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Časopis pro pěstování matematiky, roč. 111 (1986), Praha 

GENERALIZED AND SMOOTH SOLUTIONS OF BOUNDARY VALUE 
PROBLEMS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS 

WITH MANY SENIOR MEMBERS 

G. A. KAMENSKii, A. D . MYSHKIS, A. L. SKUBACHEVSKII, MOSCOW 

Dedicated to Professor Jaroslav Kurzweil on the occasion of his sixtieth birthday 

(Received May 15, 1985) 

I N T R O D U C T I O N 

This article is concerned with the boundary value problem (BVP) 

(1) t 0/M u'Wx))J = F[u] (x)9 (a<x<p)9 

(2) u(x) = (p(x) ( a ^ x ^ a ) , u(x) — \j/(x) (p ^ x ^ pt) 

where 1 ^ n < oo, —oo<oc1<(x<P<pl< +oo. 
Let Wq[a9 b] be the Sobolev spaces of functions u: [a, b] -> R9 absolutely continu

ous together with their derivatives of orders <P and with u ( p ) e Lq[a9 b]; we assume 
ate W\[OL9 p]9 hte W][<x9P]9 ht 4= 0 and ht([a9 p]) g [a l 5 pt]. The operator F in 
general is a nonlinear operator to be defined later. v 

The BVP of type (1), (2) were first mentioned in [1]. The definition of the solution in 
that paper was proposed by analogy to the n = 1 case. In the investigations which 
followed it was found that the case n > 1 has principal peculiarities. Therefore 
another definition of the solution analogous to the "weak" solutions was given in 
[2] (see also [3]). Both these definitions are equivalent for sufficiently smooth 
solutions (e.g. for u e W])9 but differ for piecewise smooth solutions which appear, 
as a rule, even in the case when all given functions are analytic. 

In this paper we study the properties of solutions defined analogously to the defini
tion in [3]. The solutions in the sense of [1] will be called pseudosolutions. We 
investigate conditions of smoothness of solutions and of continuous dependence of 
solutions on the boundary functions. It enables us in some cases (in particular for 
linear equations with integer deviations and with conditions of regularity) to formu
late the definition of a generalized solution continuously depending on the boundary 
functions. This together with some other properties makes it possible to distinguish 
solutions from pseudosolutions. It is the reason why solutions and not pseudosolu
tions appear in variational and some other problems. (See [4], [5].) 
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1. MAIN DEFINITIONS 

We denote by Q[a9 b] the subspace of the space TVJofa, b] containing the func
tions / with finite limits f(x+)9f'(x-) and f'(a+)9f'(b-) with the norm ||/ | |Q = 
= max { max |/(x)| , vrai max | / ' ( x ) |} - We also denote Qb = Q[a l5 a] x Q [/?, px]9 

jce[a,&] XE[a,b] 

Cb = C[a l 5 a] + C[£,/?i], (Wp)b = Wp[(xl9 a] x Wp[fi9 pt]. It is easy to prove 
that Q[a9 b] is closed in Wl[a9 b] (cf. [6]). 

There are many ways to choose the solution space. Let {(p, \j/} e Qb and F: 
Q[<*u Pi] -* ^[a.ff]. Under a solution (it is of course a generalized solution) of 
equation (1) we understand any function u e Q[<xl9 Pi] satisfying for some C t e R 
the equation 

(3) t *<(*) »'W*)) - f ^ M (*)d* = c t 

for almost all x e (a, /?). (In our case this is equivalent to — "for all, except, may be, 
a denumerable set of values".) It is evident that for u to be a solution of (3) it is 

necessary and sufficient that R[u] = £ at(*) u'(hi(')) e W\[OL9 /?] and 
i = i 

(4) [R[u] (x)]' = F[w] (x) for almost all x e (a, fi). 

In particular, a function u e W\[<z9 j5x] is a solution of equation (1) iff it satisfies (1) 
for almost all x e (a, ft). 

By integrating both parts of (3), we have 

- J (x - s) F[u] (s) 6s = Cxx + C2 (a ^ x = j8) 

with some Cl9 C 2eW which, under the condition that u e fifa^ j5j], may serve as 
another definition of a solution of equation (1), equivalent to that given above. 

The differentiation of both parts of (3) is possible if we understand u"(hi(')) as 
distributions on (a, ft). Equation (1) may be written in the equivalent form 

£ a{x) h't(x) u"(h{x)) = F\u\ (x) - £ a'{x) u'(h&)) (« < * < j3) . 
i = l i = l 

2. CONDITIONAL PROPOSITIONS 

The theorems proved in this section are of conditional type. We formulate a number 
of assumptions concerning the behaviour of solutions of equation (1) and some other 
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equations and deduce the properties of smooth and generalized solutions of BVP 
(1), (2). In the subsequent sections we obtain sufficient conditions for these assump
tions to be fulfilled. 

In what follows the equation 

(6) £ a fa) (sgn h't) z(fc,(x)) = 0 (a < x < fi) 

plays an essential role. The boundary conditions for z are given on (<xl9 a] u [/?, px) 
and the solution z: (al9 pt) -> R has to satisfy (6) for all x e (a, ft). 

Assumption A-l. The solution z of equation (6) satisfying zero boundary condi
tions and the condition 

(7) Ve > 0 the set {x: x e (a, p); \z(x)\ = e] is finite , 

is identically equal to zero. 

Theorem 1. Let A-l hold, {<p, ^} e Cx
b and let the solution u of BVP (l), (2) satisfy 

the conditions 

(8) u'(a+) = <p'(a-), u'(p-) = r{p+). 

Then u e C*[al5 ft]. 

Proof. Let Au'(x) = u'(x+) - u'(x"). Since u e Q[ocl9 /?J, this function is defined 
for all x e (ccl9 P^ and z = Aw' has the property (7). From (3) we obtain 

(9) ta i(x)(sgnh;)Au '(h i(x)) = 0 
i = i 

for all x e (a, /?). Besides, from the conditions on {cp, \j/} and from (8) we have 
Au'(x) = 0 on (al5 a] u [/?, px). Therefore A-l implies Au'(x) = 0. 

Corollary 1. If in addition ht(x) = a (_/?) and the conditions on cp (on \j/) in Theo
rem 1 are omitted, then u e Cl[cc, pt\ ( C 1 ^ , /?]). 

Proof. Indeed, it is possible to change the function cp (\j/) and fulfil the omitted 
conditions on [ocl9 a] ([/?, pt\) without affecting the solution on [a, pt\ ([<xl9 /?]). 

Assumption A-2. If zexC[al9 /?-] is a solution of the equation 

(10) £ ai(x) z(ht(x)) = f(x) (*<x<p) 
i = l 

with zero boundary conditions and fe W\[a, P\, then z e W\[cn, /?]. 

Corollary 2. Let A-l and A-2 hold, {<p, i/>} e (W\)b and let the solution u of BVP 
(1), (2) satisfy (8). Then u e W\[au # J . 
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Proof. Indeed, it follows from Theorem 1 and (3) that z = u' — v, where ve 
e JV{[ai, ft] is any continuation of q>' and ^ ' , satisfies A-2. 

Assumpt ion A-3. The solution u^ ^ of BVP (1), (2) exists and is unique for any 
given {(p, i/>} e C\, and {(p, xj/} -• w^^ is a continuous mapping of C\ into Q[a1? ft]. 

Let us denote by S the set of {cp, \J/} e C\ such that <p'(a~) = u^,^(a+), u'^jji") = 
= \li'(f$+). If A-3 holds then S is a closed subset of C\. It follows from Theorem 1 
that if A-l holds then S coincides with the set of {(p, if/} for which u^^ e C1^, ft]. 
In some cases it is possible, under the assumption A-3, to extend the conditions for 
the existence of solutions of BVP (1), (2) to a class of boundary functions wider than 
Cl

b by introducing another definition of the generalized solution. 

Assumpt ion A-4. For any {(p, \f/} e Cb and e > 0 there exists S > 0 such that 

(Vfr1, f1} G Cj: IW - (p9 *' - ^}\\Cb < <5, / = 1, 2) => 

Theorem 2. Let A-3 and A-4 ho/d. Then the mapping C\ i-» 2 ^ , ft] defined 
' in A-3 may extended to the continuous mapping from Cb to C[al5 ft]. 

Proof. For any {(p,\J/}eCb there is a sequence {^, ^ } e Cj approximating 
{(p, i//} in Cb. That proves the theorem. 

The mapping defined by Theorem 2 is denoted as above {(p, ij/} h-> ŵ  ̂  and the 
function w is called a c-generalized solution of BVP (1), (2) for {<p, i//} 6 Cb. Thus, 
if A-4 holds, then there exists a unique c-generalized solution and it depends con
tinuously on {(p, i/>}. By {cp, \j/} e C\ the c-generalized solution coincides with the 
above defined solution of BVP (1), (2). By analogy to Theorem 2 we can prove Theo
rems 3 and 4. 

Theorem 3. Let A-3 and A-4 hold and let it be possible to extend the operator 

ui-> f (• - s) F[w] (s) ds: Q[au ft] - C[a, /?] 

to a continuous operator C[<xl9 ft] -> C[a,'j3], Then cverj; c-generalized solution 
of BVP (1), (2) satisfies equation (5). 

Assumpt ion A-5. If any two solutions of equation (5) coincide on (oci9 a] u 
u [ft ft), then they coincide on (a, fi). 

Theorem 4. Let the conditions of Theorem 3 and A-5 ho/d. Then any solution 
from C[a1? ft] of equation (5) is a c-generalized solution of BVP (1), (2). 

Pseudoso lu t ions . In accordance with the definition in [1] for given {q>, \j/} e 
e(W\)b9 a function w e Q[ocu ft] such that its restriction on [a, ff\ belongs to 
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W\\OL9 /?] and satisfying equation (1) for almost all xe(a,jS) and boundary con
ditions (2) will be called a pseudosolution of BVP (1), (2). 

Further in this section we suppose that A-l, A-2, A-3 hold if we insert (W\)b 

instead of C\. 

Assumption A-6. Suppose V{<p, i//} e (W\)b9 there exists a unique pseudosolution 
of BVP (1), (2) w^, and the mapping {<p9 ij/} i-> w0 ̂  is a continuous mapping from 
(W\)bto Q\ocl9p^. 

It follows then from Corollary 2 that for {<p9 xj/} e S n (W\)b we have w ^ = w^ . 
On the other hand, in general we have w ^ =f= u9# for {<p9 \j/} e(W\)b\S. For 
example, this will be the case if 

K > + ) - <p'(a-)\ £ at-(x)sgn/i; + 
hi(x) = a 

+ MP*)-"UP')] Z a^sgnh^O (a < * < / ? ) . 
hi(x)=P 

The proof can be obtained by way of contradiction. 
The essential difference between solutions and pseudosolutions is the impos

sibility of extending the latter in the general case to the boundary functions from Cb 

preserving the continuity of the mapping {<p9 \j/} \-• uv$ as a mapping from Cb to 

C[*»Pil 
Let us formulate a simple result in this direction. 

Theorem 5. Let A-3, A-4 and 

(12) 3xu x2 e (a, p): £ a*(xi) s 8 n K * 0 , 
hi(xi) = a 

X a i(*i) sgn h\ = 0 , £ fl,.(x2) sgn h; = 0 , £ * .-(*2) sgn K * 0 
M*i)=,0 M*2) = a hi(x2)=P 

hold and let S n (JV^ be dense in Cb. Then the mapping {<p9 \j/} H-> W ^ ({(?, ̂ } e 
e(W\)b) as a mapping from Cb to C[a1? /Jx] is discontinuous at every point of 
{<p9il,}e(W\)b\S. 

Proof. Suppose that the assertion is false for a pair {<p9 \j/} e(W\)b\S. Choose 
a sequence {<p\ ij/1} eSn (W\)b9 {<p\ ij/1} -• {(p9 \f/}9 i -> 00 in Cb. Then our assump
tion yields w^* -> w^, i -> 00 in C[a1? /JJJ, but A-4 implies w ^ * -*• w^ , i -> 00 
in C[al5 /fj and we obtain that w ^ = w ^ which contradicts (12) for {<p, \j/} e S. 

This also implies that (12) => ({<p9 \j/} e S n (JV^ <=> w ^ = w^)-

3. EQUATIONS WITH A MAJORANT 

In this and the subsequent sections we obtain sufficient conditions for the as
sumptions A-l —A-6 to be fulfilled. These conditions are to be used together with 
Theorems 1 — 5. 
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Theorem 6. Let Vy e (a, /?), 3yx e (a, jft), ^ e {1, ..., n } : 

*.,(*) = T. E l«»(vi)l < k W I • 
i*ii,*i(yi)e(a,/?) 

Then A-l holds. On the stronger supposition that 3it e {1, ..., n): 

hh([a, /?]) э [a, jff] , min | ű ř l | > 0, £ mаx — < 1 
[«,Я ІФІi 

fhe assumption A-2 holds, too. 

Proof. If the weaker supposition is true and equation (6) has the solution z(x) =£ 0 
with properties mentioned in A-l, then denoting y = max {x: \z(x)\ = max |z|} 
and putting x = y1 in (6), we obtain a contradiction. 

Let now the stronger supposition of the theorem and A-2 hold. Note that equation 
(10) is satisfied. For x = a, fi let us rewrite it in the form 

<K(*)) = Z *<(*) KM*)) + *(*) (a £ x z p). 

In virtue of our assumptions we have hh([a, /?]) 3 [a, /?] for all bf and g e W\[a, /?], 

^ = Z m a x l̂ i'l < *' z E ^[ai» i^i]' z ( x ) — 0 (x G [ai» a ] u [& HA]) anc* w e have 
i-Mi 

to prove that z e TV{[a, /?]. 
In JV l [a l 5 /?x] let us introduce the equivalent norm 

max |u | , p |u ' (x) | dx 
-«->/»-] J a i 

| u i = max 

where p > 0 will be chosen later. Define the operator A: C[a, /Jj] -> C[a1? /?x] by 
the formula 

(Au) (x) 

£ ^ ( h r Hx)) uífc f̂c,- *(*))) + g(hr \x)) (a = x í fi), 
i ф ii 

(Au) (a) (a^ ^ x ^ a) , 

(Au)(ß) (ß йxѓßi). 

This operator maps IV}[al5 pt~\ in to itself and Az = z. For any u1? u2 e JVJfau px\ 
we have 

HAu, - Au2\\, = max (max | £ fc^'M) [ « i ( W ( * ) ) ) - - a M C t o ) ) ] ! > 
( [« ,0] i * i i 

•Г E íьЏľЛ^ЫKKЧm - U2(ҺJÍK\*Ж й* = 
í Ф 11 

^ CmaxibЦu! — u2||i, p 
Cß 

Ja '*'• 
[lл(^Ҷx))]'dx||«1-«2||1 + 
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fM*'i 'HP)) •) 

+ P\ ^^'(s)) [«.(-)-«2(s)]'|dsU 

= max jbHu! - M2||lt (p £ l^iC-iVW)]'! dx + bJ IK " u2\\i\ • 

Therefore, if p > 0 is sufficiently small, then the operator A is a contraction operator 
not only in the space C\au jSj] but also in the space KVJ[al9 J5j]. 

Thus the function z e C[a1? /?-] satisfying the equation Az = z belongs to the space 
Wi[ai> P\~\- Hence the proof is complete. 

Now consider the case when equation (1) has the form 

(13) . [«'(*)]' + t [afx) «'(!>.(*))]' = F[u] (x) (<x<x<p) 
i=-2 

with the same conditions on the given functions as in Sec. 1. 
Denoting ai\h\ = bt and transforming (13) to the form (5) we obtain 

«(*) = i [ - w uH*)) + f *;(*) *M*)) dsl + 

+ j (x - s) F[u] (s) ds + Ctx + C2 . 

Finding the values of Cx and C2 by substituting x = a and x = jS, we get the equation 

(14) «(x) = t |~- fc.(x) i.(h,(*)) + f b'As) u{hls)) dsl + 

+ f* (x- s) F[u] (s) ds + L(P) + t [btf) u{htf)) -

- j * b'ls) «(hf(s))dsj - J V - -) It«] (-) <-*} ^ — a 
a 

- [«(«) + I bja) «(h,(a))] £ - - _ (« £ x * / .) . 
/=2 p — a 

For a given pair {(?, ̂ } e Cl we denote by M9^ the set of functions from Q[a1? j ^ ] 
satisfying conditions (2). Define an operator A^^: M ^ -> M ^ in such a way that 
-4^[w] (x) for a < x < /? is equal to the right hand part of (14), and for a1 = x ^ a 
and j3 ̂  x ^ J8X is equal to the functions cp(x) and i^(x), respectively. 

Suppose that for some L, Lx = 0 and for all ul9 u2 e Q\jxl9 f}{\9 

(15) l|AFM|| t l t,1, / ! l ]gL|AM | |Q[ai>/! l], 

(16) Cx II 
(x - s) AF[w] (s) ds = LjAuflcr,,.^ , 

Ja llc[a,B] where At. = w. — u2, AF[u] = E[w.] — ^[1.2]-
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Considering the expressions for AA^ ^[w] (x), AfA^fw] (x)]' we can verify that 
if max |a,(x)|, max \bi(x)\, max Jf |b!(x)l dx (i ^ 2) and the constant Lin the ine-

I.JC i,;c i 

quality (15) are sufficiently small, then the operator A^ is a contraction operator. 
This proves that the solution of BVP (13), (2) exists and is unique. By using equation 
(14) and the equation obtained by differentiating (14) we can prove that the mapping 
{<P> *A} h"> u<p,xi, 1s a continuous mapping from C\ to Q\jxi9 P^]. In an analogous way 
it is possible to prove that if the constant Lx in inequality (16) is sufficiently small, 
then all conditions of Theorem 4 are fulfilled. Thus we conclude that the following 
theorem is true. 

Theorem 7. If the operator F in (13) satisfies conditions (15) and (16) and all 
constants L9Ll9 max \a J , max [bf] and max jf |b[(x)| dx (i = 2) are sufficiently 

x,i x,i i 

small, then all conditions of Theorem 4 are fulfilled. 

4. THE EQUATION WITH FINITE TRANSITIVITY PROPERTY 

Theorem 8. Let Vye(a,j5), 3My = {x\,..., x£y} c= (a, JS): yeMy: \Jht(M
y) c 

i 

c My u [a l5 a] u \fi, /?j] and 

(17) det ( X a{xy
p) sgn h$ 4= 0, p, q = 1, ..., ky. 

i:hi(xpv)=xqv 

Then A-l holds. 

Proof. The assertion of the theorem we immediately obtain if we put x = 
= x\,..., xy

k in (6) and consider the resulting equalities as a system of equations for 
z(xl),...,z(xy

Y). 

Remark. The property of existence for any y e (a, jS) of the set My having all the 
properties mentioned above, except, may be, (17), is naturally called the finite tran
sitivity of equation (1). 

By analogy to Theorem 8 it is possible to formulate a sufficient condition for the 
validity of assumption A-2 ,which is a nondegeneracy condition on a matrix-function 
constructed with the use of the functions at and ht. 

These conditions assume the simplest form when ht(x) = x + ht, where all ht 

are commeasurable. In this case we may suppose without loss of generality that all h(
9s 

are integers (hte Z) and write equation (1) in the form 

in 

(18) X [>«(*) u'(x + ')]' = F M (*) (a < x < $) > 
i = -w 

where m = [jS — a], ax = a — m, pt = (i + m. Denote now 8 = J? — a — m. 
Condition (17) for equation (18) has the form 
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(19) det {a^p(x + p)} * 0 (a < x < jS) , 

where p,qe Z and x + p, x + q e (a, /?), a^x) = 0 for |i| > m. The left hand part 
of (19) is 1-periodic and absolutely continuous with the exception, in general, of 
jumps at x = a + i, x = J3 — i (i = 1,..., m). If at(x) = const, then condition (19) 
has the form of two inequalities 

(20) det {a €_ p}; ,= 0 * 0, det K-P}™;10 * 0 . 

Inequality (19) for a ^ x ^ /J and, in the case of a^x) = const inequality (20), 
is a sufficient condition for assumption A-2 to be fulfilled. 

5. LINEAR EQUATIONS WITH INTEGER DEVIATIONS OF ARGUMENT 

A simple class of problems, for which it is easy to formulate conditions for the 
validity of assumptions A-3 to A-6, arises by studying the equations of the form 

m m 

(21) £ lafa) u'(x + .)]' = £ [>.(*) u'(x + i) + Ci{x) u{x + i)] + fto 
£= —m i——m 

with boundary conditions (2) and the condition 

(22) det {aq„p(x + p)} * 0 (a ^ x = )3) , 

which is sufficient for the validity of assumptions A-l and A-2. In correspondence 
with Sec. 1 we assume that all ate JV}[a, j8], bi9 c^ feL^a, /?]. For the moment 
we suppose that {<p, ij/} e (Wl)b and the number j3 — a is not an integer. Define 
vector-functions M1, u2 with coordinates 

(23) u\(x) = u(x + a + i - 1) (0 ^ x ^ 5, i = 1,..., m + 1) , 

u](x) = w(x + a + i - 1) (5 ^ x ^ 1, i = 1,..., m) . 

By analogy with (3) and from (23) it follows that these functions belong to the 
space W\. Therefore on each of the intervals (a, a + 5), (a + 5, a + 1), (a + 1, 
a + 1 + <5),..., (jS — <5, P) it is possible to use the formula of differentiation of a prod
uct for the left hand part of equation (21). Using also (22) and (23), we obtain two 
systems of equations 

m + l 

(24) u\" = X [d\j(x) u)' + e\j(x) u)] + g\(x) (0 = x = <5, i = 1,..., m + 1), 
./=i 

m 

~ «»" = S [««(*) «)' + 4 W " ' ] + 0 i to (« _5 x LS 1, i = 1,.... m) . 

Here all dr
u. e

T
tj, g\j are integrable and the functions g\ are constructed with the use 

of the boundary functions <p and \j/. Additional conditions on (24) arise from the 
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continuity conditions on u at the points a, a + 5, a + 1,..., /? — 5, /? and the rela
tions for the jumps of u' at the points a + (5,..., /J — <5: 

(25) «1(0) = 9 ( a ) , «1(<5) = «2(<5), «?(1) = «?+1(0) (/-= 1,..., i»), 

«,U,(<5) = <K/?), 

(26) 
J=~І 

m-i+í 

£ a,(a + i) [«j; i+1(0) - «2;,(1)] = 0 (i = 1,..., m) , 

£ a> + i - l + <5)[«2

+/.5)-и^.(<5)] = 0 ( i = l , . . . , m ) , 
J = - І + I 

where we put u2\l) = <p'(a), w2

 + 1(<5) = <A'()?). 
The equalities (25) and (26) can be written in the short form 

(27) /.V] + i2[«2] - I K»M + bh»Ml + 
1=1 

+ t Huj(S) '+ Wí1)] = «i 0 = 1,..., 2m + 2) , 
1=i 

m + l 

*,V] + A2[«2] = i [«J,«j'(o) + M\q\ + 
1 = 1 

m 

+ I D4«2'(<5) + Pi"?®} = e< (' = !' - . 2 ™) • 
y=i 

Suppose that the general solution of each of the systems (24) has the form 

(28) 
2m + 2 

£ Aju't
l(x) + Sfa) (i = l , . . . ,m + l ) , 

1=1 

2n 

"? = I ^ui2(x) + S2(x) (i = 1,..., m) , 
1=i 

where Ah Bt are arbitrary constants. The main regularity condition for the BVP 
considered is 

(29) 

det 

•Jî[иu] . . . lЦu2"*2'1] i 2[и 1 2] .2[и2 м-2] 

lL+2[«u] ••• /L+ 2[« 2 ' "+ 2 ' 1] lL+2[«12] •.. l22

m+2[«2m'2] 
A i i y 1 ] . . . A 1 i « 2 m + 2 ' 1 ] A 2 [ « 1 2 ] . . . ^ 2 [ « 2 m - 2 ] ФO. 

_ A U « " ] •••^L[« 2 m + 1 ' 1] A 2

m[« 1 2] . . . A 2

m [« 2 - 2 ] J 

If (29) holds, then inserting (28) in (29) we can determine At and B{ in a unique way. 
It means that BVP (21), (2) has a unique solution. 

Notice that the determinant in (29) depends only on ai9 bh c( and not on the func
tions cp, i// and / Therefore condition (29) is equivalent to the requirement that the 
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corresponding homogeneous BVP has no nontrivial solutions. Notice also that the 
numbers Ah Bt depend continuously on {cp, ij/} as on an element of Cx

b and on the set 
of Sr as elements of C1, i.e. on the set of j 0 g'(s) ds as elements of C. 

Let now {cp, ij/} e Cx
b. Construct a sequence {cpp, i/tp} e (W\)b, {cpp, \l/p} -> {cp, \j/}, 

p -> oo in Cx
b, and the corresponding solutions up. All sequences {J0 g

r
ip(s) ds} 

converge in C and therefore all sequences {ur
ip} converge in C1. By integrating both 

parts of equation (21) and passing to the limit as p -> oo we obtain that the function 
u = lim Up is a solution of BVP (21), (2). The continuity of the mapping {cp, i//} F-> 
h-> Up ̂  as a mapping from Cx

b to g[a — m, jS + m] is proved analogously to the 
proof of existence of a solution. Uniqueness follows from condition (29). Thus A-3 
holds. . 

For verifying A-4 we suppose in addition that in (21) all fcfe W\\OL, /?]. If A-4 
does not hold, then we can construct, as made above, a sequence of boundary 
functions {cpp, \j/p} t(W])b having the property ||{cpp, *AP}||cb -* 0. At the same time 
the corresponding solutions up of (21) with f(x) = 0 satisfy max \up\ = 1. In ac-

[«,/?] 
cordance with (23) denote 

u-ip(0) = M-ip, u-r,(o) = N-ip 

and rewrite equations (24), after double integration of both parts of the equations 
and subsequent integration by parts, in the form 

(30) ul(x) = M\, + N\px + X m\}(x, s) u)p(s) ds + h\p(x) 

(0 = x = 8; i = 1, . . . , m + 1), 

m px 

u2
p(x) = M2

p + N2
px + X m2j(x, s) u%(s) ds + h2

p(x) 
1 = O o 

(d = x = 1; i = 1, . . . , m) . 

Here our conditions guarantee that all Kip -» 0, p -> oo in C and all {u\p} and 
{M\p} are bounded. It follows that all {Nr

ip} are also bounded and therefore, passing 
to a subsequence, we obtain that M\p -» Mr

i(0, Nr
ip -> Nr

ia). Then (30) yields that 
U\P -*• ML in C, i.e. wp -> w^ in C[al9 jS j . It means that ww e Q[a - m, P + m], 
«w(.x) = 0 on [a — m, a] u [/?, j5 + m] and max |i/ro(x)| = 1. On the other hand, 

[<-,/?] 

the equation for up analogous to (5) is 

m m f*x 

(31) X ai(x)up(x + 0 = 1 {«',(-) + *.(*) + 

+ (x - s) [C,(s) - i»;(s)]} up(s + i) ds + Apx + Bp (a = * = jS) 

where, as above, A,, -> A,ra, Bp -> Ba. 
Therefore, passing to the limit as p -* oo we obtain that ua is a solution of equa-
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tion (21) and ujx) = 0 since the boundary functions are equal to zero. This contra
diction proves that A-4 is fulfilled. 

It is evident that the remaining requirements of Theorem 4 with Vbfe IV}[a, /?] 
are fulfilled. 

If we consider the pseudosolutions, it is necessary to change (26) to 

u]'(8) = ur(S), «r(l) = «j;i(0) (i=\,...,m). 

Condition (29) will be changed correspondingly, giving necessary and sufficient 
conditions for A-6 to be fulfilled. 

The set S (see Sec. 2) is defined by the equalities 

«l'(o) = «,'(«), «i ' + 1 (a)-.* '(/,) . 

By using (28) and deciphering the meaning of the notations introduced we transform 
these equalities to the form 

m 

Z [y>(a - * + a') + <^'(a - »' + a") + FiHP + ' + br) + WiP + ' + ftr)] + 
i -=0 

fm 

+ [6r(x) <p(oc -x) + xr(x) il/(p + x)] dx = iir (r = 1, 2) , 

where a1 = 0, a2 = 8 — 1, b1 = — S, b2 = 0, the coefficients and (integrable) 
kernels on the left side are defined by the coefficients of equation (21) and the 
numbers // also by the function f 

Ifj8 — a = me/V then the proof is simpler. Functions u] vanish, the system (24) 
reduces to its second part (with 5 = 0) and equalities (26) transform to 

U2(0) = <p(x) , u\(i) = u2

+1(0) (i = 1,..., m - 1) , u&l) = HP), 

m—i 

Z afc + i) [u2

+j+1(0) - u2

+J(l)] = 0 (i = 1,..., m - 1) 
j = - i 

while condition (29) transforms to 

(32) 12Г„Í2 

L^-iiy2] 

2г 2m,2T -i 

with the obvious meaning of notations. Further consideration are the same as in the 
case 8 > 0. 

We formulate the main result as a theorem. 

265 



Theorem 9. If for equation (21) with a{ e TV}[a,/J], bhchfe Lx[a, /?] inegualities 
(22) and (29) ((32) if P — a is an integer) hold, then A-l and A-3 are fulfilled. 
If in addition bt e W{[<x, />], fhen aZ/ conditions of Theorem 4 are fulfilled. 
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