Časopis pro pěstování matematiky

Vladimír Ďurikovič

On the existence and the uniqueness of solutions and on the convergence of successive approximations in the Darboux problem for certain differential equations of the type $u_{x_{1} \cdots x_{n}}=f\left(x_{1}, \cdots, x_{n}, u, \cdots, u_{x_{1} \cdots x_{l_{j}}}, \cdots\right)$

Časopis pro pěstování matematiky, Vol. 95 (1970), No. 2, 178-195
Persistent URL: http://dml.cz/dmlcz/108350

Terms of use:

© Institute of Mathematics AS CR, 1970
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON THE EXISTENCE AND THE UNIQUENESS OF SOLUTIONS AND ON THE CONVERGENCE OF SUCCESSIVE APPROXIMATIONS IN THE DARBOUX PROBLEM FOR CERTAIN DIFFERENTIAL EQUATIONS OF THE TYPE $u_{x_{1} \ldots x_{n}}=f\left(x_{1}, \ldots, x_{n}, u, \ldots, u_{x_{l_{1}} \ldots x_{l}}, \ldots\right)$

Vladimír Durikovič, Bratislava
(Došlo dňa 30, mája 1968)

1. Introduction. In the paper [1] W. Walter proved the uniqueness of solutions of some initial value problems for the ordinary, parabolic and hyperbolic differential equations under certain generalized conditions of the Nagumo and Osgood type. On the basis of these uniqueness conditions, M. Kwapisz, B. Palczewski, W. Pawelski [2] showed the existence and the uniqueness of solutions of the Darboux problem for the equations of the type $u_{x y z}=f\left(x, y, z, u, u_{x}, u_{y}, u_{z}, u_{x y}, u_{x z}, u_{y z}\right)$ V. Palczewski [3] and J. S. W. Wong [4] proved, besides the existence and the uniqueness of solutions, also the uniform convergence of successive approximations in the Darboux problem for the equations of the type $u_{x y}=f(x, y, u)$ under the conditions for the uniqueness of the Krasnosielski and Krein type.

In the present paper we shall study the questions of the existence, of the uniqueness of solutions and of the convergence of successive approximations in the Darboux problem for the equations of the n-th order of the type $u_{x_{1} \ldots x_{n}}=f\left(x_{1}, \ldots, x_{n}, u, \ldots\right.$ $\left.\ldots, u_{x_{1}, \ldots x_{l}}, \ldots\right)$ and for the systems of differential equations of the n-th order using the generalized conditions of the Krasnosielski and Krein type and of Nagumo-Perron-van Kampen type [5]. Instead of the classic method of proving the following theorems, it will be shown that these results all follow as a consequence of a certain theorem on the conctractive mappings in some generalized metric space. This theorem was first initiated in the paper by W. A. J. Luxemburg [6].
2. A theorem on contraction. First of all we shall define the notion of the generalized metric space.

Let Y be a non-void set; and let $d(x, y)$ be a non-negative real valued function
$0 \leqq d(x, y) \leqq+\infty$ defined on the Cartesian product $Y \times Y$ and satisfying the following conditions for arbitrary elements $x, y, z \in Y$:
a) $d(x, y)=0$ if and only if $x=y$.
b) $d(x, y)=d(y, x)$.
c) $d(x, y) \leqq d(x, z)+d(z, y)$.
d) If the sequence $\left\{x_{k}\right\}_{1}^{\infty}$ of the elements $x_{k} \in Y$ is a d-Cauchy sequence, i.e. $\lim _{k, m \rightarrow \infty} d\left(x_{k}, x_{m}\right)=0$, then there exists an element $x \in Y$ such that $\lim _{k \rightarrow \infty} d\left(x, x_{k}\right)=0$.

An abstract set Y on which the distance is defined in this way is called the generalized complete metric space. It differs from the usual concept of the complete metric space by the fact that not every pair of elements $x, y \in Y$ necessarily has a finite distance $d(x, y)$.

Theorem 1. (Luxemburg [6]). Let Y be a generalized complete metric space and T a mapping of Y into itself satisfying the following conditions:
1° There exists a constant $\lambda, 0<\lambda<1$ such that

$$
d(T x, T y) \leqq \lambda d(x, y)
$$

for all $x, y \in Y$ with the distance $d(x, y)<+\infty$.
2° For every sequence of succesive aproximations $x_{k}=T x_{k-1}, k=1,2, \ldots$, where x_{0} is an arbitrary element of Y, there exists an index $K\left(x_{0}\right)$ such that $d\left(x_{K}, x_{K+l}\right)<+\infty$ for all $l=1,2, \ldots$
3° If x and y are two fixed points of the mapping T, i.e. $T x=x, T y=y$, then $d(x, y)<+\infty$.

Then the equation $T x=x$ has one and only one solution and every sequence of successive approximations $\left\{x_{k}\right\}_{1}^{\infty}$ converges in the distance $d(x, y)$ to this unique solution.
3. The formulation of the Darboux problem. Let us introduce the following notation and assumptions.

1. Let R^{0}, R be an arbitrary set of points $X=\left(x_{1}, \ldots, x_{n}\right)$, for which $0<x_{i} \leqq A_{i}$, $0 \leqq x_{i} \leqq A_{i}$ respectively, $A_{i}>0$ for all $i=1,2, \ldots, n$ and $n \geqq 1$. Further, let $R_{l_{1} \ldots l_{j}}$ denote an arbitrary ($n-j$)-dimensional closed domain of points $X_{l_{1} \ldots l_{j}}=$ $=\left(x_{1}, \ldots, x_{l_{1}-1}, x_{l_{1}+1}, \ldots, x_{l_{j}-1}, x_{l_{j}+1}, \ldots, x_{n}\right)$ such that $0 \leqq x_{i} \leqq A_{i}$ holds for $i=1, \ldots, l_{1}-1, l_{1}+1, \ldots, l_{j}-1, l_{j}+1, \ldots, n$ and $j=1,2, \ldots, n-1 .\left(l_{1}, \ldots, l_{j}\right)$ denotes an arbitrary combination of j numbers from the n numbers $(1, \ldots, n)$, $l_{1}<\ldots<l_{j}$.
2. Let us define the sets E and E^{0} as Cartesian products $E=R \times \prod_{i=1}^{s}\{-\infty<$ $\left.<z_{i}<+\infty\right\}$ and $E^{0}=R^{0} \times \prod_{i=1}^{s}\left\{-\infty<z_{i}<+\infty\right\}$ for $s=\binom{n}{0}+\binom{n}{1}+\ldots+$ $+\binom{n}{n-1}=(1+1)^{n}-1=2^{n}-1$.
3. Further, let us denote:
a) an arbitrary vector with $\binom{n}{j}$ real components by $\boldsymbol{U}^{j}=\left(u_{1 \ldots j}, \ldots, u_{l_{1} \ldots l_{j}}, \ldots\right.$ $\left.\ldots, u_{n-j+1 \ldots n}\right)$ for $j=1,2, \ldots, n$ and $\boldsymbol{U}^{0}=u_{0}$. Let the symbol $\left|U^{j}\right|^{\gamma}$ mean the vector $\left(\left|u_{1 \ldots j}\right|^{\gamma}, \ldots,\left|u_{l_{1} \ldots l_{j}}\right|^{\gamma}, \ldots,\left|u_{n-j+1 \ldots . .}\right|^{\gamma}\right)$ for any real number γ and let $(\boldsymbol{U}, \boldsymbol{V})$ mean the scalar product of the vectors \mathbf{U} and \mathbf{V}.
b)

$$
D_{l_{1} \ldots l_{j}}=\frac{\partial^{j}}{\partial x_{l_{1}} \ldots \partial x_{l_{j}}}, \quad D^{j}=\left(D_{1 \ldots j}, \ldots, D_{l_{1} \ldots l_{j}}, \ldots, D_{n-j+1 \ldots n}\right)
$$

for $j=1,2, \ldots, n$ and $D^{0} u=u$.
4. Let us suppose that the function $f\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)$ of $s+n$ variables is continuous on E.
5. Let the function $\sigma_{j}\left(X_{j}\right)$ together with its derivatives $D_{l_{1} \ldots l_{k}} \sigma_{j}$ of the k-th order for $k=1,2, \ldots, n-1$ be continuous in the domain R_{j} for $j=1,2, \ldots, n$ and let it fulfil the conditions

$$
\left[\sigma_{i}\left(X_{i}\right)\right]_{x_{j}=0}=\left[\sigma_{j}\left(X_{j}\right)\right]_{x_{i}=0}, \quad i \neq j ; \quad i, j=1,2, \ldots, n
$$

in the domain $R_{s t}$ where $s=\min (i, j), t=\max (i, j)$.
6. At last, let us denote the set of all functions $z(X) \in C(R)$ with continuous derivatives $D_{l_{1} \ldots l_{k}} z$ for $k=1,2, \ldots, n-1$ in the domain R satisfying the conditions

$$
[z(X)]_{x_{j}=0}=\sigma_{j}\left(X_{j}\right), \quad j=1,2, \ldots, n
$$

in R_{j} by $M(R)$.
We shall understand by the solution of the Darboux problem

$$
\begin{gather*}
D^{n} u=f\left(X, u, D^{1} u, \ldots, D^{n-1} u\right) \tag{1}\\
\cdot \tag{2}\\
{\left[\sigma_{i}(X)=\sigma_{j}\left(X_{j}\right)\right]_{x_{j}=0}=\left[\sigma_{j}\left(X_{j}\right)\right]_{x_{i}=0} \text { for } \quad x_{j}=0,} \\
\end{gather*}
$$

any function $u(X) \in M(R)$ which has the continuous derivative $D^{n} u$ in the domain R and satisfies equation (1) on R.

Then, the Darboux problem (1), (2) is equivalent to solving the integro-differential equation

$$
\begin{equation*}
u(X)=G(X)+\int_{R} f\left(\Xi, u, D^{1} u, \ldots, D^{n-1} u\right) \mathrm{d} \Xi . \tag{3}
\end{equation*}
$$

The function $G(X)$ can be explicitly expressed in R by the initial functions $\sigma_{i}\left(X_{i}\right)$ for $i=1,2, \ldots, n$ because

$$
\begin{gathered}
G(X)=u\left(0, x_{2}, \ldots, x_{n}\right)+\ldots+u\left(x_{1}, \ldots, x_{n-1}, 0\right)- \\
-\left[u\left(0,0, x_{3}, \ldots, x_{n}\right)+\ldots+u\left(x_{1}, \ldots, x_{n-2}, 0,0\right)\right]+\ldots+(-1)^{n-1} u(0, \ldots, 0)
\end{gathered}
$$

With respect to (3), the sequence of Picard's successive approximations $\left\{u_{k}\right\}_{1}^{\infty}$ is defined by the equation

$$
\begin{equation*}
u_{k}(X)=G_{0}(X)+\int_{R} f\left(\Xi, u_{k-1}, D^{1} u_{k-1}, \ldots, D^{n-1} u_{k-1}\right) \mathrm{d} \Xi \tag{4}
\end{equation*}
$$

for $k=1,2, \ldots$ on R where $u_{0}(X), G_{0}(X)$ are arbitrary functions of $M(R)$. The sequence of the derivatives $\left\{D_{l_{1} \ldots l_{j}} u_{k}\right\}_{k=1}^{\infty}$ is determined by

$$
\begin{gather*}
D_{l_{1} \ldots l_{j}} u_{k}=D_{l_{1} \ldots l_{j}} G_{0}(X)+ \tag{1}\\
+\int_{R_{l_{1} \ldots l_{j}}} f\left(\Xi_{l_{1} \ldots l_{j}}^{x}, u_{k-1}, D^{1} u_{k-1}, \ldots, D^{n-1} u_{k-1}\right) \mathrm{d} \Xi_{l_{1} \ldots l_{j}}
\end{gather*}
$$

for $j=1,2, \ldots, n-1$ and $X \in R$ where $\Xi_{l_{1} \ldots l_{j}}^{x}$ denotes any point of R with the components $\left(\xi_{1}, \ldots, \xi_{l_{j}-1}, x_{l_{j}}, \xi_{l_{j+1}}, \ldots, \xi_{n}\right)$; i.e. we get the point $\Xi_{l_{1} \ldots l_{j}}^{x}$ so that we replace the l_{1}, \ldots, l_{j}-th component of the point $\Xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ by the variables $x_{l_{1}}, \ldots, x_{l_{j}}$ in this order.
4. Theorems on the existence and uniqueness. In the following theorem we shall investigate the problem (1), (2) using the generalized conditions of Krasnosielski and Krein.

Theorem 2. Let the function $f\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)$ be defined, continuous and bounded on E and let it satisfy the following conditions in E^{0} :

$$
\begin{gather*}
\left|f\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)-f\left(X, \mathbf{V}^{0}, \mathbf{V}^{1}, \ldots, \mathbf{V}^{n-1}\right)\right| \leqq \tag{5}\\
\leqq \frac{L}{x_{1} \ldots x_{n}} \sum_{j=0}^{n-1}\left(\mathbf{P}^{j},\left|\mathbf{U}^{j}-\mathbf{V}^{j}\right|\right), \quad L>0
\end{gather*}
$$

where

$$
\mathbf{p}^{j}=\left(\frac{p_{1} \ldots j}{\sqrt[n]{L^{j}}} x_{1} \ldots x_{j}, \frac{p_{l_{1} \ldots l_{l}}}{\sqrt[n]{L^{j}}} x_{l_{1}} \ldots x_{l_{l}}, \ldots, \frac{p_{n-j+1} \ldots n}{\sqrt[n]{L^{j}}} x_{n-j+1} \ldots x_{n}\right)
$$

denotes the vector with $\binom{n}{j}$ real components for $j=1,2, \ldots, n-1, \mathbf{P}^{0}=p_{0}$. The coefficients $p_{l_{1} \ldots l,}, p_{0}$ are non-negative constants at least one of which is nonvanishing. Let, further, the inequality

$$
\begin{gather*}
\left|f\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)-f\left(X, \mathbf{V}^{0}, \mathbf{V}^{1}, \ldots, \mathbf{V}^{n-1}\right)\right| \leqq \tag{6}\\
\leqq \frac{C}{x_{1}^{\beta} \ldots x_{n}^{\beta}} \sum_{j=0}^{n-1}\left(\mathbf{Q}^{j},\left|\mathbf{U}^{j}-\mathbf{V}^{j}\right|{ }^{x}\right), \quad C>0
\end{gather*}
$$

where $\mathrm{Q}^{j}=\left(q_{1 \ldots j} x_{1}^{\alpha} \ldots x_{j}^{\alpha}, \ldots, q_{l_{1} \ldots l_{j}} x_{l_{1}}^{\alpha} \ldots x_{l_{j}}^{\alpha}, \ldots, q_{n-j+1 \ldots n} x_{n-j+1}^{\alpha} \ldots x_{n}^{\alpha}\right)$ also denotes the vector with $\binom{n}{j}$ components for $j=1,2, \ldots, n-1, \mathbf{Q}^{0}=q_{0}$ and $0<\alpha<$ $<1, \beta<\alpha$ hold. The coefficients $q_{l_{1} \ldots l}, q_{0}$ are non-negative constants at least one of which is non-vanishing and let the inequalities $L(1-\alpha)^{n}<(1-\beta)^{n},\left(p_{0}+\right.$ $\left.+\sum_{j=1}^{n} \sum_{l_{1}, \ldots, l_{j}} p_{l_{1} \ldots l_{j}}\right)^{n} L(1-\alpha)^{n}<(1-\beta)^{n}$ be fulfilled. Then there exists one and only one solution $u(X)$ of the Darboux problem (1), (2) and furthermore the Picard's sequence of successive approximations (4) for arbitrary functions $u_{0}(X), G_{0}(X) \in$ $\in M(R)$ such that $D^{n} G_{0}(X)=0$ in R, converges uniformly to this unique solution.

Proof. To prove this theorem we shall apply the preceding Theorem 1 on the contracted mappings. Hence we must choose a suitable complete metric space Y and an operator T mapping the space Y into itself and show that the conditions of Theorem 1 are fulfilled. We shall prove that $Y=(M(R), d)$ where the distance d is defined by the following equation

$$
\begin{equation*}
d(u, v)=\sup _{R^{0}} \frac{\sum_{j=0}^{n-1}\left(P^{j},\left|D^{j} u-D^{j} v\right|\right)}{\left(x_{1} \ldots x_{n}\right)^{p^{n} \sqrt{ } \mathrm{~L}}} \tag{7}
\end{equation*}
$$

for $u, v \in M(R)$ is the required metric space. The number $p>1$ satisfies the inequalities $p^{n} L(1-\alpha)^{n}<(1-\beta)^{n}, p^{n} L>1$.

The existence of the number p considered above is guaranteed by the assumption $L(1-\alpha)^{n}<(1-\beta)^{n}$. Moreover from the inequality $\left(p_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} p_{l_{1} \ldots l_{j}}\right)^{n} L(1-$ $-\alpha)^{n}<(1-\beta)^{n}$ we immediately see that p can be chosen as follows

$$
p_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} p_{l_{1} \ldots l_{j}}<p<\frac{1}{\sqrt[n]{L}} \frac{1-\beta}{1-\alpha} .
$$

The function $d(u, v)$ defined by the relation (7) evidently fulfils the properties a), b), c) of the distance from Part 2. For the proof of the completeness of the metric space Y we shall use the inequality

$$
\begin{equation*}
\max _{R} \sum_{j=0}^{n-1}\left(\mathbf{S}^{j},\left|\mathbf{D}^{j} u-\mathbf{D}^{j} v\right|\right) \leqq d(u, v) \tag{8}
\end{equation*}
$$

where $\boldsymbol{S}^{j}=\left(s_{1 \ldots j}, \ldots, s_{l_{1} \ldots l^{\prime}}, \ldots, s_{n-j+1 \ldots n}\right)$ denotes the vector with $\binom{n}{j}$ components for $j=1,2, \ldots, n-1$ and $\boldsymbol{S}^{0}=s_{0}$. The components $s_{l_{1} \ldots l_{j}}$ of the vector \boldsymbol{S}^{j} for $j=$ $=1,2, \ldots, n-1$ and s_{0} are non-negative constants at least one of which is nonvanishing and they can be expressed by the constants $L, p_{l_{1} \ldots l_{j}}$ and A_{i} for $i=1,2, \ldots$ \ldots, n. From inequality (8) there follows that the d-convergence of the sequence $\left\{u_{k}(X)\right\}_{1}^{\infty}$ of functions $u_{k}(X) \in M(R)$ implies the convergence of the sequences $\left\{D_{l_{1} \ldots l} l_{j} u_{k}\right\}_{k=1}^{\infty}$ for $j=1,2, \ldots, n-1$ and $\left\{u_{k}\right\}_{1}^{\infty}$ in the sense of the distance

$$
\begin{equation*}
d(u, v)=\max _{R}|u-v| . \tag{1}
\end{equation*}
$$

Consequently, there exists such a function $u(X) \in M(R)$ that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} u_{k}(X)=u(X), \lim _{k \rightarrow \infty} D_{l_{1} \ldots l_{j}} u_{k}(X)=D_{l_{1} \ldots l_{j}} u(X) \tag{2}
\end{equation*}
$$

for $j=1,2, \ldots, n-1$ in the domain R.
Let now the sequence $\left\{u_{k}(X)\right\}_{1}^{\infty}$ be d-Cauchy, i.e. $\lim _{k, m \rightarrow \infty} d\left(u_{k}, u_{m}\right)=0$. Then we have

$$
d\left(u_{k}, u_{m}\right)<\varepsilon
$$

for any $\varepsilon>0$ and $k, m>N(\varepsilon)$ where $N(x)>0$ is a real valued function. From this inequality and by $\left(8_{2}\right)$ we obtain that the sequence $\left\{\left(p_{0} /\left(x_{1} \ldots x_{n}\right)^{p^{n} \sqrt{L}}\right) u_{k}\right\}_{k=1}^{\infty}$ uniformly converges to the function $\left(p_{0} /\left(x_{1} \ldots x_{n}\right)^{p^{n} \sqrt{L}}\right) u(X)$ where $u(X) \in M(R)$ on R^{0}. Analogically we shall show that the sequence $\left\{\left(p_{l_{1} \ldots l_{j}} x_{l_{1}} \ldots x_{l_{j}} / \sqrt[n]{ } /\left(L^{j}\right)\left(x_{1} \ldots x_{n}\right)^{n \sqrt{ } L}\right)\right.$, . $\left.D_{l_{1} \ldots l_{j}} u_{k}\right\}_{k=1}^{\infty}$ uniformly converges to the function $\left(p_{l_{1} \ldots l_{j}} x_{l_{1}} \ldots x_{l_{j}} l^{n}\left(L^{j}\right)\left(x_{1} \ldots x_{n}\right)^{n}{ }^{n} L\right)$. . $D_{l_{1} \ldots l_{j}} u(X)$ for $j=1,2, \ldots, n-1$ in the domain R^{0}.

From there

$$
\begin{gather*}
\frac{p_{0}}{\left(x_{1} \ldots x_{n}\right)^{p^{n} /}}\left|u_{k}-u\right|<\frac{\varepsilon}{s} \text { for } k>N_{0}(\varepsilon), \tag{9}\\
\frac{p_{l_{1} \ldots l_{j}} x_{l_{1}} \ldots x_{l_{j}}}{\sqrt[n]{\left(L^{j}\right)\left(x_{1} \ldots x_{n}\right)^{n^{2}} \sqrt{L}}}\left|D_{l_{1} \ldots l_{j}} u_{k}-D_{l_{1} \ldots l_{j}} u\right|<\frac{\varepsilon}{s} \text { for } k>N_{l_{1} \ldots l_{j}}(\varepsilon)
\end{gather*}
$$

for $j=1,2, \ldots, n-1, s=2^{n}-1$ and suitable positive constants $N_{0}(\varepsilon), N_{l_{1} \ldots l_{j}}(\varepsilon)$
on R^{0}. If we denote $\bar{N}=\max \left(N_{0}, \max _{\substack{l_{1}, \ldots, l_{j} \\ j=1,2, \ldots, n-1}} N_{l_{1} \ldots \iota_{j}}\right)$ then from inequalities (9) for $k>\bar{N}$ there follows that $d\left(u_{k}, u\right) \leqq \varepsilon$, i.e. $\lim _{k \rightarrow \infty} d\left(u_{k}, u\right)=0$. Thereby the property d) is proved and $Y=(M(R), d)$ is a generalized complete metric space.

The operator T defined by the equation

$$
\begin{equation*}
T u(X)=G_{0}(X)+\int_{R} f\left(\Xi, u, D^{1} u, \ldots, D^{n-1} u\right) \mathrm{d} \Xi \tag{10}
\end{equation*}
$$

for $X \in R$ maps the set $M(R)$ into itself. Hence we obtain the equation
$\left(10_{1}\right) \quad D_{l_{1} \ldots l_{j}} T u(X)=D_{l_{1} \ldots l_{j}} G_{0}(X)+\int_{R_{l_{1} \ldots l_{j}}} f\left(\Xi_{l_{1} \ldots l_{j}}^{x}, u, D^{1} u, \ldots, D^{n-1} u\right) \mathrm{d} \Xi_{l_{1} \ldots l_{j}}$
for $j=1,2, \ldots, n-1$ in the domain R. Therefore, the problem to find the solution of the Darboux problem (1), (2) or of the integro-differential equation (3) is transformed to the problem of finding the fixed point of the mapping T on the set $M(R)$.

The sequence of Picard's approximations (4) is equivalent to the sequence $\left\{T u_{k-1}\right\}_{k=1}^{\infty}$ and the sequence of the derivatives $\left(4_{1}\right)$ is equivalent to the sequence $\left\{D_{l_{1} \ldots l_{j}} T u_{k-1}\right\}_{k=1}^{\infty}$ for $j=1,2, \ldots, n-1$.

Proof of condition 1°. Let u, v be two arbitrary functions from Y with $d(u, v)<$ $<+\infty$. Then from equation (10) and hypothesis (5) we have

$$
\begin{align*}
& |T u-T v| \leqq \int_{R}\left|f\left(\Xi, u, D^{1} u, \ldots, D^{n-1} u\right)-f\left(\Xi, v, D^{1} v, \ldots, D^{n-1} v\right)\right| \mathrm{d} \Xi \leqq \tag{11}\\
& \leqq L \int_{R} \frac{\sum_{j=0}^{n-1}\left(P^{j},\left|D^{j} u-D^{j} v\right|\right)}{\left(\xi_{1} \ldots \xi_{n}\right)^{p^{n} /}}\left(\xi_{1} \ldots \xi_{n}\right)^{p^{n} \sqrt{ }(L)-1} \mathrm{~d} \Xi \leqq d(u, v) \frac{\left(x_{1} \ldots x_{n}\right)^{p^{n} /}}{p}
\end{align*}
$$

for $X \in R^{0}$. Further, by $\left(10_{1}\right)$ we obtain the estimates

$$
\begin{equation*}
\frac{x_{l_{1}} \ldots x_{l_{j}}}{\sqrt[n]{L^{j}}}\left|D_{l_{1} \ldots l_{j}} T u-D_{l_{1} \ldots l_{j}} T v\right| \leqq d(u, v) \frac{\left(x_{1} \ldots x_{n}\right)^{n^{n} L}}{p} \tag{1}
\end{equation*}
$$

for every $j=1,2, \ldots, n-1$ in the domain R^{0}. The necessary inequality

$$
d(T u, T v)=\lambda d(u, v)
$$

where $\lambda=\left(p_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} p_{l_{1} \ldots 1_{j}}\right) / p<1$ follows directly from relations (11) and (11).
For the proof of condition 2° we shall use the boundedness of the function
$f\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)$ in the domain E. Let us denote $K=\sup _{\boldsymbol{E}} \mid f\left(\boldsymbol{X}, \mathbf{U}^{0}, \boldsymbol{U}^{1}, \ldots\right.$ $\left.\ldots, U^{n-1}\right) \mid$. Then from equations (4) and (41) for any function $u_{0}(X) \in M(R)$ we get

$$
\begin{gather*}
\left|u_{2}(X)-u_{1}(X)\right| \leqq 2 K\left(x_{1} \ldots x_{n}\right),\left(x_{l_{1}} \ldots x_{l_{j}}\right)\left|D_{l_{1} \ldots l_{j}} u_{2}-D_{l_{1} \ldots l} u_{1}\right| \leqq \tag{12}\\
\leqq 2 K\left(x_{1} \ldots x_{n}\right)
\end{gather*}
$$

for $j=1,2, \ldots, n-1$ in R. By relations (12) and assumption (6) the estimates

$$
\begin{aligned}
& \left|u_{3}(X)^{j}-u_{2}(X)\right| \leqq \int_{R}\left|f\left(\Xi, u_{2}, D^{1} u_{2}, \ldots, D^{n-1} u_{2}\right)-f\left(\Xi, u_{1}, D^{1} u_{1}, \ldots, D^{n-1} u_{1}\right)\right| \mathrm{d} \Xi \leqq \\
& \leqq C \int_{R} \frac{\sum_{j=0}^{n-1}\left(\mathbf{Q}^{j},\left|D^{j} u_{2}-D^{j} u_{1}\right|^{\alpha}\right)}{\xi_{1}^{\beta} \ldots \xi_{n}^{\beta}} \mathrm{d} \Xi \leqq C\left(q_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} q_{l_{1} \ldots l_{j}}\right)(2 K)^{\alpha}\left(x_{1} \ldots x_{n}\right)^{(\alpha-\beta)+1}
\end{aligned}
$$

hold for $X \in R^{0}$. Similarly, it is possible to show that

$$
\begin{gathered}
\left(x_{l_{1}} \ldots x_{l_{j}}\right)\left|D_{l_{1} \ldots l_{j}} u_{3}(X)-D_{l_{1} \ldots l_{j}} u_{2}(X)\right| \leqq \\
\leqq C\left(q_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} q_{l_{1} \ldots l_{j}}\right)(2 K)^{\alpha}\left(x_{1} \ldots x_{n}\right)^{(\alpha-\beta)+1}
\end{gathered}
$$

for $j=1,2, \ldots, n-1$ in the domain R^{0}. We shall easily prove the following estimates

$$
\begin{aligned}
& \left|u_{k+3}(x)-u_{k+2}(X)\right| \leqq \\
& \left.\leqq\left[C\left(q_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} q_{l_{1} \ldots I_{j}}\right)\right\}\right]^{1+\alpha+\ldots+\alpha^{k}}(2 K)^{k^{k+1}}\left(x_{1} \ldots x_{n}\right)^{(\alpha-\beta)\left(1+\alpha+\ldots+\alpha^{k}\right)+1}
\end{aligned}
$$

$$
\begin{gather*}
\left(x_{l_{1}} \ldots x_{l_{j}}\right)\left|D_{l_{1} \ldots l_{j}} u_{k+3}(X)-D_{i_{1} \ldots l_{j}} u_{k+2}(X)\right| \leqq \tag{13}\\
\leqq\left[C\left(q_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} q_{l_{1} \ldots l_{j}}\right)\right]^{1+\alpha+\ldots+\alpha^{k}}(2 K)^{\alpha^{k+1}}\left(x_{1} \ldots x_{n}\right)^{(\alpha-\beta)\left(1+\alpha+\ldots+a^{k}\right)+1}
\end{gather*}
$$

for $k=0,1, \ldots$ and $j=1,2, \ldots, n-1$ in R^{0} by the mathematical induction with respect to k. The inequality

$$
\begin{align*}
& \sum_{j=0}^{n-1}\left(P^{j},\left|D^{j} u_{k+3}-D^{j} u_{k+2}\right|\right) \leqq\left[C\left(q_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} q_{l_{1} \ldots l_{j}}\right)\right]^{1+\alpha+\ldots+q^{k}} \tag{14}\\
& \quad\left(p_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} \frac{p_{l_{1} \ldots l_{j}}}{\sqrt[n]{L^{j}}}\right)(2 K)^{\alpha^{k+1}}\left(x_{1} \ldots x_{n}\right)^{(\alpha-\beta)\left(1+\alpha+\ldots+\alpha^{k}\right)+1}
\end{align*}
$$

follows for $X \in R^{0}$ by estimate (13). The condition $p^{n} L(1-\alpha)^{n}<(1-\beta)^{n}$ guarantees
the existence of such a number $N(p)$ that

$$
\begin{gathered}
(\alpha-\beta)\left(1+\alpha+\ldots+\alpha^{k}\right)+1=(1-\beta)\left(1+\alpha+\ldots+\alpha^{k}\right)+\alpha^{k+1}= \\
=\frac{1-\beta}{1-\alpha}\left(1-\alpha^{k+1}\right)+\alpha^{k+1}>p \sqrt[n]{L}
\end{gathered}
$$

for all $k \geqq N(p)$. Consequently we have $d\left(u_{k+1}, u_{k}\right)<+\infty$ for $k \geqq N(p)+2$. On the basis of the property c) of the distance (7) we conclude that condition 2° is proved.

Let us suppose that $u, v \in Y$ are two fixed points of the mapping T, i.e. $T u=u$, $T v=v$. Using the method form the proof of condition 2° we obtain for the difference of the function u, v and their partial derivatives estimates (13) and (14). Hence the third condition of Theorem 1 follows; $d(u, v)<+\infty$.

Now we easily conclude that there exists one and only one fixed point of operator (10). The sequence of successive approximations (4) due to any initial function $u_{0}(X) \in$ $\in M(R)$ converges in the sense of the distance (7) to this solution. On the basis of relation (8) for any function $G_{0}(X) \in M(R)$ with the derivative $D^{n} G_{0}(X)=0$ in R Theorem 2 is proved.

In the following two theorems we shall generalize the Nagumo-Perron-van Kampen assumption of the paper [5] and use it to consider the convergence of successive approximations of the Darboux problem (1), (2). Before we pronounce this theorems let us define the space $\left(M^{*}(R), d_{2}\right)$.

Let the operator T be defined by the relation (10) and $T M(R)$ is the set of all the m ages of the set $M(R)$ under mapping T.

Let the symbol $\left(M^{*}(R), d_{2}\right)$ denote the complete metric space which we obtain by the completion of the metric space $\left(T M(R), d_{2}\right)$ in the sense of the distance

$$
\begin{equation*}
d_{2}(u, v)=\max _{\boldsymbol{R}}\left[\sum_{j=0}^{n-1}\left(\boldsymbol{I}^{j},\left|\mathbf{D}^{j} u-\mathbf{D}^{j} v\right|\right)\right] \tag{15}
\end{equation*}
$$

where $I^{j}=(1, \ldots, 1)$ denotes the unit vector with $\binom{n}{j}$ components for $j=1,2, \ldots$ $\ldots, n-1$ and $I^{0}=1$.

Then easy considerations lead to the following results:
If the sequence $\left\{u_{k}(X)\right\}_{1}^{\infty}$ of functions $u_{k}(X) \in M^{*}(R)$ converges in the distance (15) to a function $u(X) \in M^{*}(R)$, then this sequence and the sequence of the derivatives $\left\{D_{l_{1} \ldots l_{j}} u_{k}(X)\right\}_{k=1}^{\infty}$ converge in the sense of the distance $\left(8_{1}\right)$ for $j=1,2, \ldots, n-1$ and there is $\lim _{k \rightarrow \infty} d_{1}\left(u_{k}, u\right)=0, \lim _{k \rightarrow \infty} d_{1}\left(D_{l_{1} \ldots l_{j}} u_{k}, D_{l_{1} \ldots l_{j}} u\right)=0$. Conversely, the convergence of the sequence $\left\{u_{k}(X)\right\}_{k=1}^{\infty}$ and of the sequences of its derivatives $\left\{D_{l_{1} \ldots l_{j}} u_{k}(X)\right\}_{k=1}^{\infty}$ in the distance $\left(8_{1}\right)$ for $j=1,2, \ldots, n-1$ implies the convergence of the sequence $\left\{u_{k}(X)\right\}_{1}^{\infty}$ in the sense of the distance (15).

Theorem 3. Let the function $f\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)$ be defined and continuous on the domain E and let it satisfy the following assumptions:

$$
\begin{equation*}
\left|f\left(X, U^{0}, U^{1}, \ldots, U^{n-1}\right)\right| \leqq A\left(x_{1} \ldots x_{n}\right)^{p}, \quad p \geqq 0, \quad A>0 \tag{16}
\end{equation*}
$$

in E and

$$
\begin{align*}
& \left|f\left(X, U^{0}, U^{1}, \ldots, U^{n-1}\right)-f\left(X, V^{0}, V^{1}, \ldots, V^{n-1}\right)\right| \leqq \tag{17}\\
& \leqq \frac{C}{\left(x_{1} \ldots x_{n}\right)^{r}} \sum_{j=0}^{n-1}\left(F_{q}^{j},\left|U^{j}-V^{j}\right|^{q}\right), \quad q \geqq 1, \quad c>0
\end{align*}
$$

on E^{0} where $F_{q}^{j}=\left(f_{1 \ldots j}\left(x_{1} \ldots x_{j}\right)^{q}, \ldots, f_{l_{1} \ldots l_{j}}\left(x_{l_{1}} \ldots x_{l_{j}}\right)^{q}, \ldots, f_{n-j+1 \ldots, n}\left(x_{n-j+1} \ldots x_{n}\right)^{q}\right)$ denotes the vector with $\binom{n}{j}$ non-negative components $f_{l_{1} \ldots l_{j}}$ for $j=1,2, \ldots, n-1$, $F_{q}^{0}=f_{0} \geqq 0$ satisfying the condition

$$
\left(f_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} f_{l_{1} \ldots l_{j}}\right) C \frac{(2 A)^{q-1}}{(p+1)^{q}}<1
$$

where $q(1+p)-r=p$. At least one of the constants $f_{l_{1} \ldots l_{s},}, f_{0}$ is nonvanishing. Then there exists one and only one solution $u(X)$ of the Darboux problem (1), (2) and, moreover, the Picard's sequence of successive approximations (4), for arbitrary functions $u_{0}(X), G_{0}(X) \in M^{*}(R)$ such that $D^{n} G_{0}(X)=0$ in R converges uniformly in the domain R to this unique solution.

Proof. The proof will be given again by Theorem 1. First of all by (15) it is evident that $M^{*}(R) \subseteq M(R)$. Let us consider the metric space $Y=\left(M^{*}(R), d\right)$ with the distance

$$
\begin{equation*}
d(u, v)=\sup _{R^{\circ}} \frac{\sum_{j=0}^{n-1}\left(\boldsymbol{F}_{1}^{j},\left|\boldsymbol{D}^{j} u-D^{j} v\right|\right)}{\left(x_{1} \ldots x_{n}\right)^{p+1}} \tag{18}
\end{equation*}
$$

and the operator T defined by relation (10). Hence there is $T Y \subseteq Y$. The inequality

$$
\begin{equation*}
\max _{R} \sum_{j=0}^{n-1}\left(\boldsymbol{\zeta}^{j},\left|\mathbf{D}^{j} u-\mathbf{D}^{j} v\right|\right) \leqq d(u, v) \tag{19}
\end{equation*}
$$

is obtained similarly as that of Theorem $2 . \bar{S}^{j}=\left(\bar{s}_{1 \ldots j}, \ldots, \bar{s}_{l_{1}, \ldots l_{j}}, \ldots, \bar{s}_{n-j+1 \ldots n}\right)$ and $\overline{\mathbf{S}}^{0}=\bar{s}_{0}$ denote the vectors with $\binom{n}{j}$ constant components $\bar{s}_{l_{1} \ldots l_{j}}, \bar{s}_{0}$ for $j=$ $=1,2, \ldots, n-1$ at least one of which is non-vanishing. The constants $\bar{s}_{0}, \bar{s}_{l_{1} \ldots l_{j}}$ depend on $f_{l_{1} \ldots l_{j}}, f_{0}$ and $A_{i}, i=1,2, \ldots, n$. From relations (15), (19) there follows
that the d-convergence of the sequence $\left\{u_{k}(X)\right\}_{1}^{\infty}$ of functions $u_{k}(X) \in M^{*}(R)$ implies the d_{2}-convergence of this sequence.

Let now the sequence $\left\{u_{k}(X)\right\}_{1}^{\infty}$ be a d-Cauchy sequence, i.e. $\lim _{k, m \rightarrow \infty} d\left(u_{k}, u_{m}\right)=0$. Then this sequence converges to a function $u(X) \in M^{*}(R)$ in the metrics (15) and $\lim _{k \rightarrow \infty} u_{k}(X)=u(X), \lim _{k \rightarrow \infty} D_{l_{1} \ldots l_{j}} u_{k}(X)=D_{l_{1} \ldots l_{j}} u(X)$ for $j=1,2, \ldots, n-1$ in the domain R. Similar calculations to those of Theorem 2 lead us to the conclusion that $\lim _{k \rightarrow \infty} d\left(u_{k}, u\right)=0$. Consequently $Y=\left(M^{*}(R), d\right)$ is a generalized complete metric space.

Proof of condition 1°. Let $u(X), v(X)$ be arbitrary functions from Y with $d(u, v)<$ $<+\infty$. The completeness of the space Y and equations (10), (1010) together with the assumption (16) guarantee that

$$
\begin{gather*}
|u(X)-v(X)| \leqq \frac{2 A}{p+1}\left(x_{1} \ldots x_{n}\right)^{p+1}, \tag{20}\\
x_{l_{1}} \ldots x_{l_{l}}\left|D_{l_{1} \ldots l} u(X)-D_{l_{1} \ldots l_{j}} v(X)\right| \leqq \frac{2 A}{p+1}\left(x_{1} \ldots x_{n}\right)^{p+1}
\end{gather*}
$$

for $j=1,2, \ldots, n-1$ on the domain R. It follows by (17), (20) and the relation $M^{*}(R) \subseteq M(R)$ that

$$
\begin{gathered}
|T u(X)-T v(X)| \leqq C \int_{R} \frac{\sum_{j=0}^{n-1}\left(F_{q}^{j},\left|D^{j} u-D^{j} v\right|\right)}{\left(\xi_{1} \ldots \xi_{n}\right)^{r}} \mathrm{~d} \Xi \leqq \\
\leqq C\left(\frac{2 A}{p+1}\right)^{q-1} \int_{R} \frac{\sum_{j=0}^{n-1}\left(F_{1}^{j},\left|D^{j} u-D^{j} v\right|\right)}{\left(\xi_{1} \ldots \xi_{n}\right)^{p+1}}\left(\xi_{1} \ldots \xi_{n}\right)^{(p+1)(q-1)-r+p+1} \mathrm{~d} \Xi \leqq \\
\leqq C \frac{(2 A)^{q-1}}{(p+1)^{q}} d(u, v)\left(x_{1} \ldots x_{n}\right)^{p+1} .
\end{gathered}
$$

Similarly, it is possible to show that

$$
x_{l_{1}} \ldots x_{l_{j}}\left|D_{l_{1} \ldots l_{j}} T u-D_{l_{1} \ldots l_{j}} T v\right| \leqq C \frac{(2 A)^{q-1}}{(p+1)^{q}} d(u, v)\left(x_{1} \ldots x_{n}\right)^{p+1}
$$

for $j=1,2, \ldots, n-1$ in R^{0}. From the last inequalities we obtain

$$
d(T u, T v) \leqq\left(f_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} f_{l_{1} \ldots l_{j}}\right) C \frac{(2 A)^{q-1}}{(p+1)^{q}} d(u, v)
$$

This proves condition 1°.

The proofs of conditions 2° and 3° are trivial in this case, as the inequality

$$
d\left(u_{k}, u_{k+1}\right) \leqq\left(f_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} f_{l_{1} \ldots l_{j}}\right) \frac{2 A}{p+1}<+\infty, \quad k=1,2, \ldots
$$

is directly given for any Picard's sequence $\left\{u_{k}=T u_{k-1}\right\}_{k=1}^{\infty}$ due to an arbitrary initial function $u_{0}(X) \in Y$ by (14).

Remark. Assumption (16) of Theorem 3 guarantees the boundedness of the function $f\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)$ in the domain E. In the following theorem we shall show that the assumption of the boundedness is not necessary.

Theorem 4. Let the function $f\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, U^{n-1}\right)$ be continuous on E and let it satisfy the following conditions:

$$
\begin{equation*}
\left|f\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, U^{n-1}\right)\right| \leqq A(X)\left(x_{1} \ldots x_{n}\right)^{p}, \quad-1<p<0 \tag{21}
\end{equation*}
$$

in E^{0}. The function $A(X)$ is integrable on the domain R and in the $(n-j)$-dimensional domain $R_{l_{1} \ldots l_{j}}$ for any $\left(x_{l_{1}}, \ldots, x_{l_{j}}\right)$ with $0 \leqq x_{l_{k}} \leqq A_{k}$ where $k=1,2, \ldots, j$ and $j=1,2, \ldots, n-1$. Moreover, the inequalities $0 \leqq A(X) \leqq A_{0}, A(X) \leqq$ $\leqq A_{0}\left(x_{l_{1}} \ldots x_{l_{j}}\right)^{-p}, A_{0}>0$ are fulfilled for $j=1,2, \ldots, n-1$ on R. Let, further, the inequality

$$
\begin{align*}
& \left|f\left(X, U^{0}, U^{1}, \ldots, U^{n-1}\right)-f\left(X, V^{0}, V^{1}, \ldots, V^{n-1}\right)\right| \leqq \tag{22}\\
& \quad \leqq \frac{C(X)}{\left(x_{1} \ldots x_{n}\right)^{r}} \sum_{j=0}^{n-1}\left(H_{p, q}^{j},\left|U^{j}-V^{j}\right| q\right), \quad q \geqq 1
\end{align*}
$$

hold in E^{0}. The function $C(X)$ is also integrable on R and on $R_{l_{1} \ldots l_{j}}$ for any $\left(x_{l_{1}}, \ldots\right.$ $\ldots, x_{l_{j}}$) with $0 \leqq x_{l_{k}} \leqq A_{k}$ where $k=1,2, \ldots, j$ and $j=1,2, \ldots, n-1$, moreover the inequalities $0 \leqq C(X) \leqq C_{0}, C(X) \leqq C_{l_{1} \ldots l_{j}}\left(x_{l_{1}} \ldots x_{l_{j}}\right)^{-p}$ for $j=1,2, \ldots, n-1$ hold where $C_{0}, C_{l_{1} \ldots, l^{\prime}}$ are positive constants. $H_{p, q}^{0}=h_{0}$ and for $j=1,2, \ldots, n-1$

$$
\begin{gathered}
H_{p, q}^{j}=\left(h_{1 \ldots j}\left(x_{1} \ldots x_{j}\right)^{q(p+1)}, \ldots, h_{l_{1} \ldots l_{l}}\left(x_{l_{1}} \ldots x_{l_{j}}\right)^{q(p+1)}, \ldots\right. \\
\left.\ldots, h_{n-j+1}\left(x_{n-j+1} \ldots x_{n}\right)^{q(p+1)}\right)
\end{gathered}
$$

denote the vectors with $\binom{n}{j}$ non-negative components $h_{0}, h_{l_{1}, \ldots l_{j}}$ at least one of which
is non-vanishing. is non-vanishing.

If furthermore we suppose that $q(p+1)-r=p$ and

$$
\left[C_{0} h_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}}(p+1)^{j} C_{l_{1} \ldots l_{j}} h_{l_{1} \ldots l_{j}}\right] \frac{\left(2 A_{0}\right)^{q-1}}{(p+1)^{n q}}<1
$$

then there exists one and only one solution of the Darboux problem (1), (2) and the Picard's sequence of successive approximations (4), for arbitrary functions $u_{0}(X)$, $G_{0}(X) \in M^{*}(R)$ with $D^{n} G_{0}(X)=0$ in R, uniformly converges in the domain R to this unique solution.

Proof. Analogously to Theorem 3 it can be shown that the metric space $Y=$ $=\left(M^{*}(R), d\right)$ on which the distance

$$
\begin{equation*}
d(u, v)=\sup _{R^{\cdot}} \frac{\sum_{j=0}^{n-1}\left(H_{p, 1}^{j},\left|D^{j} u-D^{j} v\right|\right)}{\left(x_{1} \ldots x_{n}\right)^{p+1}} \tag{23}
\end{equation*}
$$

is defined, forms the complete generalized metric space. The operator T defined by relation (10) maps the space Y into itself. Then we obtain from (10), $\left(10_{1}\right)$ and from assumption (21) for arbitrary $u, v \in Y$ with $d(u, v)<+\infty$ the inequalities

$$
\begin{gather*}
|u(X)-v(X)| \leqq 2 \int_{R} A(\Xi)\left(\xi_{1} \ldots \xi_{n}\right)^{p} \mathrm{~d} \Xi \leqq \frac{2 A_{0}}{(p+1)^{n}}\left(\xi_{1} \ldots \xi_{n}\right)^{p+1} \tag{24}\\
\left(x_{l_{1}} \ldots x_{l_{j}}\right)^{p+1}\left|D_{l_{1} \ldots l_{j}} u(X)-D_{l_{1} \ldots l_{j}} v(X)\right| \leqq \\
\leqq 2\left(x_{l_{1}} \ldots x_{l_{j}}\right)^{p+1} \int_{R_{l_{1} \ldots l_{j}}} A\left(\Xi_{l_{1} \ldots l_{j}}^{x}\right)\left(\xi_{1} \ldots \xi_{l_{j-1}} x_{l_{j}} \xi_{l_{j}+1} \ldots \xi_{n}\right)^{p} \mathrm{~d} \Xi_{l_{1} \ldots l_{j}} \leqq \\
\leqq \frac{2 A_{0}}{(p+1)^{n}}\left(x_{1} \ldots x_{n}\right)^{p+1}
\end{gather*}
$$

in R^{0}. On the basis of assumption (22) and of inequalities (24) we get the following estimates

$$
\begin{gathered}
|T u-T v| \leqq \int_{R} \frac{C(\Xi) \sum_{j=0}^{n-1}\left(H_{p, q}^{j},\left|D^{j} u-D^{j} v\right|\right)}{\left(\xi_{1} \ldots \xi n\right)^{r}} \mathrm{~d} \Xi \leqq \\
\leqq\left[\frac{2 A_{0}}{(p+1)^{n}}\right]^{q-1} \int_{R} \frac{C(\Xi)_{j=0}^{n-1}\left(H_{p, 1}^{j},\left|D^{j} u-D^{j} v\right|\right)}{\left(\xi_{1} \ldots \xi_{n}\right)^{p+1}}\left(\xi_{1} \ldots \xi_{n}\right)^{(p+1)(q-1)-r+p+1} \mathrm{~d} \Xi \leqq \\
\leqq \frac{\left(2 A_{0}\right)^{q-1}}{(p+1)^{n q}} C_{0} d(u, v)\left(x_{1} \ldots x_{n}\right)^{p+1},\left(x_{\left.l_{1} \ldots x_{l_{j}}\right)^{p+1}\left|D_{l_{1} \ldots l_{j}} T u-D_{l_{1} \ldots l_{j}} T v\right| \leqq}\right. \\
\leqq \frac{\left(2 A_{0}\right)^{q-1}}{(p+1)^{n q}} C_{l_{1} \ldots l_{j}}(p+1)^{j} d(u, v)\left(x_{1} \ldots x_{n}\right)^{p+1}
\end{gathered}
$$

for $X \in R^{0}$. Hence there follows that $d(T u, T v) \leqq \lambda d(u, v)$ where

$$
\lambda=\left[C_{0} h_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}}(p+1)^{j} C_{l_{1} \ldots l_{j}} h_{l_{1} \ldots l_{j}}\right] \frac{\left(2 A_{0}\right)^{q-1}}{(p+1)^{n q}}
$$

We shall obtain the required estimate for the proofs of conditions $2^{\circ}, 3^{\circ}$ directly by (24). Thereby Theorem 4 is proved.
5. Systems of differential equations. The results of the preceding Theorems 2, 3, 4 can be applied to certain systems of hyperbolic partial differential equations.

First of all we introduce some new notation and assumptions again.

1. We shall consider the sets $E_{1}=R \times \prod_{i=1}^{s_{1}}\left\{-\infty<z_{i}<+\infty\right\}, E_{1}^{0}=R^{0} \times$ $\times \prod_{i=1}^{s_{1}}\left\{-\infty<z_{i}<+\infty\right\}$ where $s_{1}=m+m\binom{n}{1}+\ldots+m\binom{n}{n-1}=m\left(2^{n}-1\right)$ and $m \geqq 1$ denotes an integer. Further, let us denote $\Delta=\bigcup_{i=1}^{n} \delta_{i}$ where $\delta_{i}=\{X: X \in$ $\left.\in R, x_{i}=0\right\}$ for $i=1,2, \ldots, n$.
2. Let the norm of the vector $\mathbf{B}=\left(b_{1}, \ldots, b_{\boldsymbol{t}}\right)$ be defined by equation

$$
\|\boldsymbol{B}\|=\sum_{j=1}^{t}\left|b_{j}\right| .
$$

3. Let a)
denote an arbitrary matrix of the type $\frac{1}{m}\binom{n}{j}$ for $j=1,2, \ldots, n-1$ and $\mathbf{U}^{0}=$ $=\left(u_{0}^{1}, \ldots, u_{0}^{m}\right)$. The symbol $\boldsymbol{U}_{l_{1} \ldots l_{j}}$ denotes the vector $\left(u_{i_{1} \ldots I_{j}}^{1}, \ldots, u_{l_{1} \ldots l_{j}}^{m}\right)$ and $\mathbf{U}_{0}=\mathbf{U}^{0}$.

Let us denote the vector $\left(\left\|\mathbf{U}_{1 \ldots j}\right\|^{\gamma}, \ldots,\left\|\boldsymbol{U}_{l_{1} \ldots l_{j}}\right\|^{\gamma}, \ldots,\left\|\boldsymbol{U}_{n-j+1 \ldots . .}\right\|^{\gamma}\right)$ for $j=0,1, \ldots$ $\ldots, n-1$ and a real number γ by $\left\|\mathbf{U}^{j}\right\|^{\nu}$.
b) $\mathbf{U}(X)=\left(u^{1}(X), \ldots, u^{m}(X)\right)$ let be a sufficiently regular vector function in the domain R. Then, let us denote
4. We shall suppose that the vector function

$$
\mathfrak{F}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)=\left(f_{1}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right), \ldots, f_{m}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)\right)
$$

of $n+s_{1}$ variables is continuous in E_{1}.
5. Let us assame that the vector function $\Phi(X)=\left(\Phi^{1}(X), \ldots, \Phi^{m}(X)\right)$ is defined and continuous in the domain Δ and it has continuous derivatives $D_{t_{1} \ldots l_{j}} \Phi(X)$ of the j-th order in any domain $\delta_{i}, i=1,2, \ldots, n$ for $j=1,2, \ldots, n-1$ and that $D^{n} \boldsymbol{\Phi}(X)=0=(0, \ldots, 0)$ on R.
6. Further, let $M_{1}(R)$ denote the set of the vector functions $Z(X)=\left(Z_{1}(X), \ldots\right.$ $\left.Z_{m}(X)\right) \in C(R)$ with the following properties:
a) The derivatives $D_{l_{1} \ldots l_{j}} Z$ are continuous in the domain R for $j=1,2, \ldots, n-1$.
b) $Z(X)=\Phi(X)$ for $X \in \Delta$.

We are now able to formulate the Darboux problem and the concept of its solution.
We shall understand by the solution of the Darboux problem

$$
\mathbf{D}^{n} \mathbf{U}=\boldsymbol{F}\left(X, \mathbf{U}, \mathbf{D}^{1} \mathbf{U}, \ldots, \mathbf{D}^{\boldsymbol{n}-1} \mathbf{U}\right)
$$

$$
U(X)=\Phi(X) \text { for } X \in \Delta
$$

any function $U(X) \in M_{1}(R)$ which has the continuous derivative $D^{n} U$ on R and satisfies equation (1^{\prime}) in R.

The Darboux problem (1^{\prime}), (2^{\prime}) is equivalent to solving the system of integrodifferential equations

$$
U(X)=\Phi_{0}(X)+\int_{R} F\left(\Xi, U, D^{1} U, \ldots, D^{n-1} U\right) d \Xi
$$

where $\Phi_{0}(X)=\Phi\left(0, x_{2}, \ldots, x_{n}\right)+\Phi\left(x_{1}, \ldots, x_{n-1}, 0\right)-\left[\Phi\left(0,0, x_{3}, \ldots, x_{n}\right)+\ldots\right.$ $\left.\ldots+\Phi\left(x_{1}, \ldots, x_{n-2}, 0,0\right)\right]+\ldots+(-1)^{n-1} \Phi(0, \ldots, 0)$.

Then, the Picard's sequence of successive approximations $\left\{\boldsymbol{U}_{k}\right\}_{1}^{\infty}$ shall be defined by the equation

$$
U_{k}(X)=\Phi_{0}(X)+\int_{R} F\left(\Xi, U_{k-1}, D^{1} U_{k-1}, \ldots, D^{n-1} U_{k-1}\right) \mathrm{d} \Xi
$$

for any function $U_{0} \in M_{i}^{-}(R)$ and $k=1,2, \ldots$
Now let us state the following theorems:

Theorem 5. Let the vector function $\mathbf{F}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)$ be defined, continuous and bounded in the domain E_{1} and let it satisfy the conditions:

$$
\begin{gather*}
\left\|\boldsymbol{F}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)-\boldsymbol{F}\left(X, \mathbf{V}^{0}, \mathbf{V}^{1}, \ldots, \mathbf{V}^{n-1}\right)\right\| \leqq \\
\leqq \frac{L}{x_{1} \ldots x_{n}} \sum_{j=0}^{n-1}\left(\mathbf{P}^{j},\left\|\mathbf{U}^{j}-\mathbf{V}^{j}\right\|\right), L>0, \\
\left\|\boldsymbol{F}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)-\boldsymbol{F}\left(X, \mathbf{V}^{0}, \mathbf{V}^{1}, \ldots, \mathbf{V}^{n-1}\right)\right\| \leqq \\
\leqq \frac{C}{x_{1}^{\beta} \ldots x_{n}^{\beta}} \sum_{j=0}^{n-1}\left(\mathbf{Q}^{j},\left\|\mathbf{U}^{j}-\mathbf{V}^{j}\right\|^{\alpha}\right), \quad C>0
\end{gather*}
$$

where $\mathbf{P}^{j}, \mathbf{Q}^{j}$ denote the vectors from Theorem 2, in E_{1}^{0}. If the inequalities $0<\alpha<1$, $L(1-\alpha)^{n}<(1-\beta)^{n},\left(p_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} p_{l_{1} \ldots l_{j}}\right)^{n} L(1-\alpha)^{n}<(1-\beta)^{n}$ hold, then $\beta<\alpha$, there exists one and only one solution of the Darboux problem (1^{\prime}), (2^{\prime}) and the Picard's sequence of successive approximations (4') converges in the sense of the norm \|\| defined above to this unique solution for any initial function $U_{0}(X) \in$ $\in M_{1}(R)$ on R.

If we choose the generalized metric space $Y=\left(M_{1}(R), d\right)$ with the metrics

$$
d(U, V)=\sup _{R^{\cdot}} \frac{\sum_{j=0}^{n-1}\left(P^{j},\left\|D^{j} U-D^{j} V\right\|\right)}{\left(x_{1} \ldots x_{n}\right)^{p^{n} \sqrt{ }}}
$$

where p fulfils the same conditions as in Theorem 1 , then the proof of this theorem should proceed similarly with the proof of Theorem 2.

Let $T M_{1}(R)$ denote the set of all the images of the set $M_{1}(R)$ in the mapping

$$
T U(X)=\Phi_{0}(X)+\int_{R} F\left(\Xi, U, D^{1} U, \ldots, D^{n-1} U\right) \mathrm{d} \Xi
$$

If we denote the complete metric space which was obtained by the completion of the metric space $\left(T M_{1}(R), d_{3}\right)$ in the sense of the distance

$$
d_{3}(\mathbf{U}, \mathbf{V})=\max _{R} \sum_{j=0}^{n-1}\left(\boldsymbol{I}^{j},\left\|\mathbf{D}^{j} \mathbf{U}-\mathbf{D}^{j} \mathbf{V}\right\|\right)
$$

by $\left(M_{1}^{*}(R), d_{3}\right)$, then the following theorems hold:
Theorem 6. Let the vector function $\mathbf{F}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)$ be defined and continuous in the domain E_{1} and let it satisfy the assumptions

$$
\left\|\boldsymbol{F}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)\right\| \leqq A\left(x_{1} \ldots x_{n}\right)^{p}, \quad p \geqq 0, \quad A>0
$$

in E_{1} and

$$
\begin{align*}
& \left\|F\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)-F\left(X, \mathbf{V}^{0}, \mathbf{V}^{1}, \ldots, \mathbf{V}^{n-1}\right)\right\| \leqq \\
& \leqq \frac{C}{\left(x_{1} \ldots x_{n}\right)^{r}} \sum_{j=0}^{n-1}\left(F_{q}^{j},\left\|\mathbf{U}^{j}-\mathbf{V}^{j}\right\|^{q}\right), \quad q \geqq 1, \quad C>0
\end{align*}
$$

in E_{1}^{0} where F_{q}^{j} denotes the vector from Theorem 3. If the conditions $q(1+p)-$ $-r=p$

$$
\left(f_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}} f_{l_{1} \ldots l_{j}}\right) C \frac{(2 A)^{q-1}}{(p+1)^{q}}<1
$$

are fulfilled, then there exists one and only one solution $\mathbf{U}(X)$ of the Darboux problem (1'), (2') and furthermore the Picard's sequence of successive approximations (4') for any initial function $U_{0}(X) \in M_{1}^{*}(R)$ converges in the sense of the norm $\|\|$ to this unique solution on R.

Theorem 7. Let the vector function $\mathbf{F}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)$ be continuous in E_{1} and in the domain E_{1}^{0} let is satisfy the conditions

$$
\left\|\boldsymbol{F}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)\right\| \leqq A(X)\left(x_{1} \ldots x_{n}\right)^{p}, \quad-1<p<0
$$

where the scalar function $A(X)$ is integrable in the domains $R, R_{l_{1} \ldots l_{j}}$ and, moreover, it fulfils the inequalities $0 \leqq A(X) \leqq A_{0}, A(X) \leqq A_{0}\left(x_{l_{1}} \ldots x_{l_{j}}\right)^{-p}, A_{0}>0$ for $j=1,2, \ldots, n-1$ in E_{1}.

$$
\begin{gather*}
\left\|\boldsymbol{F}\left(X, \mathbf{U}^{0}, \mathbf{U}^{1}, \ldots, \mathbf{U}^{n-1}\right)-\boldsymbol{F}\left(X, \mathbf{V}^{0}, \mathbf{V}^{1}, \ldots, \mathbf{V}^{n-1}\right)\right\| \leqq \\
\leqq \frac{C(X)}{\left(x_{1} \ldots x_{n}\right)^{r}} \sum_{j=0}^{n-1}\left(\boldsymbol{H}_{p, q}^{j},\left\|\mathbf{U}^{j}-\mathbf{V}^{j}\right\|^{q}\right), \quad q \geqq 1
\end{gather*}
$$

where $H_{p, q}^{j}$ denotes as defined the vector as in Theorem 4. The scalar function $C(X)$ is integrable in R and $R_{l_{1} \ldots l_{s}}$ for $j=1,2, \ldots, n-1$. Moreover, let it fulfil the inequalities $0 \leqq C(X) \leqq C_{0}, C(X) \leqq C_{l_{1} \ldots l_{j}}\left(x_{l_{1}} \ldots x_{l_{j}}\right)^{-p}$ where $C_{0}, C_{l_{1} \ldots l_{j}}$ are positive constants for $j=1,2, \ldots, n-1$ in R. Further, if

$$
\left[C_{0} h_{0}+\sum_{j=1}^{n-1} \sum_{l_{1}, \ldots, l_{j}}(p+1)^{j} C_{l_{1} \ldots l_{j}} h_{l_{1} \ldots l_{j}}\right] \frac{\left(2 A_{0}\right)^{q-1}}{(p+1)^{n q}}<1
$$

and $q(p+1)-r=p$, then there exists one and only one solution of the Darboux problem (1'), (2') and the Picard's sequence of successive approximations by (4') for any initial function $U_{0}(X) \in M_{1}^{*}(R)$ converges in the sense of the norm \|\|to this unique solution on R.

We omit the proofs of Theorems 6,7 because if we choose a suitable metrics on $M_{1}^{*}(R)$ they would proceed similarly to the proofs of Theorems 3 and 4.

Remark. In Theorems 5, 6, 7 an arbitrary norm $\|B\|_{1}$ which is equivalent to the $\operatorname{norm}\|\boldsymbol{B}\|=\sum_{j=1}^{t}\left|b_{j}\right|$ (in the sense of convergence) can be taken instead of the norm $\|\boldsymbol{B}\|$.

References

[1] W. Walter: Eindeutigkeitssätze für gewöhnliche, parabolische, und hyperbolische Differentialgleichungen, Math. Zeitschrift 74 (3) (1960), pp. 191-209.
[2] M. Kwapisz, B. Palczewski et W. Pawelski: Sur l'unicité des solutions de certaines équations différentielles du type $u_{x y z}=f\left(x, y, z, u, u_{x}, u_{y}, u_{z}, u_{x y}, u_{x z}, u_{y z}\right)$, Ann. Polon. Math. 11 (1961), pp. 75-106.
[3] B. Palczewski: On the uniqueness of solutions and the convergence of successive approximations in the Darboux problem under the conditions of the Krasnosielski and Krein type, Ann. Polon. Math. 14 (1964), pp. 183-190.
[4] J. S. W. Wong: On the convergence of successive approximations in the Darboux problem, Ann. Polon. Math. 17 (1966), pp. 329-336.
[5] E. R. van Kampen: Notes on systems of ordinary differential equations, American Journal of Math. 63 (1941), pp. 371-376.
[6] W. A. J. Luxemburg: On the convergence of successive approximations in the theory of ordinary differential equations II, Indag. Math. 20 (1958), pp. 540-546.

Author's address: Bratislava, Śmeralova 2/b (Katedra matematickej analýzy PvFUK).

