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Časopis pro pěstování matematiky, roč.92 (1967), Praha 

HASSE'S OPERATOR AND DIRECTED GRAPHS 

BOHDAN ZELINKA, Liberec 

(Received January 31, 1966) 

In [1] the following problem by K. CULIK is given: 

The graphs considered are sets together with a binary relation which is defined 
in them. If M is a set and a cz M x M, then Ta denotes the transitive closure of a. 
Further we define Ha = {(u9 v) e a; there is no directed path (wl9..., wk) in [M, <r] 
such that k _• 3 and wt = w, wk = v}. If (wi9..., wk) is a path in [M, <r], then 
(wi9 w i + 1) e a for i = 1, 2,..., k — 1. We speak about the transitive closure operator 
T and Hasse's operator H. A partially ordered set is a graph [M, g], where Q C 
cz M x M is an asymmetric and transitive relation (i.e. it is also irreflexive). 

If M is a finite set9 then THQ = Q and [M, HQJ is said to be the Hasse's graph of 
the partially ordered set [M, g] (this is closely related to the wMl~known Hasse 
diagram of [M, Q]9 see [2]). 2/ M is an infinite set, the equality THQ = Q is not 
valid in general, but it always holds that THQ CZ Q. Thus, if we put x > y instead of 
(x, y) eQ9 we can define [M, Q~\ as follows: xteM for i = 0,1, 2,...; xx > x2 > 
> ... > xt > ... and xt > x0 for all i = 1, 2,... In this case THQ 4= Q. On the 
other hand, if we add a new vertex w to M and define ux > w for all i = 1, 2,..., 
but w > u09 then for this new partially ordered set [M', #'] we have THQ' = Q'. 

a) Find necessary and sufficient conditions concerning Qfor THQ = Q9 if [M, Q\ 
is an infinite partially ordered set. IfM = V00 and Q = TC%(Vm

9 C-operator and % 
are defined in [3]), then Q is transitive, but need not be asymmetric. 

b) Is it always true that TC% = THTC%?If not, what are necessary and sufficient 
conditions concerning 91 that this equality holds? 

Remark. The vertices wi9 ...9wk need not be all different. 
Here we shall give a solution of the problem a) and a partial solution of the 

problem b)« 
Before turning to the solution of the problem we shall define some concepts. If 

a partially ordered set [M, Q\ is given, then N cz M is a maximal chain of the set 
[M, <?], if N is a chain (a totally ordered set) in the ordering induced by the ordering 
of the set M and there does not exist any subset of M which would contain N as 
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a proper subset and would be a chain. If a, b are two elements of a partially ordered 
set [M, Q] and (a, b) e #, then the closed interval <a, b> is by definition a set con
sisting of the elements a and b and all elements x for which simultaneously (a, x) € g 
and (x, b) e Q holds. 

From the above considerations it follows that we shall have to deal with directed 
graphs which do not contain multiple edges, but may contain loops. 

Theorem 1. Let [M, #] be an infinite partially ordered set. The equality THQ = Q 
holds if and only if for each two elements a, b of the set M such that (a, b)eQ 
there exists a finite maximal chain of the interval <a, b>. 

Proof. Let the condition be fulfilled. Let a, b be arbitrary two elements of M for 
which (a, b) e # holds. Therefore, there exists a finite maximal chain N = {a = 
=- Xj, x2 , . . . , xm =s b} df the interval <a, b> so that (xf, Xj) e Q for 1 ^ i < j ^ m. 
As N is a maximal chain of the interval <a, b>, for no i = 1,..., m — 1 there exists 
y eM'such that (xi? y)€Q9 (y9 xi+i)€Q. In such a case {x l9..., xf, y9 x i + 1 , . . . , xm} 
would be a chain which would be a subset of <a, b> and contain N as a proper 
subset. Thus, (xi9 x i+1) e HQ for all i = 1,..., m — 1. If we now apply the transitive 
closure operator, we get (a, b) = (xi9 xm) e THQ. As we have chosen a and b quite 
arbitrarily, we have proved that Q CZ THQ and therefore Q = THQ (because we know 
that the inverse inclusion holds). 

Now let Q = THQ hold. Let us have two elements a, b of M such that (a, b) e Q; 
therefore also (a, b) e T#g. According to the definition of the transitive closure 
operator there exists a finite subset N = {xi9..., xm} of the set M such that a = x t, 
& ** *»» (*!> x.+i) e #£ for i = 1,..., m — 1. This set is a maximal chain of the 
interval <a, b>. Actually, if a set N' existed which would contain N as a proper 
subset and would be a chain, then there would exist an element y such that (xi9 y) e 
€ Q, (y9

 xi+%) € Q for some i. Then there would exist a path consisting of the vertices 
wx = xt9 w2 = y, w3 -a x i + 1 and thus (xi9 x i+1) ^ #g; in such a manner we obtain 
a contradiction. 

We shall now generalize Theorem 1. 

Theorem 2. Le* <r be a relation on the set M. The equality THTo = Ta holds if 
and only if the graph [M, <r] is acyclic and for its transitive closure [M, Taj the 
condition of Theorem 1 holds. 

Proof. If [M, cr] is acyclic, its transitive closure [M, T<r] is a partially ordered 
sit and wi can apply Theorem 1. Thus, let us suppose that there exists at least one 
directed circuit D in [M, cr]; let its vertices be ai9..., ak and let (ai9 a i+1) 6 a for 
I m % .,;, fe ~- 1 and (ak9 a t) € <r hold(Fig. 1). Then evidently for arbitrary i9j from 
the numbed i,. . . , fc we have (ai9 aj) e Ta9 because a directed path from af to ay 

Mit i which is a Wbgraph of the circuit D. The subgraph of the graph [M, To] 
generated by ttie Vertices ai9..., ak is therefore a complete directed graph. Further, 
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for arbitrary i, j from the numbers 1,..., fc we have (ai9 aj)$ HTa; for arbitrary I 
from the numbers 1,..., fc particularly (ai9 a,) € Ta9 (al9 ak)e Ta9 i.e. there exists 
a directed path with the vertices wA = ai9 w2 -*- al9 w3 = a;. The subgraph of the 
graph [M, HTa] generated by the vertices al9..., ak is therefore a graph without 
edges. If (ai9 aj) e THTa held for some i9j from the numbers 1,..., fc, this would 

Пl.ę] 
в<, 

t/itffV [M.THГç] 

V '*, 

tт. «; ч 
Fig. 1. 

mean that there exist elements bl9..., bm of M such that (af, fe^ 6 flT<7, (fem, a )̂ e 
€ HTa and (fe,., few+i) e HTa for n = 1,..., m - 1. Let p be the least positive integer 
such that the element bp is equal to some of the elements al9..., ak. Thus, bp = a€ 

for some q9 1 g q ^ fc, and none of the elements fet,..., fep_t is equal to any of the 
elements al9..., ak. Without loss of generality let q > i. The elements al9..., ai9 

bi9..., bp„l9 aq9..., ak therefore form a directed circuit in [M, <r] (as HTa c a), 
so that the subgraph of the graph [M, HTa] generated 
by them will be without edges, which leads to a con
tradiction. Consequently, also the subgraph of the 
graph [M, THTa] generated by the vertices al9..., ak 

is without edges. That is why THTa 4= Ta. 
About the graph [V00, C9t] we shall give only a few 

remarks. At first we shall give definitions. V is a finite 
set called the alphabet, V*3 is the set of all words on 
this alphabet. 91 is a certain finite relation on V00 and 
its elements are called rules. C9t is a relation consisting 
of all pairs (xay9 xby)9 where (a, fe) € 91 and x9y are 
arbitrary words from V00 (they may be empty). 

The necessary condition for THTCVt = TC9t is 
that [F00, C91] is acyclic. We can prove that this con
dition is not sufficient. Let us have V -= {a, fe}* 
91 = {(a, aa), (a, fe), (fefe, fe)}. Then (a,fe)eTC9t 
but (a, fe) # HTC% because the directed path with 
the vertices wt -= a, w2 = aa9 w3 =- afe, w4 =- fefe, w$ -» fe exists. However, at 
every inference of b from a we must apply the rule (a, fe) € 91 as other two rules 
would not suffice. If we have an arbitrary directed path with the vertices a' «• cl9... 

шшf 
Fig. 2. 
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\..9ck -* f>» where (ci9ci+i)eCyi for f * 1,..., fc - 1, we have c% = xay9 ci+i = 
- *&y for some I; therefore, (c„ ci+i) # HTC5R, as also (a, 5) # HTC91. Thus, there 
does ndt exist a path a - di9..., d( = fe such that we had (df, di+i) GHTCM for 
eaehi**- l f . . . , I - l(Fig. 2). 

An open problem remains, what is the necessary and sufficient condition for 9t 
under which the graph [V00, C9t] might be acyclic and the graph [V00, TC9t] might 
fulfill the condition of Theorem 1. 
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Výtah 

HASSEŮV OPERÁTOR A ORIENTOVANÉ GRAFY 

BOHDAN ZELINKA, Liberec 

V článku se zkoumá orientovaný graf [M, o] jako množina M s binární relací o. 
Uvažují se dva operátory, operátor transitivního uzávěru T a Hasseův operátor H9 

který je definován takto: platí Her = {(w, v) e o; neexistuje orientovaný tah (wi9... 
..., wk) v [M, o] takový, že k i> 3 a wt == u9 wk = v}. Dokazují se dvě věty, které 
jsou částečným řešením problému K. Čulíka. 

Věta 1. Budíš [M, er] nekonečná částečně uspořádaná množina. Platí THq =- Q 
právě tehdy9 existuje-U ke každým dvěma prvkům a9 b množiny M9 pro něž(a9 b) e Q9 

konečný maximální řetěz$c9 který Je podmnožinou intervalu <a, fc>. 

Věta 2* Budiž & reíace na množině M. Rovnost THT& -* Tcr platí právě tehdy9 

jmtlíše §w§ [M» é\ je acyklický a pro jeho transitivní uzávěr [M, To"] platí pod
mínka Mpěiy L ! 

Zátirem §e výsledky aplikují na matematickou lingvistiku. 
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Резюме 

ОПЕРАТОР ХАССЕ И НАПРАВЛЕННЫЕ ГРАФЫ 

БОГДАН ЗЕЛИНКА (ВоЫап 2еИпка), Либерец 

В статье исследуется направленный граф [М, <т] как множество М с бинарным 
отношением <т. Рассматриваются два оператора — оператор транзитивного 
замыкания Т и оператор Хассе Я, который определен следующим способом: 
справедливо На = {(и,у)б(г; не существует направленного пути (\уи..., и>л) 
в [М, о"] такого, что к — 3 и м1 = и, мк = V}. Доказываются две теоремы, кото
рые служат частичным решением проблемы К. Чулика. 

Теорема 1. Пусть [М, #] — бесконечное частично упорядоченное множество. 
Справедливо ТЩ = ^ тогда и только тогда, если для всяких двух элементов а, Ъ 
множества М, для которых (а9 Ь) е ^9 существует конечная максимальная 
цепь, которая является подмножеством интервала <#, &>. 

Теорема 2. Пусть о — отношение на множестве М. Равенство ТНТа = Та 
имеет место тогда и только тогда, когда граф [М, а] ациклический и для его 
транзитивного замыкания [М, То] выполнено условие из теоремы 1. 

В конце статьи применяются результаты к математической лингвистике. 
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