР НОЙБРУНН СПЪог ИеиЬгипп), ЯРОСЛАВ СМИТАЛ СГагойау $тка1), 

и ТИБОР ШАЛАТ СПЪог 8аШ), Братислава 

Пусть Ас — множество всех точек кондензации множества А в метрическом 
пространстве (X, ^). Следующие свойства равносильны: 

(а) (X, ^) — локально сепарабельное пространство. 
(б) (Ас)с =- Ас для всякого множества Ас X. 
(в) Ас = 0 для всякого изолированного множества Ас X. 

ìбi 
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