## Časopis pro pěstování matematiky

Věra Radochová
Fundamental solutions of the differential operator
$(-1)^{n} D_{1}^{n} D_{2}^{n}+a\left(i D_{1}\right)^{n}+b\left(i D^{2}\right)_{n}+c$

Časopis pro pěstování matematiky, Vol. 105 (1980), No. 4, 385--390
Persistent URL: http://dml.cz/dmlcz/108233

## Terms of use:

© Institute of Mathematics AS CR, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

# FUNDAMENTAL SOLUTIONS OF THE DIFFERENTIAL OPERATOR $(-1)^{n} D_{1}^{n} D_{2}^{n}+a\left(\mathrm{i} D_{1}\right)^{n}+b\left(\mathrm{i} D_{2}\right)^{n}+c$ 

Věra Holañová-Radochová, Brno
(Received September 4, 1978)

This paper is concerned with fundamental solutions of the partial differential operator

$$
\begin{equation*}
(-1)^{n} D_{1}^{n} D_{2}^{n}+a\left(\mathrm{i} D_{1}\right)^{n}+b\left(\mathrm{i} D_{2}\right)^{n}+c, \tag{1}
\end{equation*}
$$

where $D_{1}=-\mathrm{i}\left(\partial / \partial x_{1}\right), D_{2}=-\mathrm{i}\left(\partial / \partial x_{2}\right)$, in the space of generalized functions [1], [2]. Conditions of existence of temperate fundamental solutions are derived for the operator with constant coefficients and for arbitrary $n$.

## INTRODUCTION

Let $G$ be an open convex set in the real two dimensional space $R_{2}$. We denote by $C^{k}(G), 0 \leqq k<\infty$ the set of all functions defined in $G$ whose partial derivatives of order $\leqq k$ all exist and are continuous. We define $C^{\infty}(G)=\bigcap_{k=0}^{\infty} C^{k}(G)$. The set of all functions $\varphi \in C^{\infty}(G)$ with compact support in $G$ is denoted by $C_{0}^{\infty}(G)$. A distribution $u$ in $G$ is a continuous linear functional on $C_{0}^{\infty}(G)$. The set of all distributions in $G$ is denoted by $\mathscr{D}^{\prime}(G)$, the space of all distributions with compact support in $G$ by $\mathscr{E}^{\prime}(G)$.

Further, we denote by $\mathscr{S}\left(R_{2}\right)$ the set of all functions $\varphi \in C^{\infty}\left(R_{2}\right)$ such that

$$
\sup _{x}\left|x^{\beta} D^{\alpha} \varphi(x)\right|<\infty
$$

for all multiindices $\alpha$ and $\beta$, where $D^{\alpha}=\partial^{|\alpha|}\left|\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}}, \alpha_{1}+\alpha_{2}=|\alpha|\right.$. A continuous linear functional $u$ on $\mathscr{S}$ is called a temperate distribution. The set of all temperate distributions is denoted by $\mathscr{S}^{\prime}$.

The Fourier transform $F[f]$ of a function $f \in L_{1}\left(R_{2}\right)$ is defined by

$$
F[f](\xi)=\iint_{R_{2}} \mathrm{e}^{-\mathrm{i}\left(x_{1} \xi_{1}+x_{2} \xi_{2}\right)} f\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}
$$

If $u \in \mathscr{S}^{\prime}$, the Fourier transform $F[u]$ is defined by

$$
F[u](\varphi)=u(F[\varphi]), \quad \varphi \in \mathscr{S}
$$

A distribution $E \in \mathscr{D}^{\prime}\left(R_{2}\right)$ is called a fundamental solution of the differential operator $P(D)$ if $P(D) E=\delta$, where $\delta$ is the Dirac distribution.

We denote by $P(\xi)$ the polynomial which we obtain by replacing the $D_{j}$ in the operator $P(D)$ by $\xi_{j}$. We say that an operator $Q(D)$ is weaker than $P(D)$, when

$$
\widetilde{Q}(\xi) / \widetilde{P}(\xi)<C \quad \text { if } \xi \text { is real }
$$

where $\widetilde{P}(\xi)=\left[\sum_{|\alpha| \geqq 0}\left|P^{(\alpha)}(\xi)\right|^{2}\right]^{1 / 2}, \quad \widetilde{Q}(\xi)=\left[\sum_{|\alpha| \geqq 0}\left|Q^{(\alpha)}(\xi)\right|^{2}\right]^{1 / 2}$,

$$
P^{(\alpha)}(\xi)=\partial^{|\alpha|} P\left|\partial \xi_{1}^{\alpha_{1}} \partial \xi_{2}^{\alpha_{2}}, \quad \widetilde{Q}^{(\alpha)}(\xi)=\partial^{|\alpha|} Q\right| \partial \xi_{1}^{\alpha_{1}} \partial \xi_{2}^{\alpha_{2}}, \quad \alpha_{1}+\alpha_{2}=|\alpha|
$$

Let $\mathscr{K}$ be the set of positive functions $k$ defined in $R_{2}$ for which there exist positive constants $C$ and $N$ such that

$$
k(\xi+\eta) \leqq(1+C|\xi|)^{N} k(\eta), \quad \xi, \eta \in R_{2}
$$

If $k \in \mathscr{K}$ and $0 \leqq p \leqq \infty$, we denote by $\mathscr{B}_{p, k}$ the set of all distributions $u \in \mathscr{S}^{\prime}$ such that $F[u]$ is a function and

$$
\|u\|_{p, k}=\left(\frac{1}{(2 \pi)} \int|k(\xi) F[u](\xi)|^{p} \mathrm{~d} \xi\right)^{1 / p}<\infty
$$

In the case $p=\infty$ we shall interpret $\|u\|_{p, k}$ as ess. sup $|k(\xi) F[u](\xi)|$.

## 1. THE OPERATOR $(-1)^{n} D_{1}^{n} D_{2}^{n}+a\left(\mathrm{i}_{1}\right)^{n}+b\left(\mathrm{i} D_{2}\right)^{n}+c$ WITH CONSTANT COEFFICIENTS

Let us consider the differential operator (1) with constant coefficients and abc>0. Then the following theorem holds.

Theorem 1. Let $n=2 m+1, m=0,1,2, \ldots$. Then there exists only one temperate fundamental solution $E$ of the differential operator (1) which is in the space $\mathscr{F}_{\boldsymbol{*}} \boldsymbol{F}$. This fundamental solution is proper in the sense of the denition of L. Hörmander.

Proof. The differential operator (1) can be written in the form

$$
\begin{equation*}
P(D)=-D_{1}^{n} D_{2}^{n} \pm \mathrm{i} a D_{1}^{n} \pm \mathrm{i} b D_{2}^{n}+c \tag{2}
\end{equation*}
$$

where the sign + holds if $m$ is even and - if $m$ is odd.
The corresponding polynomial is

$$
\begin{equation*}
P(\xi)=-\xi_{1}^{n} \xi_{2}^{n} \pm \mathrm{i} a \xi_{1}^{n} \pm \mathrm{i} b \xi_{2}^{n}+c \tag{3}
\end{equation*}
$$

$P(\xi) \neq 0$, if $\xi$ is real.

Since $|P(\xi)|=\left[\left(-\xi_{1}^{n} \xi_{2}^{n}+c\right)^{2}+\left(a \xi_{1}^{n}+b \xi_{2}^{n}\right)^{2}\right]^{1 / 2} \neq 0$ if $\xi$ is real and $1 /|P(\xi)| \rightarrow 0$ if $\xi \rightarrow \infty$, there always exist $K>0$ and $N>0$ such that $1 /|P(\xi)|=1 /\left[\xi_{1}^{2 n} \xi_{2}^{2 n}+\right.$ $\left.+a^{2} \xi_{1}^{2 n}+b^{2} \xi_{2}^{2 n}+c^{2}+2(a b-c) \xi_{1}^{n} \xi_{2}^{n}\right]^{1 / 2} \leqq k\left(1+|\xi|^{2}\right)^{N}$. Thus it follows from results of L. Hörmander ([3], p. 36) that there exists one and only one temperate fundamental solution $E$ of the differential operator $P(D)$ for which we have

$$
F[E]=1 /\left(-\xi_{1}^{n} \xi_{2}^{n} \pm \mathrm{i} a \xi_{1}^{n} \pm \mathrm{i} b \xi_{2}^{n}+c\right)
$$

Since

$$
|\widetilde{P}(\xi) F[E](\xi)|=\frac{\left[\left.\sum_{|\alpha|=0}^{n}\left|\partial^{|\alpha|}\left(-\xi_{1}^{n} \xi_{2}^{n} \pm \mathrm{i} a \xi_{1}^{n} \pm \mathrm{i} b \xi_{2}^{n}+c\right)\right| \partial \xi_{1}^{\alpha_{1}} \partial \xi_{2}^{\alpha_{2}}\right|^{2}\right]^{1 / 2}}{\left|-\xi_{1}^{n} \xi_{2}^{n} \pm \mathrm{i} a \xi_{1}^{n} \pm \mathrm{i} b \xi_{2}^{n}+c\right|}<\infty
$$

the fundamental solution of the operator (2) is in the space $\mathscr{B}_{\infty \mathcal{P}}$.
As in [4], we call the linear manifold

$$
\Lambda(P)=\{\eta: \eta \text { is real and } P(\xi+t \eta)=P(\xi) \text { for any } \xi \text { and } t\}
$$

the lineality space of the polynomial $P$, and we say that a polynomial $P$ is complete if its lineality space consists of the origin only.

It is evident that the polynomial (3) is complete. Since $P^{(\alpha)}(\xi) / P(\xi) \rightarrow 0$ if $\xi$ is real and $\rightarrow \infty$ for every $\alpha$ with $|\alpha| \neq 0$, the operator (2) is of local type (see [4], p. 222).

Since every fundamental solution of the operator $P(D)$, being complete and of local type, is proper in the sense of L. Hörmander's definition, the fundamental solution of the differential operator (2) is proper.

It means that $Q(D)(E * f) \in L_{2}^{\text {loc }}$ holds for $f \in L_{2}$ with compact support and for every differential polynomial $Q$ weaker than $P$.

Consider the special case when $n=1, a b=c=0, a>0, b>0$. Then

$$
F[E](\xi)=-1 /\left(\xi_{1}-\mathrm{i} b\right)\left(\xi_{2}-\mathrm{i} a\right)
$$

As $F\left[g\left(x_{1}\right) f\left(x_{2}\right)\right]=F[g]\left(\xi_{1}\right) \cdot F[f]\left(\xi_{2}\right)$ and $F\left[\Theta\left(x_{2}\right) \mathrm{e}^{-a x_{2}}\right]=-\mathrm{i} /\left(\xi_{2}-\mathrm{i} a\right)$ if $a>0, F\left[\Theta\left(x_{1}\right) \mathrm{e}^{-b x_{1}}\right]=-\mathrm{i} /\left(\xi_{1}-\mathrm{i} b\right)$ if $b>0$, we have the temperate fundamental solution of the differential operator

$$
P(D)=-D_{1} D_{2}+\mathrm{i} a D_{1}+\mathrm{i} b D_{2}+c
$$

in the form

$$
E\left(x_{1}, x_{2}\right)=\Theta\left(x_{1}, x_{2}\right) \mathrm{e}^{-\left(b x_{1}+a x_{2}\right)}
$$

where $\Theta\left(x_{1}, x_{2}\right)=1$ if $x_{1}>0, x_{2}>0, \Theta\left(x_{1}, x_{2}\right)=0$ if $x_{1}<0, x_{2}<0$.
The support of this fundamental solution is the convex angle
$A=\left\{\left(x_{1}, x_{2}\right): x_{1}>0, x_{2}>0\right\}$, with vertex at the origin.
Let $n$ be even. Then we have for the differential operator (1) with constant co* efficients and $a b c>0$ the following

Theorem 2. Let $n=2 m, m=1,2,3, \ldots$. Then there exists only one temperate
fundamental solution $E$ of the differential operator (1) if $m$ is odd and $a<0$, $b<0$ or if $m$ is even and $a>0, b>0$. This fundamental solution is in the space $\mathscr{B}_{\infty, \mathrm{P}}$ and it is proper.

If we assume that $a b-c=0$, then we can write

$$
F[E](\xi)=1 /\left(\xi_{1}^{2 m}+\beta^{2}\right)\left(\xi_{2}^{2 m}+\alpha^{2}\right),
$$

where $a=\alpha^{2}, b=\beta^{2}$ if $a>0, b>0$ and $-a=\alpha^{2},-b=\beta^{2}$ if $a<0, b<0$.
Proof. The corresponding polynomial is

$$
P(\xi)=\xi_{1}^{2 m} \xi_{2}^{2 m} \pm a \xi_{1}^{2 m} \pm b \xi_{2}^{2 m}+c
$$

where the sign + is for the even $m$ and the sign - is for the odd $m$.
It is $P(\xi) \neq 0$ if $\xi$ is real. We prove analogously to Theorem 1 that $P(\xi)$ is complete and of local type.

In particular, for $n=2$ and $a b-c=0$ we have the differential operator

$$
P(D)=D_{1}^{2} D_{2}^{2}-a D_{1}^{2}-b D_{2}^{2}+a b, \quad a<0, \quad b<0
$$

and

$$
F[E]=1 /\left(\xi_{1}^{2}+\beta^{2}\right)\left(\xi_{2}^{2}+\alpha^{2}\right),
$$

so that the temperate fundamental solution is

$$
E=\frac{1}{4 \alpha \beta} \mathrm{e}^{-\alpha\left|x_{2}\right|-\beta\left|x_{1}\right|}, \quad \alpha>0, \quad \beta>0 .
$$

The support of this temperate solution is the whole plane $\left(x_{1}, x_{2}\right)$.

## 2. THE OPERATOR $-D_{1} D_{2}+\mathrm{i} a D_{1}+\mathrm{i} b D_{2}+c$ WITH VARIABLE COEFFICIENTS

Consider now the case $n=2$ and the differential operator

$$
\begin{equation*}
P(D, x)=-D_{1} D_{2}+\mathrm{i} a\left(x_{1}, x_{2}\right) D_{1}+\mathrm{i} b\left(x_{1}, x_{2}\right) D_{2}+c\left(x_{1}, x_{2}\right), \tag{4}
\end{equation*}
$$

where $a\left(x_{1}, x_{2}\right), b\left(x_{1}, x_{2}\right), c\left(x_{1}, x_{2}\right) \in C^{\infty}\left(R_{2}\right)$.
We say that a distribution $u\left(x_{1}, x_{2}\right) \in \mathscr{D}^{\prime}\left(R_{2}\right)$ is a generalized solution of the differential equation

$$
\begin{equation*}
P(D, x) u=f \tag{5}
\end{equation*}
$$

in the domain $G \subset R_{2}$, if the relation

$$
\iint_{G}\left(-D_{1} D_{2} u+\mathrm{i} a D_{1} u+\mathrm{i} b D_{2} u+c u\right) \varphi \mathrm{d} x_{1} \mathrm{~d} x_{2}=\iint_{G} f \varphi \mathrm{~d} x_{1} \mathrm{~d} x_{2}
$$

holds for all $\varphi \in C_{0}^{\infty}(G)$, $\operatorname{supp} \varphi \in G, f \in \mathscr{D}^{\prime}(G)$.

$$
\text { Let } G=\left\{\left(x_{1}, x_{2}\right): \alpha_{1}<x_{1}<\beta_{1}, \alpha_{2}<x_{2}<\beta_{2}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right.
$$ are real and positive constants\}

and assume that

$$
\begin{equation*}
\frac{\partial a}{\partial x_{1}}+a b-c=0 \tag{6}
\end{equation*}
$$

Then the differential equation (5) may be replaced by the system

$$
\begin{align*}
& \frac{\partial u}{\partial x_{2}}+a u=z  \tag{7}\\
& \frac{\partial z}{\partial x_{1}}+b z=f \tag{8}
\end{align*}
$$

For the generalized solution of the differential equation (8) we have
Lemma 1. Let $f \in \mathscr{E}^{\prime}(G)$ and let $K \in \mathscr{D}^{\prime}(G)$ be an arbitrary distribution which is independent of $x_{1}$ (see [2], p. 55). Then the generalized solution of the differential equation (8) in $G$ is given by

$$
\begin{gathered}
z\left(x_{1}, x_{2}\right)=K \exp \left[-B\left(x_{1}, x_{2}\right)\right]+ \\
+\exp \left[-B\left(x_{1}, x_{2}\right)\right] \int f\left(x_{1}, x_{2}\right) \exp \left[B\left(x_{1}, x_{2}\right)\right] \mathrm{d} x_{1},
\end{gathered}
$$

where $B\left(x_{1}, x_{2}\right)=\int b\left(x_{1}, x_{2}\right) \mathrm{d} x_{1}$.
Similarly, for the differential equation (7) we obtain
Lemma 2. Let $H \in \mathscr{D}^{\prime}(G)$ be an arbitrary distribution independent of $x_{2}$ and let $z\left(x_{1}, x_{2}\right) \in \mathscr{E}^{\prime}(G)$. Then

$$
\begin{gathered}
u\left(x_{1}, x_{2}\right)=H \exp \left[-A\left(x_{1}, x_{2}\right)\right]+ \\
+\exp \left[-A\left(x_{1}, x_{2}\right)\right] \int z\left(x_{1}, x_{2}\right) \exp \left[A\left(x_{1}, x_{2}\right)\right] \mathrm{d} x_{2}
\end{gathered}
$$

where $A\left(x_{1}, x_{2}\right)=\int a\left(x_{1}, x_{2}\right) \mathrm{d} x_{2}$, is a generalized solution of the differential equation (7).

Hence under the condition (6) we have
Theorem 3. Let $G=\left\{\left(x_{1}, x_{2}\right): \alpha_{1}<x_{1}<\beta_{1} ; \alpha_{2}<x_{2}<\beta_{2}, \alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right.$ are real positive constants $\}$; let $f \in \mathscr{E}^{\prime}(G)$, let $K \in \mathscr{D}^{\prime}(G)$ be an arbitrary distribution which is independent of $x_{1}, H \in \mathscr{D}^{\prime}(G)$ an arbitrary distribution which is independent of $x_{2}$. Let $\Theta\left(x_{1}, x_{2}\right)=1$ if $\left(x_{1}, x_{2}\right) \in G, \Theta\left(x_{1}, x_{2}\right)=0$ if $\left(x_{1}, x_{2}\right) \in \mathbf{C G}$.

Then the generalized solution $u\left(x_{1}, x_{2}\right)$ of the differential equation (5) in $G$ is given by

$$
\begin{gathered}
u\left(x_{1}, x_{2}\right)=H \exp \left[-A\left(x_{1}, x_{2}\right)\right]+ \\
+\exp \left[-A\left(x_{1}, x_{2}\right)\right] \int \Theta K \exp \left[-B\left(x_{1}, x_{2}\right)+A\left(x_{1}, x_{2}\right)\right] \mathrm{d} x_{2}+
\end{gathered}
$$

$$
\begin{gathered}
+\exp \left[-A\left(x_{1}, x_{2}\right)\right] \int\left\{\exp \left[-B\left(x_{1}, x_{2}\right)+A\left(x_{1}, x_{2}\right)\right] .\right. \\
\left.\cdot \int f\left(x_{1}, x_{2}\right) \exp B\left(x_{1}, x_{2}\right) \mathrm{d} x_{1}\right\} \mathrm{d} x_{2} .
\end{gathered}
$$

This is a simple consequence of Lemma 1 and Lemma 2. If we put $f=\delta$, where $\delta$ is the Dirac distribution, we obtain the fundamental solution $E$ of the differential operator $P(D, x)$.

In the case $\alpha_{1}=\alpha_{2}=0, \beta_{1}=\beta_{2}=\infty, a=$ const., $\quad b=$ const., $\quad H=$ $=\frac{1}{2} \Theta\left(x_{1}, x_{2}\right) \mathrm{e}^{-b x_{1}}, K=\frac{1}{2} b \mathrm{e}^{-a x_{2}}$ we obtain the temperate fundamental solution which has been derived in the first section.

Let us assume the relation $\left(\partial b / \partial x_{2}\right)+a b-c=0$ to be valid instead of (6). Then we have the fundamental solution of the differential operator $P(D, x)$ in the form

$$
\begin{gathered}
E\left(x_{1}, x_{2}\right)=K \exp \left[-B\left(x_{1}, x_{2}\right)\right]+ \\
+\exp \left[-B\left(x_{1}, x_{2}\right)\right] \int \Theta H \exp \left[-A\left(x_{1}, x_{2}\right)+B\left(x_{1}, x_{2}\right)\right] \mathrm{d} x_{1}+ \\
+\exp \left[-B\left(x_{1}, x_{2}\right)\right] \int\left\{\exp -A\left(x_{1}, x_{2}\right)+B\left(x_{1}, x_{2}\right) \int \delta \exp A\left(x_{1}, x_{2}\right) \mathrm{d} x_{2}\right\} \mathrm{d} x_{1} .
\end{gathered}
$$

## References

[1] L. Hörmander: Linear Partial Differential Operators, Berlin 1969.
[2] L. Schwartz: Théorie des distributions, Paris 1973.
[3] L. Hörmander: Local and global properties of fundamental solutions, Math. Scand. 5 (1957), 27-39.
[4] L. Hörmander: On the theory of general partial differential operators, Acta mathematica, 94 (1955), 161-248.

Author's address: 66295 Brno, Janáčkovo nám. 2a (Matematický ústav ČSAV, pobočka v Brně).

