Časopis pro pěstování matematiky

Cao Quyê't Thă'ng

On quasi-homomorphisms and compositions of automata

Časopis pro pěstování matematiky, Vol. 106 (1981), No. 1, 31--37
Persistent URL: http://dml.cz/dmlcz/108282

Terms of use:

© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON QUASI-HOMOMORPHISMS AND COMPOSITIONS OF AUTOMATA

Cao Quyê't Thă'ng, Hai-phong
(Received September 25, 1977)

INTRODUCTION

In this note we shall deal with Mealy automata and Medvedev automata defined in a monoidal symmetric category with diagonal morphisms. We shall introduce a new notion of a quasi-homomorphism between such automata. This notion is a generalization of the usual notion of a homomorphism of automata and was introduced in some special cases by Nguyêñ Manh Trinh [7]. In the category of automata and quasi-homomorphisms some general compositions of automata (e.g. cascade products) can be described; it seems that the usual category of automata and homomorphisms has ,too few" morphisms for this purpose.

This paper is based on some parts of the author's dissertation [6]. The author expresses his gratitude to Prof. A. Wiweger for valuable comments and suggestions.

By a monoidal symmetric category with diagonal morphisms we mean an 8-tuple $K=(K, \otimes, I, a, l, r, b, d)$, where K is a category, $\otimes: K \times K \rightarrow K$ is a bifunctor, I is a terminal object of K, a, l, r, b are natural isomorphisms

$$
\begin{gathered}
a_{X, Y, Z}: X \otimes(Y \otimes Z) \rightarrow \tilde{\equiv}(X \otimes Y) \otimes Z, \\
l_{X}: I \otimes X \rightarrow \tilde{\cong} X, \quad r_{X}: I \otimes X \rightarrow \tilde{\equiv} X, \quad b_{X, Y}: X \otimes Y \rightarrow \tilde{\cong} Y \otimes X,
\end{gathered}
$$

and d is a function which assigns to each object X of K a diagonal morphism $d_{X}: X \rightarrow$ $\rightarrow X \otimes X$. These data are supposed to satisfy certain coherence conditions (cf. [2], [6]).

The symbol Set will denote the category of sets.

1. QUASI-HOMOMORPHISMS OF AUTOMATA

Let K be a monoidal symmetric category with diagonal morphisms.
A Mealy automaton (shortly : an automaton) in the category K is a 5 -tuple $A=(X, S, Y, \delta, \lambda)$, where X, S and Y are (the input, state and output resp.) objects of K and $\delta: S \otimes X \rightarrow S, \lambda: S \otimes X \rightarrow Y$ are (the next-state, output) morphisms of K.

Let A and $A^{\prime}=\left(X^{\prime}, S^{\prime}, Y^{\prime}, \delta^{\prime}, \lambda^{\prime}\right)$ be automata in K. A quasi-homomorhhism (shortly : a q-morphism) $f: A \rightarrow A^{\prime}$ is a triple $\left(f, A, A^{\prime}\right)$, where $f=\left(f_{X}, f_{S}, f_{Y}\right)$ and $f_{X}: S \otimes X \rightarrow X^{\prime}, f_{S}: S \rightarrow S^{\prime}, f_{Y}: Y \rightarrow Y^{\prime}$ are morphisms of K such that the diagram (1) is commutative.

Let $f: A \rightarrow A^{\prime}$ and $g: A^{\prime} \rightarrow A^{\prime \prime}, A^{\prime \prime}=\left(X^{\prime \prime}, S^{\prime \prime}, Y^{\prime \prime}, \delta^{\prime \prime}, \lambda^{\prime \prime}\right), g=\left(g_{X}, g_{S}, g_{Y}\right)$, be q-morphisms. The composition $h=g . f$ of f and g is defined by
(2) $h_{X}=(g . f)_{X}=g_{X}\left(f_{S} \otimes f_{X}\right) a_{S, S, X}^{-1}\left(d_{S} \otimes X\right)$,
(3) $h_{S}=(g \cdot f)_{S}=g_{S} \cdot f_{S}$,
and $h_{Y}=(g \cdot f)_{Y}=g_{Y} \cdot f_{Y}$.
It is easy to verify that the composition of two q-morphisms is a q-morphism and that the composition of q-morphisms is associative. Therefore automata in K and q-morphisms form a category. This category will be denoted by Qaut.

A Medvedev automaton (shortly : a semiautomaton) in K is a triple $A=(X, S, \delta)$, where X, S are objects of K and $\delta: S \otimes X \rightarrow S$ is a morphism of K.

A semiautomata q-morphism $f: A \rightarrow A^{\prime}, A^{\prime}=\left(X^{\prime}, S^{\prime}, \delta^{\prime}\right)$, is a triple $\left(f, A, A^{\prime}\right)$, where $f=\left(f_{X}, f_{S}\right)$ is a pair of morphisms of $K, f_{X}: S \otimes X \rightarrow X^{\prime}$ and $f_{S}: S \rightarrow S^{\prime}$, such that the right rectangle in (1) is commutative.

The composition of semiautomata q-morphisms is defined by (2) and (3). Semiautomata in K and their q-morphisms form a category QSaut.

There is a forgetful functor $\square:$ Qaut \rightarrow QSaut assigning to each automaton $A=$ $=(X, S, Y, \delta, \lambda)$ the semiautomaton $\square A=(X, S, \delta)$ and to each q-morphism $\left(f, A, A^{\prime}\right), f=\left(f_{X}, f_{S}, f_{Y}\right)$ the semiautomata q-morphism ($\square f, \square A, \square A^{\prime}$), $\square f=$ $=\left(f_{X}, f_{S}\right)$.

The functor \square has a left adjoint functor $F:$ QSaut \rightarrow Qaut defined as follows: $F(A)=\left(X, S, S \otimes X, \delta, \mathrm{id}_{S \otimes X}\right)$ for a semiautomaton $A=(X, S, \delta)$ and

$$
F\left(\left(f, A, A^{\prime}\right)\right)=\left(f_{X}, f_{S},\left(f_{S} \otimes f_{X}\right) a_{S, S, X}^{-1}\left(d_{S} \otimes X\right), F(A), F\left(A^{\prime}\right)\right)
$$

for a semiautomata q-morphism $f:=\left(f_{X}, f_{S}\right)$.

The concept of a k-product is a generalization of a special kind of loop-free structures (cf. [5]).

Let T be a fixed set of indices. We assume that the category K has selected products of all families indexed by T. If $\left(X_{t}\right)_{t \in T}$ is a family of objects of K then $\prod_{t \in T} X_{t}$ will denote the selected product of the family $\left(X_{t}\right)_{t \in T}$ and $\mathrm{pr}_{i}^{\Pi X_{t}}: \prod_{t \in T} X_{t} \rightarrow X_{i}$ will denote the selected projection on the i-th axis.

Let $k \in T$ be a fixed index. Let $\left(A_{t}\right)_{t \in T}, A_{t}=\left(X_{t}, S_{t}, Y_{t}, \delta_{t}, \lambda_{t}\right)$ be a family of automata and let $\left(\xi_{t}\right)_{t \in T}, \xi_{t}: S_{k} \otimes X_{k} \rightarrow X_{t}$ be a family of morphisms of K. We define

$$
\bar{\xi}_{t}=\xi_{t} \cdot\left(\mathrm{pr}_{k}^{\Pi S_{t}} \otimes X_{k}\right) \quad \text { for } \quad t \in T
$$

Then, by definition of a product, there exist unique morphisms $\bar{\delta}:\left(\prod_{t \in T} S_{t}\right) \otimes X_{k} \rightarrow$ $\rightarrow \prod_{t \in T} S_{t}, \bar{\lambda}:\left(\prod_{t \in T} S_{t}\right) \otimes X_{k} \rightarrow \prod_{t \in T} Y_{t}$ in the commutative diagram (4).
(4)

Figure 1. k-product of automata

The automaton $k A_{t}=\left(X_{k}, \prod_{t \in T} S_{t}, \prod_{t \in T} Y_{t}, \bar{\delta}, \bar{\lambda}\right)$, where $\bar{\delta}, \bar{\lambda}$ are defined in the diagram (4) is called the k-product of the family $\left(A_{t}\right)_{t \in T}$ with the connecting family of morphisms $\left(\xi_{t}\right)_{t \in T}$.

In the case when $K=$ Set and \otimes is the cartesian product, the k-product is visualized by Figure 1.

The following theorem shows that $k A_{t}$ has a categorical product-like property.
Theorem. Let $A=(X, S, Y, \delta, \lambda)$ be an automaton in K. Let $\left(f^{t}: A \rightarrow A_{t}\right)_{t \in T}, f^{t}=$ $=\left(f_{X}^{t}, f_{S}^{t}, f_{Y}^{t}\right)$, be a family of q-morphisms satisfying the following condition: for every $t \in T$ the diagram

is commutative.
Then there exists a q-morphism $f: A \rightarrow k A_{t}$ such that $f^{i}=p^{i} . f$, where by p^{i} : $: k A_{t} \rightarrow A_{i}, i \in T$, we denote the q-morphism $p^{i}=\left(\bar{\xi}_{i}, \mathrm{pr}_{i}^{\Pi S_{t}}, \mathrm{pr}_{i}^{\Pi Y_{t}}\right)$.

Sketch of proof. It is clear that $p^{i}, i \in T$, are q-morphisms. One can check that $f=\left(f_{X}^{k}, f_{S}, f_{Y}\right)$ is a q-morphism in conclusion, where f_{S} and f_{Y} are defined by the commutative diagrams

for $i \in T$.

3. c-PRODUCTS

In Sections 3 and 4 we assume that T is a finite or countable set of indices and that the category K has selected products of all families indexed by T. In order to simplify the notation we assume that $T=\{1,2, \ldots, n\}$ or T is the set of all natural numbers.

Let $\left(A_{t}\right)_{t \in T}, A_{t}=\left(X_{t}, S_{t}, Y_{t}, \delta_{t}, \lambda_{t}\right)$, be a family of automata in K. Let X be an object of K and let $\eta:\left(\prod_{t \in T} S_{t}\right) \otimes X \rightarrow X_{1}, \zeta_{t-1}: Y_{i-1} \otimes X \rightarrow X_{t}, t \geqq 2, t \in T$, be morphisms of K. We define

$$
\mu_{1}=\lambda_{1} \cdot\left(\operatorname{pr}_{1}^{\Pi S_{t}} \otimes \eta\right) a_{\Pi S_{t}, \Pi S_{t}, X}^{-1}\left(d_{\mathrm{\Pi S}}^{t} \mid ~ \otimes X\right):\left(\prod_{t \in T} S_{t}\right) \otimes X \rightarrow Y_{1}
$$

and

$$
\begin{gathered}
\mu_{k}=\lambda_{k} \cdot\left(\mathrm{pr}_{1}^{\Pi S_{t}} \otimes \zeta_{k-1}\right) \cdot\left(\prod S_{t} \otimes \mu_{k-1} \otimes X\right) \cdot\left(\prod S_{t} \otimes a_{\Pi S_{t}, X, X}^{-1}\right) \cdot \\
\cdot a_{\Pi S_{t}, \Pi S_{t}, X \otimes X}^{-1} \cdot\left(d_{\Pi S_{t}} \otimes d_{X}\right):\left(\prod_{t \in T} S_{t}\right) \otimes X \rightarrow Y_{k}
\end{gathered}
$$

for $k \geqq 2, k \in T$.
Then, by definition of the product, there exist unique morphisms $\delta:\left(\prod_{t \in T} S_{t}\right) \otimes$ $\otimes X \rightarrow \prod_{t \in T} S_{t}, \lambda:\left(\prod_{t \in T} S_{t}\right) \otimes X \rightarrow \prod_{t \in T} Y_{t}$ such that the diagrams (5) and (6) are commutative.
(5)
(6)

$(i \geqq 2, i \in T)$.
The automaton $c A_{t}=\left(X, \prod_{t \in T} S_{t}, \prod_{t \in T} Y_{t}, \delta, \lambda\right)$, where δ, λ are defined by diagrams
(5) and (6) is called the c-product of the family $\left(A_{t}\right)$ with connecting morphisms η and $\zeta_{t-1}, t \geqq 2, t \in T$.

In the case when $K=$ Set and \otimes is the cartesian product, the automaton $c A_{t}$ may be visualized by Figure 2.

In this case if $\eta=\eta^{\prime} \cdot \operatorname{pr}_{2}^{\left(n S_{t}\right) \times X}, \eta^{\prime}: X \rightarrow X_{1}$, and $T=\{1,2\}$, then the c-product is the usual cascade in the sense of [1].

Figure 2. c-product of automata
There exist q-morphism from the c-product $c A_{t}$ to each of its components. In fact, q-morphisms $f^{i}: c A_{t} \rightarrow A_{i}, i \in T$, may be defined by $f^{1}=\left(f_{X}^{1}, f_{S}^{1}, f_{Y}^{1}\right)=\left(\eta, \mathrm{pr}_{1}^{\Pi S_{t}}\right.$, $\left.\mathrm{pr}_{1}^{\Pi Y_{t}}\right)$ and for $i \in T, i \geqq 2, f^{i}=\left(f_{X}^{i}, f_{S}^{i}, f_{Y}^{i}\right)$, where

$$
f_{X}^{i}=\zeta_{i-1} \cdot\left(\mu_{i-1} \otimes X\right) \cdot a_{\Pi S_{t}, X, X} \cdot\left(\prod S_{t} \otimes d_{X}\right), \quad f_{S}^{i}=\operatorname{pr}_{i}^{\Pi S_{t}}, f_{Y}^{i}=\operatorname{pr}_{i}^{\Pi Y_{t}}
$$

4. g-PRODUCTS

Let $\left(A_{t}\right)_{t \in T}, A_{t}=\left(X_{t}, S_{t}, Y_{t}, \delta_{t}, \lambda_{t}\right)$, be a family of automata in K. Let X be an object of K and let $\varphi: \prod_{t \in T} S_{t} \otimes X \rightarrow \prod_{t \in T} X_{t}$ be a morphism of K.

Then, by definition of the product, there exist unique morphisms $\delta:\left(\prod_{t \in T} S_{t}\right) \otimes$ $\otimes X \rightarrow \prod_{t \in T} S_{t}$ and $\lambda:\left(\prod_{t \in T} S_{t}\right) \otimes X \rightarrow \prod_{t \in T} Y_{t}$ such that the diagram (7) is commutative.

The automaton $g A_{t}=\left(X, \prod_{t \in T} S_{t}, \prod_{t \in T} Y_{t}, \delta, \lambda\right)$, where δ, λ are defined in diagram (7), is called the g-product of the family $\left(A_{t}\right)_{t \in T}$ with the connecting morphism φ.

In the case when $K=$ Set, the g-product is the generalized product considered in [4].

There exist q-morphisms $p^{k}: g A_{t} \rightarrow A_{k}, k \in T$, from the g-product to each of its components. In fact, p^{k} may be defined by $p^{k}=\left(\mathrm{pr}_{k}^{\Pi X_{t}} \cdot \varphi, \mathrm{pr}_{k}^{\Pi S_{t}}, \mathrm{pr}_{k}^{\Pi Y_{t}}\right)$.

Now we shall assume that \otimes is the categorical product \times. In this case we can show a relation between c-products and g-products (cf. [4] for the case when $K=S e t$).

The g-product $g A_{t}$ of the family $\left(A_{t}\right)_{t \in T}$ with the connecting morphism φ is called $g-\alpha_{0}$-product if there exists a family of morphisms $\left(\varphi_{k}:\left(\prod_{i<k} S_{i}\right) \otimes X \rightarrow X_{k}\right)_{k \in \boldsymbol{T}}$ such that the diagrams

$k \in T, k \geqq 2$, are commutative.
It may be shown that the c-product of a family of automata in K with $\eta=\eta^{\prime}$. . $\mathrm{pr}_{2}^{\Pi S_{t} \times X}$, where $\eta^{\prime}: X \rightarrow X_{1}$ is a morphism of K, is a $g-\alpha_{0}$-product.

References

[1] Arbib, M. A.: Theories of abstract automata. Prentice-Hall, Englewood Cliffs, New York 1969.
[2] Budach, L., Hoehnke, H. J.: Automaten und Funktoren. Akademie-Verlag, Berlin 1975.
[3] Ehrig, H., Pfender, M.: Kategorien und Automaten. Walter der Gruyter, Berlin-NewYork. 1972.
[4] Gécseg, F.: On products of abstract automata. Acta Sci. Math. (Szeged), 38 (1976), 21-43.
[5] Hartmanis, J.: Loop-free structure of sequential machines, Inform. Control 5 (1962), 25-43.
[6] Cao Quyet Thang: Banach automata and some problems of the universal theory of automata. Dissertation, Inst. Math. Polish Acad. Sci., Warsaw 1979.
[7] Nguyen Manh Trinh: Category of semiautomata with quasi-homomorphisms and its relation to the operation of composition of semiautomata (in Polish), Dissertation, Warsaw Univ., Warsaw 1976.

Author's address: Truong Dai hoc Tai chuc, Hai-phong, Vietnam.

