
Časopis pro pěstování matematiky

Vladimír Ďurikovič
On the existence and the uniqueness of solutions and on the convergence of successive
approximations in the Darboux problem for certain differential equations of the type
ux1···xn = f(x1, · · · , xn, u, · · · , uxl1

···xlj
, · · · )

Časopis pro pěstování matematiky, Vol. 95 (1970), No. 2, 178--195

Persistent URL: http://dml.cz/dmlcz/108350

Terms of use:
© Institute of Mathematics AS CR, 1970

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/108350
http://project.dml.cz


Časopis pro pěstováni matematiky, rot f5 (1970), Praha 

ON THE EXISTENCE AND THE UNIQUENESS OF SOLUTIONS 
AND ON THE CONVERGENCE OF SUCCESSIVE APPROXIMATIONS 

IN THE DARBOUX PROBLEM FOR CERTAIN DIFFERENTIAL 
EQUATIONS OF THE TYPE «,......_ = / ( * . , . . . , x„, «,..., t/,, . . .^,. . .) 

VLADIMIR SURIKOVI£, Bratislava 

(DoSlo drla 30, maja 1968) 

1. Introduction. In the paper [ l ] W. WALTER proved the uniqueness of solutions of 
some initial value problems for the ordinary, parabolic and hyperbolic differential 
equations under certain generalized conditions of the Nagumo and Osgood type. On 
the basis of these uniqueness conditions, M. KWAPISZ, B. PALCZEWSKI, W. PAWELSKI 

[2] showed the existence and the uniqueness of solutions of the Darboux problem 
for the equations of the type uxyz = f(x, y9 z, u, ux9 uy9 uz9 uxy9 uxz9 uyz) V. PALCZEWSKI 

[3] and J. S. W. WONG [4] proved, besides the existence and the uniqueness of solu
tions, also the uniform convergence of successive approximations in the Darboux 
problem for the equations of the type uxy = / (x , y9 u) under the conditions for the 
uniqueness of the Krasnosielski and Krein type. 

In the present paper we shall study the questions of the existence, of the uniqueness 
of solutions and of the convergence of successive approximations in the Darboux 
problem for the equations of the n-th order of the type uXl_Xn = f(xl9..., x„9 u , . . . 
..., uXl _ x . , . . . ) and for the systems of differential equations of the n-th order using 
the generalized conditions of the Krasnosielski and Krein type and of Nagumo-
Perron-van Kampen type [5]. Instead of the classic method of proving the following 
theorems, it will be shown that these results all follow as a consequence of a certain 
theorem on the conctractive mappings in some generalized metric space. This theorem 
was first initiated in the paper by W. A. J. LUXEMBURG [6]. 

2. A theorem on contraction. First of all we shall define the notion of the generalized 
metric space. 

Let y be a non-void set; and let d(x9 y) be a non-negative real valued function 
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0 ^ d(x, y) g + oo defined on the Cartesian product Y x Y and satisfying the fol
lowing conditions for arbitrary elements x, y, z e Y: 

a) d(x, y) = 0 if and only if x = y. 

b) d(x, y) = d(y, x). 

c) d(x, y) ^ d(x, z) + d(z, y). 

d) If the sequence {xk}f of the elements x k e Y is a d-Cauchy sequence, i.e. 

lim d(xk, xm) = 0, then there exists an element x e Y such that lim d(x, xk) = 0. 

An abstract set Yon which the distance is defined in this way is called the generalized 
complete metric space. It differs from the usual concept of the complete metric space 
by the fact that not every pair of elements x, y e Y necessarily has a finite distance 
d(x, y). 

Theorem 1. (Luxemburg [6]). Let Ybe a generalized complete metric space and T 
a mapping of Y into itself satisfying the following conditions: 

1° There exists a constant I, 0 < X < 1 such that 

d(Tx, Ty) g X d(x, y) 

for all x,yeY with the distance d(x, y) < + oo. 

2° For every sequence of succesive aproximations xk = Txfc_l5 k = 1,2, ..., 
where x0 is an arbitrary element of Y, there exists an index K(x0) such that 
d(xK, xK+i) < + oo for all I = 1,2,... 

3° If x and y are two fixed points of the mapping T, i.e. Tx = x, Ty = y, then 
d(x, y) < +oo. 

Then the equation Tx = x has one and only one solution and every sequence of 
successive approximations {x^f converges in the distance d(x, y) to this unique 
solution. 

3. The formulation of the Darboux problem. Let us introduce the following notation 
and assumptions. 

1. Let R°, R be an arbitrary set of points X = (xu ..., xn), for which 0 < xt g At* 
O ^ x ^ Ai respectively, Ax > 0 for all i = 1, 2 , . . . , n and n = 1. Further, let 
Rix...ij denote an arbitrary (n - j)-dimensional closed domain of points Xlul. = 
= (xi9 ..., x h _ l s xh + 1, ..., x^.-i, x,y+1 , ..., x„) such that 0 = xt ^ A{ holds for 
/ = 1, ..., lx - 1, lx + 1, . . . , lj - l9lj + 1, ..., wand; = 1,2, ..., n - 1. (lu ..., lj) 
denotes an arbitrary combination of ; numbers from the n numbers ( 1 , . . . , n), 
h<...<ls. 
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2. Let us define the sets E and E° as Cartesian products E = R x Y\{ — °o < 
•= i 

< z, <v + oo} and £° = R° x f l {-00 < z, < +00} for s = ("^ + fn\ 

(1 + 1)" - 1 = 2" - 1. 

+ ... + 

(.-0 
3. Further, let us denote: 

a) an arbitrary vector with ( J real components by UJ = (u1%mmj, ...,ullmtAj, ... 

..., Wn-j+i...n) for/ = 1, 2,.. . , n and U° = w0. Let the symbol \Uj\y mean the vector 
(|Mi...;|y» •••> |Mii...iJy> •••> |Mn~j+i...«|y) f° r any real number y and let (U, V) mean the 
scalar product of the vectors U and V. 

b) . D,....,, = . 8 \ , ->' = ( D w , .... !>,,...,,, .... D.-J+!...,) 

for j = 1, 2,.. . , n and D°u = u. 

4. Let us suppose that the function f(X, U°, U1,..., Un~x) of s + n variables is 
continuous on E. 

5. Let the function Gj(Xj) together with its derivatives Dh„Ak<Tj of the fc-th order 
for k = 1, 2, ..., n — 1 be continuous in the domain Rj for I = 1, 2, ..., n and let it 
fulfil the conditions 

[<*.(*;)]*,=o = [*X*./)]*, = o > **. / ' ; U = 1, 2, ..., w 

in the domain Rsf where s = min (i,/), * = max (*,/). 

6. At last, let us denote the set of all functions z(X) e C(R) with continuous deriva
tives DhtAkz for k = 1, 2, ..., n — 1 in the domain R satisfying the conditions 

[-(*)]-,-<.: = * / * / ) . j = i ,2 , . . . ,« 
in R, by M(i?). 

We shall understand by the solution of the Darboux problem 

(1) D"u=/(Z,u,D1«, . . . ,D"-1«) 

(2) ' u(X)~ofi[j) for Xj = 0, 

[»i(-*.)]x.-o = [CT/*;)]*,=o f o r « * J » i,;' = 1, 2,. . . , n 

any function u(X) e M(R) which has the continuous derivative D"u in the domain R 
and satisfies equation (l) on R. 
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Then, the Darboux problem (l), (2) is equivalent to solving the integro-differential 
equation 

(3) u(X) = G(X) + f f(39 u9 D*u9 ..., Dn^u) dS . 

The function G(X) can be explicitly expressed in R by the initial functions o^K,) for 
i = 1,2 n because 

G(X) = u(09 x2, ...,xn) + ... + w(xl5 ..., x„_!,0) -

- [u(0,0,x3,...,xw) + ... + i*(x1, ...,xn_2,0,0)] + ... + ( - l ) " - 1 u ( 0 , . . . , 0 ) . 

With respect to (3), the sequence of Picard's successive approximations {uk}f is 
defined by the equation 

(4) uk(X) = G0(X) + f f(39 uk.l9 Dxuk.l9...9 D-^u^JdS 

for k = 1, 2, . . . on R where u0(X)9 G0(X) are arbitrary functions of M(R). The 
sequence of the derivatives {Dh„Ajuk}k= x is determined by 

(4i) DilmmJjuk = Dhwlj G0(X) + 

+ [ f(3x
h_lj9uk.l9D

1uk.l9...9D
n-1uk.1)d3l^lj 

JRh...ij 

for j — 1, 2, ..., n — 1 and X e R where 3x
lmtmlj denotes any point of R with the com

ponents (f j , . . . , f 0_ l 9 x0, £0+1,..., £„); i.e. we get the point Ex
h.„h so that we replace 

the ll9 ..., Ij-th component of the point 3 = (£l9 ..., £„) by the variables xh,..., x(j 

in this order. 

4. Theorems on the existence and uniqueness. In the following theorem we shall 
investigate the problem (1), (2) using the generalized conditions of Krasnosielski and 
Krein. 

Theorem 2. Let the function f(X9 U°9 U
1,..., Un~l) be defined, continuous and 

bounded on E and let it satisfy the following conditions in E°: 

(5) \f(x, u°, u\..., u»->) -f(x, r, vl,...,v-1)! g 

- L "iVi^-^D. L>O 
X . . . . X „ j = 0 
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where 

PJ - (ilnd x x Ehsziil v v Pn-J+l...n \ 

denotes the vector with I ) rea/ components for j = 1, 2,... , n — 1, P° = p0. The 
VIZ 

coefficients ptl„jr p0 are non-negative constants at least one of which is non-
vanishing. Let, further, the inequality 

(6) |f(K, U°, U\ ..., U»-i) - f(K, V°, V1, ..., V""1)! = 

= nr^/zV^y-m C>0 
where QJ = (qu,mJx\ ... xaj, ..., qh_hxa

h ... xa
h, ..., qn_;+1>>X-y+i ••• *«) «^o de-

notes the vector with I j components for j = 1, 2,.. . , n — 1, Q° = q0 and 0 < a < 

< 1, P < a ho/d. The coefficients qilm„lj9 q0 are non-negative constants at least one 
of which is non-vanishing and let the inequalities L(l — a)n < (l — /3)n, (p0 + 

n 
+ Z Y, Ph ij)nL{i - a)n < (* ~ J8)" be fulfilled. Then there exists one and only 

j=l I t , . . . ,Z j 

one solution u(X) of the Darboux problem (l), (2) and furthermore the Picard's 
sequence of successive approximations (4) for arbitrary functions u0(X), G0(X) e 
e M(R) such that DnG0(X) = 0 in R, converges uniformly to this unique solution. 

Proof. To prove this theorem we shall apply the preceding Theorem 1 on the 
contracted mappings. Hence we must choose a suitable complete metric space yand 
an operator Tmapping the space yinto itself and show that the conditions of Theorem 
1 are fulfilled. We shall prove that Y = (M(R), d) where the distance d is defined by 
the following equation 

"X((",|B'«-D'»|) 
(7) ''"•"-T'V-i.r-
for u,ve M(R) is the required metric space. The number p > 1 satisfies the inequali
ties pnL(l - a)" < (1 - /?)", pnL > 1. 

The existence of the number p considered above is guaranteed by the assumption 
w - l 

L(l - a)" < (1 - p)n. Moreover from the inequality (p0 + Z Z Ph hY L(* ~~ 
i = i h,...Jj 

— a)" < (1 — P)n we immediately see that p can be chosen as follows 

, "^1 -- 1 1 - 0 
Po + L . L. PҺ...ІJ < P < 777 : ~ y=i .......... V L 1 - a 
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The function d(u, v) defined by the relation (7) evidently fulfils the properties 
a), b), c) of the distance from Part 2. For the proof of the completeness of the metric 
space Y we shall use the inequality 

n - l 

(8) max £ (Ss, \D*u - D*v\) = d(u, v) 
R j = 0 

where Sj = (slmmj, ..., shtJj, ..., sn_j+i n) denotes the vector with J ) components 

forj = 1, 2, ..., n — 1 and S° = s0. The components sh tj of the vector Sj forj = 
= 1, 2, ..., n - 1 and s0 are non-negative constants at least one of which is non-
vanishing and they can be expressed by the constants L, P/....^ and At for i = 1,2,.. . 
..., n. From inequality (8) there follows that the d-convergence of the sequence 
{uk(X)}™ of functions uk(X) e M(R) implies the convergence of the sequences 
{Dii...ij

uk}k = x f ° r I = 1, 2, ..., n — 1 and {uk}™ in the sense of the distance 

(8t) d(u, v) = max \u - v\ . 
R 

Consequently, there exists such a function u(X) e M(R) that 

(82) lim uk(X) = u(X), lim DhmmJj uk(X) = DhmmAj u(X) 
k-+oo fe-*oo 

for j = 1, 2, ..., n — 1 in the domain R. 

Let now the sequence {uk(X)}™ be d-Cauchy, i.e. lim d(uk, um) = 0. Then we have 
k,m-*oo 

d(uk, Um) < 8 

for any e > 0 and fc, m > N(e) where N(x) > 0 is a real valued function. From this 
inequality and by (82) we obtain that the sequence {(p0l(xi . . . x.,)pVL) uk}k

X)
=l 

uniformly converges to the function (p0/(x1 ... xn)
p V L ) u(X) where u(X) e M(R) on R°. 

Analogically we shall show that the sequence {(Pil...iJxll ... xlJ!^(lJ)(x1 ••• xn)
pVL)., 

. Dh^Ajuk}k= j uniformly converges to the function (ph...hxh ... xlJ^J(IJ)(xl • • • X«)P V L ) • 

. Dh Aj u(X) for j = 1, 2, ..., n - 1 in the domain K°. 

From there 

(9) E° . \Uk - til < - for fc > N0(£), 

Ph...^h---^ i D _ D w | < ^ for fc > N, . (e) 
n

y/
,(U)(xi...xn)

pn^L{ h-'lj k h'"lj ! s l l"" l j U 

for j = 1, 2, ..., n — 1, s = 2" — 1 and suitable positive constants N0(e), Nh ...j/e) 
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on JR°. If we denote N = max(N0- max NhuuJj) then from inequalities (9) for 
Ii,...,Iy 

J = - l , 2 , . . . , n - l 

k > N there follows that d(uk, u) S £, i.e. lim d(uky u) = 0. Thereby the property 
k-*oo 

d) is proved and Y = (M(R\ d) is a generalized complete metric space. 

The operator T defined by the equation 

(10) Tu(X) = G0(X) + J f(E, n, Dlu, ..., D"-1i/)dS 

for X e R maps the set M(R) into itself. Hence we obtain the equation 

(10,) DhuuuijTu(X) = Dhuuulj G0(X) + f f(3x
huuuJji u, D'II, ..., D-*u) 6Shuuuij 

JRh...ij 

forj = 1, 2,.. . , n — 1 in the domain #. Therefore, the problem to find the solution 
of the Darboux problem (1), (2) or of the integro-differential equation (3) is trans
formed to the problem of finding the fixed point of the mapping Ton the set M(R). 

The sequence of Picard's approximations (4) is equivalent to the sequence 
{Tujfc^j}^! and the sequence of the derivatives (4j) is equivalent to the sequence 
{ ^ . . j ^ - O r - i for./= 1 , 2 . . . . , I I - 1 . 

Proof of condition 1°. Let u, v be two arbitrary functions from Y with d(w, v) < 
< +oo. Then from equation (10) and hypothesis (5) we have 

( Ц ) \Tu - Tv\ g f |/(S, u, Dlu,..., Dř-tu) - f(E, v, DH,.... D""1*)! dS š 

и - 1 

* L I '"V, ;VVL «* • tf vcl,~1 d s -5 <"• p ) ( " , Ju vCi ••• s»; F 

for X e .R0. Further, by (10J) we obtain the estimates 

V^ -P 

for every I == 1, 2,...,« - 1 in the domain R°. The necessary inequality 

d(Tuy Tv) = X d(u9 v) 

»-i 
where X « (p0 + £ £ Pi, !,)/*> < * follows directly from relations (11) and (11-). 

j-i h....jj 

For the proof of condition 2° we shall use the boundedness of the function 
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f(X, U°, U1 , . . . , U""1) in the domain E. Let us denote K = sup \f(X, U°, U1 , . . . 
e 

..., U"-1)!. Then from equations (4) and (4.) for any function u0(X) e M(R) we get 

(12) \u2(X) - Ul(X)\ ^ 2K(Xl ... x„), (x,, . . . x,J)|D/l...,Ju2 - D,,....,"i| ^ 

^2K(Xl...Xn) 

for j = 1, 2 , . . . , « — 1 in J?. By relations (12) and assumption (6) the estimates 

\u3(X)- u2(X)\ <. [\f(3,u2,D
lu2,...,D"-1u2)-f(E,u1,D

1u1,...,D»-1u1)\d3£ 

, Z W . |-»y«2 " -*«!.*) „-i } 

= C -=- - - - - - - dS<C(a0 + E X a„...,J)(2X)«(x1...x1,)<«-'')+1 

J* « • • • # , -»=i '• '; 

hold for X e fl°. Similarly, it is possible to show that 

K . . . * I , ) K . . I , « 3 W - - » I I . . . I , « 2 W | _ J 

< q« 0 + "l I «.....,,) (2K)« (*.... x„)<«-«+1 

> = i i i , . . . , i j 

for j = 1, 2 , . . . , n — 1 in the domain R°. We shall easily prove the following estimates 

K+sM - uk+2(X)\ <: 

< [Cfoo +"l £ 9«,...,)}],+*+-+,k(2i-T*+,(*i ...;c,.)<«-«(i+«+...+.')+i 
J = I h J, 

(13) (*,. ••• *,,) jZ),,...,, uk+3(X) - Dh...h uk+2(X)\ < 
и - 1 

^ w«o + z i ^ 1...o)] i + a +-+ a k(2^r+ i(x 1 m.mXm)t-w+:-+*>+* 
; = 1 II I j 

for k = 0, 1,... and I = 1, 2,..., n — 1 in .R0 by the mathematical induction with 
respect to fc. The inequality 

(i4) " i V . | D K + 3 - Dy«t+2|) < [c(cj0+"i:1 £ «3ll...IJ)] i+-+~+ '\ 
j = o i = i I, ?., 

• (ft + "Z £ - ^ T T ) (2^rk+t (x. ... X B )(«-«(I+ .+ . . .+ . -)+I 
\ i= i Ii 'j V L / 

follows for X e R° by estimate (13). The condition p"L(l - a)" < (1 - 0)" guarantees 
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the existence of such a number N(p) that 

(a - /?)(1 + a + ... + a*) + 1 = (l - j?)(l + a + ... + a*) + a*+1 = 

-. L l l (1 - a*
+1) + a*+1 > p l/L 

1 — a 
.* 

for all fe ;> N(p). Consequently we have d(ufc+1, uk) < +00 for k ;> N(p) -f- 2. On 
the basis of the property c) of the distance (7) we conclude that condition 2° is proved. 

Let us suppose that u, v e Y are two fixed points of the mapping T9 i.e. Tu = w, 
Tv = v. Using the method form the proof of condition 2° we obtain for the difference 
of the function u, v and their partial derivatives estimates (13) and (14). Hence the 
third condition of Theorem 1 follows; d(u9 v) < +00. 

Now we easily conclude that there exists one and only one fixed point of operator 
(10). The sequence of successive approximations (4) due to any initial function u0(X) e 
e M(R) converges in the sense of the distance (7) to this solution. On the basis of 
relation (8) for any function G0(X) e M(R) with the derivative DnG0(X) = 0 in R 
Theorem 2 is proved. 

In the following two theorems we shall generalize the Nagumo-Perron-van Kampen 
assumption of the paper [5] and use it to consider the convergence of successive 
approximations of the Darboux problem (1), (2). Before we pronounce this theorems 
let us define the space (M*(R)9 d2). , 

Let the operator T be defined by the relation (10) and T M(R) is the set of all the 
m ages of the set M(R) under mapping T 

Let the symbol (M*(R)> d2) denote the complete metric space which we obtain by 
the completion of the metric space (TM(R), d2) in the sense of the distance 

n~l 

(15) d2(u, v) = max [ £ (/1, \Dju - D'i>|)] 
R I=0 

where V = (1 , . . . , 1) denotes the unit vector with ( J components for j - 1, 2, ... 
...,n - l a n d l 0 = 1. ^ 

Then easy considerations lead to the following results: 

If the sequence {uk(X)}f of functions uk(X) e M*(R) converges in the distance (15) 
to a function u(X) e M*(R), then this sequence and the sequence of the derivatives 
{Dhwl uk(X)}k=i converge in the sense of the distance (Sx) for j = 1, 2,.. . , n - 1 
and there is lim di(wk, u) = 0, lim d1(D/1..jiUfc, Dli%l.u) = 0. Conversely, the 

k-+ao fc-*oo 

convergence of the sequence {uk(X)}k^l and of the sequences of its derivatives 
{Dh_tj uk(X)}k=i in the distance (8X) for j = 1, 2,.. . , n - 1 implies the convergence 
of the sequence {uk(X)}f in the sense of the distance (15). 
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Theorem 3. Let the function f(X, U°, U1,..., Un x) be defined and continuous on 
the domain E and let it satisfy the following assumptions: 

(16) \f(X,UO,Ui,...,U»-i)\£A(x1...xny, p = 0 , A>0 

in E and 

(17) \f(X, U°, U\..., U - 1 ) - f(X, V°, V1,..., V"-1)! = 

= , C
 Y U F i A u J - v J \ % <? = !> < > ° 

( x , ...Xn) j=0 

onE° whereF{ = (/-..../x,. ...xt)
q, ...,fh...h(xh ... x,)9, ...,/„_,+ i...„(xB_i+1 .... x ^ ) 

denotes the vector with I j non-negative components fhJj for j = 1, 2, . . . , n — 1, 

f£ = f0 _ 0 satisfying the condition 

(/o + E1 I /i^)^^^<i 
/= i i, ij (P + i f 

ulhere <j(l + P) — r = p. 4̂f least one of the constants f/,...iJ,/o is nonvanishing. 
Then there exists one and only one solution u(X) of the Darboux problem (l), (2) 
and, moreover, the Picard's sequence of successive approximations (4), for arbitrary 
functions u0(X), G0(X) e M*(R) such that Dn G0(X) = 0 in R converges uniformly 
in the domain R to this unique solution. 

Proof. The proof will be given again by Theorem 1. First of all by (15) it is evident 
that M*(R) c= M(R). Let us consider the metric space Y = (M*(R), d) with the 
distance 

EVI> \Dju - DJv\) 
(18) d(u, v) = sup tza- — — 

and the operator T defined by relation (10). Hence there is TY cz Y. The inequality 

(19) max £ (5-f, \DJu - DJv\) = d(u, v) 
R j = 0 

is obtained similarly as that of Theorem 2. 5J' = (5^.^,..., sh..ij,..., sn„J+i,..n) 

and S° == s0 denote the vectors with ( J constant components sh...ij9 s0 for j == 

= 1, 2,..., n — 1 at least one of which is non-vanishing. The constants s0, sh...iJ 

depend on fh..Aj, f0 and Ai9 i = 1, 2,. . . , n. From relations (15), (19) there follows 
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that the -̂convergence of the sequence {uk(X)}f of functions uk(X) e M*(R) implies 
the d2-convergence of this sequence. 

Let now the sequence {uk(X)}f be a d-Cauchy sequence, i.e. lim d(uk, um) = 0. 
fc,m-»oo 

Then this sequence converges to a function u(X) e M*(R) in the metrics (15) and 
lim uk(X) = u(X)9 lim DhJj uk(X) = Dh..Aj u(X) for j = 1, 2,,. . , n - 1 in the 
fc-*oo -* fc-*co 

domain K. Similar calculations to those of Theorem 2 lead us to the conclusion that 
lim d(uk9 u) = 0. Consequently Y = (M*(R), d) is a generalized complete metric 
fc-*00 

space. 
Proof of condition 1°. Let u(X)9 v(X) be arbitrary functions from Y with d(u, v) < 

< +oo. The completeness of the space Y and equations (10), (l0t) together with the 
assumption (16) guarantee that 

(20) \u(X)-v(X)\Z^-(xl...xl,y", 
P + 1 

2A 

*., - x.K.... ."^) - -v..«,«<*)l ^ —r (** •• • *.rl 

P + 1 
« 

for j -- 1, 2,..., n — 1 on the domain J?. It follows by (17), (20) and the relation 
M*(R) £ M(R) that 

, l(H>l->'« - -H) 
|TM(A:) - rt<x)| g c ^ — : ds ^ 

(€,... í.У 
• - 1 

/ M v-if Eft..-*--*.) 

(P +1)« 

Similarly, it is possible to show that 

xh ... *,,|D,....,:IVi - D,..„,,H>| g C&&1 d(u, v) (Xl ...xn)"+l 

(p + If 

for j = 1,2,..., n — 1 in R°. From the last inequalities we obtain 

d(Tu, Tv) 1 (/0 + 1 I /,....„) C &£1 d(u, v) . 
S'l ' h (p + If 

This proves condition 1°. 
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The proofs of conditions 2° and 3° are trivial in this case, as the inequality 

n - 1 2A 
d(uk,uk+l)S(fo + IJ £ fh...i) - < + c o , k = l ,2 , . . . 

I=i h h p + 1 

is directly given for any Picard's sequence {uk = Tuk-l}k
x>=i due to an arbitrary 

initial function u0(X) e Y by (14). 

Remark. Assumption (16) of Theorem 3 guarantees the boundedness of the 
function/(K, U°, U1,..., U"""1) in the domain E. In the following theorem we shall 
show that the assumption of the boundedness is not necessary. 

Theorem 4. Let the function f(X, U°, U1,..., Un~l) be continuous on E and let it 
satisfy the following conditions: 

(21) \f(X, U°, U1, ..., U""1)! = A(X) (Xl... xn)p , - 1 < p < 0 

in E°. The function A(X) is integrable on the domain R and in the (n - ^-dimen
sional domain Rh...h for any (xh,..., xh) with 0 g xltc £ Ak where k = 1, 2, ...J 
and j = 1, 2,. . . , n — 1. Moreover, the inequalities 0 ^ A(X) g A0, A(X) ^ 
= i40(jcfl ... xh)~p, A0 > 0 are fulfilled for j = 1, 2,.. . , n - 1 on R. Lef, further, 
the inequality 

(22) |/(X, U°, U\ ..., M-"1) - / ( * , v°, v1,..., v"-1)! g 

(x t . . .xn) y=-o 

fco/d in £°. The function C(X) is also integrable on R and on Rh...hfor any (xh,... 
..., xh) with 0 S xik ^ Ak where k = 1, 2 , . . . , / and j" = 1, 2,.. . , n - 1, moreover 
the inequalities 0 g C(Z) ^ C0, C(X) g Chwllxh ... xh)"

pforj = 1, 2 , . . . , n - 1 
ho/d wfeere C0, C .̂..̂  are positive constants. H°pA = fc0 and for j = 1, 2,.. . , n - 1 

H^,, = (/Z..../X, ... x , )* ' + 1 \ ..., fc;i...0(xZl... xhr
p+»,... 

. . . ,fc.-i+i(x.-y+i .-x-) , (F+1)) 

denote the vectors with ( ] non-negative components h0, hh...ij <** least one of which 

is non-vanishing. 

If furthermore we suppose that q(p + 1) — r = p and 

"-1 foA„Y~l 

[coho + i i (p + iyc I,..,^ I„jg-5- I3<i 

189 



then there exists one and only one solution of the Darboux problem (l), (2) and the 
Picard's sequence of successive approximations (4), for arbitrary functions u0(X), 
G0(X)eM*(R) with Dn G0(X) = 0 in _R, uniformly converges in the domain R to 
this unique solution. 

Proof. Analogously to Theorem 3 it can be shown that the metric space 7 = 
= (M*(R), d) on which the distance 

(23) d(ut v) == sup J-~- - y T I 

is defined, forms the complete generalized metric space. The operator T defined by 
relation (10) maps the space Y into itself. Then we obtain from (10), (10^ and from 
assumption (21) for arbitrary w, v e Y with d(u, v) < + oo the inequalities 

(24) \u(X)-v(X)\Z2JA(E)(Z1...Q>dE^-^^(Z1...Q>" 

(x,,... Xljy
+1 \Dlt...hu(X) - _>,....„ t<-_)| :_ 

£ 2(x,, ... Xljy
+1 f A(Eh^j)(^1 ... {,._1xl,€/i+1 ... £.)'-_?.,...,, g 

- 2An (Xl...Xny+l 

(p + i) 

in _R°, On the basis of assumption (22) and of inequalities (24) we get the following 
estimates 

, mZW^Dlu - D>v\) 
\Tu - Tv\ :_ ---2 dS <, 

T 2A T<--f c ( s ) n I ( H i . i ' l D J " - D ^ ) 
^ ________ __° <pt . . . ,V + 1 >(«- 1 >- r + p + 1 dS< 

"L(p + i)"J J* fl-i-ftr1 

gr5T9C o d ( u ' c ) ( X l- ,-x" r i ' K-^)p+1lct,..oT« - - W H ^ 

* rr^c"-'^ + ^ - K M C * . - ^ ) p + i 
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for X e R°. Hence there follows that d(Tu9 Tv) = X d(u9 v) where 

A = [co/«o +'i z o + iy c,,...,,*,,...,j ̂ L l . 
1=1 7i,...,ij (P + l ; * 

We shall obtain the required estimate for the proofs of conditions 2°, 3° directly 
by (24). Thereby Theorem 4 is proved. 

5. Systems of differential equations. The results of the preceding Theorems 2, 3, 4 
can be applied to certain systems of hyperbolic partial differential equations. 

First of all we introduce some new notation and assumptions again. 

1. We shall consider the sets Ex = R x f ] {-co < z, < +oo}, E°x = R° x 
i=-l 

x n {~~°° < zi < + °°} where sx = m + m ( J + ... + m( } = m(2n — 1) 
Ï = I 

and m = 1 denotes an integer. Further, let us denote A = \J 8t where 5t = { I : I e 
e.R,X| = 0} fori = 1,2, ...,n. ,==1 

2. Let the norm of the vector B = (fel9..., bt) be defined by equation 

11*1 = IN-
3. Let a) 

/«L,...-"..., \ 

J = I 

U J 
(Wi...J,...,U,1...i^...,W.-л.i...-) 

\ M n - j + l...« ••• Un-S+1..M/ 

denote an arbitrary matrix of the type — I J for j = 1, 2,..., n — 1 and U° = 
m\J7 

= (uj,..., MQ). The symbol Ululj denotes the vector (u]itmmjj9..., w .̂..̂ ) a n ( i "o = U°. 
Let us denote the vector (\\UXJ\\ ..., HU.,.. J y , . . . , | |Un_,.+1. J ' ) for; = 0, 1,... 

..., n — 1 and a real number 7 by | |U J | | y . 

b) U(K) = (w^K),..., um(X)) let be a sufficiently regular vector function in the 
domain R. Then, let us denote 

D J U 

\->--j+i..Ji«1...í>--i+i....«7 

(Ð1..jü,...,í),1...,Jü,...,D._ í+1.„.U). 
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4. We shall suppose that the vector function 

F(X, U \ U \ ..., IT"1) = (ft(X, U \ U \ ..., U - 1 ) . ...,fm(X, U°, U \ ..., U- 1 ) ) 

of n + st variables is continuous in Et. 

5. Let us assume that the vector function &(X) = (<Pl(X)f..., <Pm(X)) is defined 
and continuous in the domain A and it has continuous derivatives Dh tlj &(X) of 
the I-th order in any domain St, i = 1, 2,. . . , n for j = 1, 2,. . . , n — 1 and that 
Dn#(_Y) = O = (0,...,0)on_R. 

6. Further, let Mt(R) denote the set of the vector functions 2(X) = (Zt(X),... 
..., ZJX)) e C(R) with the following properties: 

a) The derivatives DhtAj2 are continuous in the domain R fory = 1, 2,.. . , n - 1. 

b) Z(X) = #(Z)for_Ye_d. 

We are now able to formulate the Darboux problem and the concept of its solution. 

We shall understand by the solution of the Darboux problem 

(V) DttU == F(X, U, DlU,..., Dn~lU) 

(2') U(X) = *(Z) for XeA 

any function U(X) e MX(R) which has the continuous derivative D"U on R and satisfies 
equation (1') in R. 

The Darboux problem (1'), (2') is equivalent to solving the system of integro-
differential equations 

(3') U(X) = *0(K) + f F(E, U, D lU,..., D""*U) dS 

where $0(X) « *(0, x2, ..., xn) + #(x l f ..., x . . l f 0) - |>(0, 0, x3, ..., xn) + ... 
... + * ( x 1 , . . . , V 2 , 0 , 0 ) ] T . . . T ( - i r l * ( 0 , . . . , 0 ) . 

Then, the Picard's sequence of successive approximations {Uk}f shall be defined 
by the equation 

(4')' U^X) = *„(*) + f F(S, Uk_lt D
lUk_u .,., D-^U.-OdS 

for any function U0 e M\(R) and fc = 1, 2 , . . . 

Now let us state the following theorems: 
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Theorem 5. Let the vector function F(X9 U°, U1 , . . . , U"*"1) be defined, continuous 
and bounded in the domain Et and let it satisfy the conditions: 

(50 \\F(X9 U°, U1,..., U""1) - F(X9 v°, v1 , . . . , v- 1 ) ! ! = 

^—^— z V l ^ - V i ) , L>0, 
xt ...xnj=o 

(60 IF(X9 U°, U1,..., U""1) - F(X, V°, V1, ..., V--1)! = 

wfiere PJ, Q' denote the vectors from Theorem 2, in £?. If the inequalities 0 < a < 1, 

L(l - a)" < (1 - P)\ (Po + ? Z p,,...,,)" L(l - a)" < (1 - 0)» hold, then p < a, 
1=i Ji -j 

tfeere exists one and only one solution of the Darboux problem (l')9 (2') and the 
Picard's sequence of successive approximations (4f) converges in the sense of the 
norm [| [| defined above to this unique solution for any initial function U0(X) e 
e M^R) on R. 

If we choose the generalized metric space Y = (Mt(R)9 d) with the metrics 

d(U, V) = sup -----
. P V -

where p fulfils the same conditions as in Theorem 1, then the proof of this theorem 
should proceed similarly with the proof of Theorem 2. 

Let T Mt(R) denote the set of all the images of the set Mt(R) in the mapping 

(T) T U(X) -. Ф0(X) + ľ F(S, U, D lü,..., D"- ,U)d£ . 

If we denote the complete metric space which was obtained by the completion of the 
metric space (T Mt(R)9 d3) in the sense of the distance 

(80 d3(U9 V) = max's (I', || DJU - D'V||) 
R i = 0 

by (M*(R)9 d3), then the following theorems hold: 

Theorem 6. Let the vector function F(X9 U°, U \ ..., U""1) be defined and conti
nuous in the domain Ex and let it satisfy the assumptions 

(9') \F(X, U°, U \ ..., U---)|| ^ A(xt ...xn)", p £ 0, A > 0 
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in Eл and 

(10') \\F(X, U°, U 1 , . . . , U"- 1 ) - F(X, V°, V1,..., V - 1 ) ! <. 

" C "liHAl^-vŤ)* «*- . c > o 

in £? where F^ denotes the vector from Theorem 3. 7/ fhe conditions q(l + p) -
- r = p 

(/o + Z1 Z /«....»,) C ^ ^ ; < 1 
J=i j l f...,i, (p + I f 

are fulfilled, then there exists one and only one solution U(X) of the Darboux 
problem (V), (T) and furthermore the Picard's sequence of successive approxima
tions (4') for any initial function U0(X) e M*(R) converges in the sense of the norm 
|| || to this unique solution on R. 

Theorem 7.. Let the vector function F(X9 U°, U 1 , . . . , U n - 1 ) be continuous in E1 

and in the domain E°x let is satisfy the conditions 

(11') \F(X,V\V*- W-1)\\^A(X)(x1...xnY, -Kp<0 

where the scalar function A(X) is integrable in the domains R9 Rh...h and9 moreover, 
it fulfils the inequalities 0 ^ A(X) ^ A09 A(X) = A0(xh ...xh)~

p
9 A0 > 0 for 

j = 1, 2 , . . . , n — 1 in Ex. 

(12') \\F(X9 u°, u1,..., u"-1) - F(x9y°,y\...9y
n~1)\\ = 

<r - ^ L . "£("** || u' - v*Y), , = I 
(xx . . .xn)p j=o 

where Hj
pq denotes as defined the vector as in Theorem 4. The scalar function 

C(X) is integrable in R and Rh...hforj = 1, 2 , . . . , n — 1. Moreover, let it fulfil the 
inequalities 0 = C(X) g C0, C(X) <; Ch,mAj(xh . . .x^)*"p where C09Chmmmlj are 
positive constants for j = 1, 2 , . . . , n — 1 in i*. Further, if 

[Co/to + ' i i (P + iyc I I . . ,A l . . . j f i -^ i<i 

and #(p + 1) — r = p, then there exists one and only one solution of the Darboux 
problem (l')9 (2') and the Picard's sequence of successive approximations by (4') 
for any initial function U0(X) e M*(R) converges in the sense of the norm || || to 
this unique solution on R. 

194 



We omit the proofs of Theorems 6, 7 because if we choose a suitable metrics on 
M*(R) they would proceed similarly to the proofs of Theorems 3 and 4. 

Remark. In Theorems 5, 6, 7 an arbitrary norm ||S{| t which is equivalent to the 
t 

norm ||B|| = £ \bj\ (in the sense of convergence) can be taken instead of the norm ||B||. 
1=i 

References 

[1] W. Walter: Eindeutigkeitssätze für gewòhnliche, parabolische, und hyperbolische Differen-

tialgleichungen, Math. Zeitschrift 74 (3) (1960), pp. 191 — 209. 

[2] M. Kwapisz, B. Palczewski et W. Pawelski: Sur ľunicité des solutions de certaines équations 
différentielles du type uxyz — f(x, y, z, u, ux, uy,uz, uxy, uxz, uyz), Ann. Polon. Math. 11 
(1961), pp. 75-106. 

[3] B. Palczewski: On the uniqueness of solutions and the convergence of successive approxima-
tions in the Darboux problem under the conditions of the Krasnosielski and Krein type, 
Ann. Polon. Math. 14 (1964), pp. 183-190. 

[4] J. S. W. Wong: On the convergence of successive approximations in the Darboux problem, 
Ann. Polon. Math. 17 (1966), pp. 329-336. 

[5] E. R. van Kampen: Notes on systems of ordinary differеntial еquations, Amеrican Journal of 

Math. 63 (1941), pp. З71-З76. 

[6] W. A. J. Luxemburg: On thе convеrgеncе of succеssivе approximàtions in thе thеory of 
ordinary diffеrеntial еquations II, Indag. Math. 20 (1958), pp. 540—546. 

Authoґs address: Bгatislava, Šmеralova 2/b (Katеdra matеmatickеj analýzy PvFUK). 

195 


		webmaster@dml.cz
	2012-05-12T03:07:01+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




