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časopis pro pěstování matematiky, roč. 106 (1981), Praha 

ON QUASI-HOMOMORPHISMS AND COMPOSITIONS OF AUTOMATA 

CAO QUYE'T TH&'NG, Hai-phong 

(Received September 25, 1977) 

INTRODUCTION 

In this note we shall deal with Mealy automata and Medvedev automata 
denned in a monoidal symmetric category with diagonal morphisms. We shall intro
duce a new notion of a quasi-homomorphism between such automata. This notion 
is a generalization of the usual notion of a homomorphism of automata and was 
introduced in some special cases by Nguyen Manh Trinh [7]. In the category of 
automata and quasi-homomorphisms some general compositions of automata (e.g. 
cascade products) can be described; it seems that the usual category of automata 
and homomorphisms has ,,too few" morphisms for this purpose. 

This paper is based on some parts of the author's dissertation [6]. The author 
expresses his gratitude to Prof. A. Wiweger for valuable comments and suggestions. 

By a monoidal symmetric category with diagonal morphisms we mean an 8-tuple 
K = (K, ®, I, a, I, r, b, d), where K is a category, ® : K x K - » K i s a bifunctor, 
J is a terminal object of K, a, I, r, b are natural isomorphisms 

aXtYtZ : X ® (Y® Z) -+z (X ® Y) ® Z , 

lx:I®X ->z X, rx:I®X-+zX , bXtY:X® Y-+= Y®X9 

and d is a function which assigns to each object X of K a diagonal morphism dx : X-> 
-* X ® X. These data are supposed to satisfy certain coherence conditions (cf. 

M, M). 
The symbol Set will denote the category of sets. 

1. QUASI-HOMOMORPHISMS OF AUTOMATA 

Let K be a monoidal symmetric category with diagonal morphisms. 
A Mealy automaton (shortly : an automaton) in the category K is a 5-tuple 

A = (X, S, 7, S, X), where X, S and Y are (the input, state and output resp.) objects 
of K and S : S ® X -> S, A : 5 ® Z -> Y are (the next-state, output) morphisms of K. 
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Let A and A' = (X', S', Y', 8', X') be automata in K. A quasi-homomorhhism 
(shortly : a q-morphism) / : A -> A' is a triple (/, A, A'), where / = (fx,fs,fY)

 a n c* 
fx:S ®X -+X', fs:S -+ S', fY: 7-> F are morphisms of K such that the 
diagram (1) is commutative. 

Y+- s»x - S 

(1) 

Ґ 
6* 

(S*S)»X 

S»(S»X) 

\h9fx 

S'*X' A' — S' 

Let / : A -> A' and g : A' -> A", _4" = (X", S", Y", 5", X"), g = (gx, gs, gY), be 
^-morphisms. The composition h = g ./of/ and g is defined by 

(2) hx = (g . / ) x = g*(/s ® / x ) a* j,*(d5 ® X), 

(3) h5 = (g-/)s = gs-/s> 

and hr = (g ./) r = gy./y 

It is easy to verify that the composition of two q-morphisms is a ^-morphism and 
that the composition of ^-morphisms is associative. Therefore automata in K and 
^-morphisms form a category. This category will be denoted by Qaut. 

A Medvedev automaton (shortly : a semiautomaton) in K is a triple A = (X, S, 8), 
where X, S are objects of K and 8 : S ® X -+ S is a, morphism of K. 

A semiautomata q-morphism / : A -> A', A' = (X', S', 3'), is a triple (/, A, A'), 
where / = (fx,fs) is a pair of morphisms of K, fx : S ® X -> Xf and fs : S -> 5', 
such that the right rectangle in (1) is commutative. 

The composition of semiautomata ^-morphisms is defined by (2) and (3). Semi-
automata in K and their q-morphisms form a category QSaut. 

There is a forgetful functor • : Qaut -> QSaut assigning to each automaton A = 
== (X, S, Y, 5, X) the semiautomaton QA = (X, S, 5) and to each q-morphism 
(f,A,A'),f = (fx,fs,fY) the semiautomata q-morphism (•/, UA, UA'), •/ = 

= (fz,fs). 
The functor D has a left adjoint functor F : QSaut -> Qaut defined as follows: 

F(A) = (X, S, S ® X, 8, id 5 0 X ) for a semiautomaton A = (X, S, 3) and 
F((f, A, A')) = (A, fs, (fs®fx) alx

SfX(ds ® X), F(A), F(A')) 

for a semiautomata ^-morphism / = (/*,/$). 
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2. k-PRODUCTS 

The concept of a k-product is a generalization of a special kind of loop-free 
structures (cf. [5]). 

Let Tbe a fixed set of indices. We assume that the category K has selected products 
of all families indexed by T. lf(Xt)t€T is a family of objects of K then ]~| Xt will denote 

teT 

the selected product of the family (Xt)teT and prfXt : Y[ Xt -> Xf will denote the se-
teT 

lected projection on the i-th axis. 
Let k e T be a fixed index. Let (^4f)feT, 4̂f = (Xt, St, Yt, 5t, Xt) be a family of 

automata and let (£t)teT, <., : Sk ® Xk -> X, be a family of morphisms of K. We 
define 

& = f,. (pr?* ® X*) for *eF. 

Then, by definition of a product, there exist unique morphisms 5 : ( fj 5f) <g) Xk -> 
feT 

-• J | Sr, 1 : (J~J S,) ® Kfc -> f| Y, in the commutative diagram (4). 
ЃЄT 

(4) 

ПY. , _ _ _ - (ПSt)*Xк - - ! 
L_Т C _ _ Т » C * *«ľ 

^ 

K' •XŁ 

UПSt)*(ПSt))»Xк 
цт ' ит e * •к. /7Sć.Xk 

(ПSt)*((ПSt) *Xк) 

X- *• 
A; 

S; • */ 
6/ 

• ЛS, 
* . Т * 

PO' лsé 

s, 

xк 

1 ' i 

v — 

' ^ x ; j sк \үt 

1 >• 

v — 

L_iJ v. o y. 
Л/ S; [ v 

— * • 

Figure 1. k-product of automata 
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The automaton kAf = (Xk9 J][ St9 J ] Yt9 5,1), where 5,1 are defined in the diagram 
teT teT 

(4) is called the k-product of the family (At)teT with the connecting family of mor-
phisms (£t)teT. 

In the case when K — Set and ® is the cartesian product, the k-product is visualized 
by Figure 1. 

The following theorem shows that kA, has a categorical product-like property. 

Theorem. Let A = (X, S9 Y9 S9 X) be an automaton in K. Let ( / ' : A -> A^^.f* = 
= (fxifstfi)* be a family of q-morphisms satisfying the following condition: for 
every t e T the diagram 

S*X d * * X > (S*S)*X - g ^ » S*(S*X) ^^Sk*Xk 

/ ; 

is commutative. 
Then there exists a q-morphism f: A -> kAt such that fl = pl .f9 where by pl : 

: kAt -* Ai9 i e T9 we denote the q-morphism pl = (| f, pifSt, pify t). 
Sketch of proof. It is clear that p\ i e T9 are q-morphisms. One can check that 

/ = (/y»/s»/r) is a q-morphism in conclusion, where fs and fY are defined by the 
commutative diagrams 

for i є T 

3. c-PRODUCTS 

In Sections 3 and 4 we assume that Tis a finite or countable set of indices and that 
the category K has selected products of all families indexed by T In order to simplify 
the notation we assume that T = {1,2,..., n) or Tis the set of all natural numbers. 

Let (At)teT9 At = (Xv St9 Yt9 dt9 Ar), be a family of automata in K. Let X be an 
object of K and let n : ( f[ St) ®X -• Xl9 Ct-i : Yi-i ® X -> Xt9 t ^ 2, t e T, be 

teT 

morphisms of K. We define 

lix = kx . (pr? S t ® tj) anLustA
dnst ® X) : ( f\ St) ® X - Yt 

teT 
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and 
lik = kk . (pr™< ® Ck-i) • ( I f o ® ^ - i ® -Y) • (USt ® ^nie.x.x) • 

• anst,nst,x®x • (<W ® dx) : ( fl 5 ,) ® * ~* y* 
feT 

for k = 2, fc G T. 

Then, by definition of the product, there exist unique morphisms S : (Y\ St) ® 
feT 

® X -> [J S„ A : ( Y[ St) ® X -» fl 7, such that the diagrams (5) and (6) are 
feT feT feT 

commutative. 

(5) 

ПYt+-±--(ПSt)»X---
éT: Г LлT C keT teТ 

ж 

+ ПSt 
ЬfT fc 

</-c»X 
'nst 

fínsj»(nsj»x 

| a пst.пs ł c . 

(ПS.) «((ПS.)»X) 
t*T * t«Т * 

л - л s ř 

n 
ІPЧ".*i} 

S, •Xf —з - S f 

(6) 

Л Yt -—A- - (П S > X - -- - * п s. 
_rТ C Ł.-:Т * . H_rТ * é€Т 

ÞrV 

ыт 
\<Jnst

9<lx 
((nst)9(nsj»(x»x) 

KT r t€T -

Ji}cr' 
(77 s j *[((nst)»x)»x] 

\(nst)wx 
(nst)»(YM»x) 

si • *i -*r 

í f Т 

ит 

Ł*Т 

>i-f 

н»nsk 

Si 

(i = 2, i e T). 

The automaton cA, = (K, f| S„ J~[ Yr, 5, X), where 5, A are defined by diagrams 
feT feT 

(5) and (6) is called the c-product of the family (_4f) with connecting morphisms t\ 
and £,_!, t ^ 2, f e T 

In the case when K = Set and ® is the cartesian product, the automaton cAt may 
be visualized by Figure 2. 

In this case if r\ = tj' . pr(
2

n5t)x* q' : X -• Xx, and T = {1, 2}, then the c-product 
is the usual cascade in the sense of [1]. 
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Figure 2. c-product of automata 

There exist q-morphism from the oproduct cAt to each of its components. In fact, 
4-morphisms / ' : cAt -• Ai9 i e T, may be defined by f1 = (fkJsJi) = (n> V*T\ 
pr?y0 and for i e T, i = 2 , / ' = (fx,fLfl), where 

/ i = Ci-i • 0*,-i ® *) • *nst,*,* • (ll^r ® dx), fj = pt?s\fY = pr?y< . 

4. g-PRODUCTS 

Let (At)teT, At = (Xt9 St9 Yt9 St9 kt)9 be a family of automata in K. Let X be an 
object of K and let cp : 1Q S, ® X -> fj Xf be a morphism of K. 

feT reT 

Then, by definition of the product, there exist unique morphisms 5 : (fj St) ® 
Í Є T 

® X -> Ĵ [ S, and X : ( Ĵ J Sr) ® X -> fj Y, such that the diagram (7) is commutative. 

(7) Þr 

ПYt + --± (ПSt)*X—*-• 
fc«т c кr . 

\dЛSt*X 

[<ПтSt> •<&**>]•* 
l aff%,Л5i,X 

(ПSt)»[(ПSt)» X] 
fc*Т í«Т 

ІПSt»i> • 
(ПSt)*(ПXt) 
t«Т ' I f«Т ŕ 

.«ł 

Y; 
*t 

Í«Т 

ìprf 
S,*Xj 

• ns. 
t-«T ř 

Þr,- ŕ 

5/ 
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The automaton gAt = (X, f[ St> Yl Yt> <̂> )̂» where S, X are defined in diagram 
ř є T ř є T 

(7), is called the g-product of the family (At)teT with the connecting morphism (p. 
In the case when K = Set, the g-product is the generalized product considered 

in [4]. 
There exist f̂-morphisms pk : gAt -> Ak, k eF, from the g-product to each of its 

components. In fact, pk may be defined by pk = (pr" X t . cp, pr"St, prfYt). 
Now we shall assume that ® is the categorical product x . In this case we can show 

a relation between c-products and g-products (cf. [4] for the case when K = Set). 
The a-product gAt of the family (At)teT with the connecting morphism cp is called 

g-(x0-product if there exists a family of morphisms (cpk : ( Y\ St) ® X -> Xk)k€T 

such that the diagrams 

(ПSJxX 

ns.xx 
prr* 

-*• nxt 
HT * 

(ПSt) x x -*- ПXL 

Pï ЛXt 
ПSt*X 

ľ ПSfxX 

иr 

к пxt 

^ (ПSІ)XX — — -»- x t 

fc G T, k _ 2, are commutative. 
It may be shown that the c-product of a family of automata in K with rj = rj', 

. pr2 5 t X X , where rj': X -> Xx is a morphism of K, is a g-a0-product. 
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