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Časopis pro pěstování matematiky, roč. 102 (1977), Praha 

NOTE ON VOLTERRA-STIELTJES INTEGRAL EQUATIONS 

ŠTEFAN SCHWABIK, Praha 

(Received May 6, 1976) 

This note is a supplement to the paper [2] which is devoted to the Volterra-Stieltjes 
integral equation in the space -BV„[0, l] of n-vector functions of bounded variation 
on the interval [0, 1]. 

Assume that K(t, s) is an n x n-matrix valued function defined on the square 
[0, 1] x [0, 1] = J such that 
(1) v(K) < oo 
and 
(2) var0 K(0, •) < oo 

where v(K) denotes the twodimensional Vitali variation of K on the square J and 
var0 K(0, •) is the variation, of K(0, s) in the second variable on the interval [0, 1]. 
The notions of variation are defined in the usual way by the norm in the space L{R„) 
of all n x n-matrices which is the operator norm for linear operators on Rn 

(see [1], [2], [3]). 
In [2], Theorem 3.1 asserts the following: 
If K : J -> L(Rv) satisfies (1), (2) and for any t e (0, 1] the inverse matrix 

[I — (K(t, t) — K(t, t—))]_1 exists then the homogeneous Volterra-Stieltjes integral 
equation 

(3) x(.) - f d.[K(r, s)] x(s) = 0 

possesses only the trivial solution x = 0 in £Vn[0,1]. 
This states that the condition 

(4) I - (K(t, t) - K(t, *-)) is a regular matrix for all t e (0,1] 

is sufficient for the equation (3) to have only the trivial solution x = Oe BVn. Our 
aim is to prove that (4) is also a necessary condition for the equation (3) to have this 
property. 

Note that the limit lim K(r, T) = K(t, t~) exists since (1) and (2) hold (see [l]). 
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1. Theorem. If K: J -> L(Rn) satisfies (1) and (2) then the homogeneous Volterra-
Stieltjes integral equation (3) has only the trivial solution x = 0 in BVn if and 
only if the condition (4) is satisfied. 

Proof. The sufficiency of (4) is stated in the above quoted theorem from [2]. 
It remains to prove the necessity. We show in the sequel that if (4) is not satisfied 
then (3) has a nonzero solution in the space BVn. 

It was shown in [2] that for the operator 

x є 

we have 

BVa^!'dlK(t,s)-]x(s)eBVn 

(5) ' f d,[K(r, s)] x(s) = Cds[K\t, s)] x(s) 
Jo Jo 

where 
(6) KA(t, s) = K(t, s) - K(t, 0) if 0 ^ s ^ t = 1 , 

KA(t, s) = K(t, t) - K(t, 0) = KA(t, t) if 0 = t < s = 1 . 

For the new "triangular" kernel KA we have varj KA(0, •) < oo, v(KA) < oo, 
KA(t, 0) = 0 for t e [0, 1] if (1) and (2) is satisfied for the kernel K. Hence the equation 
(3) can be written in the Fredholm-Stieltjes form 

«(.)- Ґd5[Kл(t)S)]x(s) = 0, 

Since (1) and (2) hold we have varj H < oo for the matrix valued function 
H: [0,1] -* L(Rn) defined by the relations 

H(t) = K(t, t) - K(t, *-) for t G (0,1] , H(0) = 0 

and there exists a sequence {ti}?=1, ^e(0, l] such that H(t) = 0 for te[0, 1], 
00 

t =)= ti9 i = 1, 2,... (see Lemma 3.1 in [2]). Hence £ ||H(r.;)|| < oo because varj H = 

= 2 £ ||H(r,-)|j + ||H(1)|L This implies that \\H(t)\\ < \ for re [0,1] except for 
t.e(0,l) 

a finite set of points in (0, 1). Hence the matrix / — H(t) can be singular only at 
a finite set of points Th i = 1,..., k9 0 < Tt < T2 < ... < Tk ^ 1. 

Let us assume that the condition (4) is not satisfied. Then by the facts shown above 
there is a point 7\ e (0, 1] such that I - H(t) = / - (K(t, t) - K(t, t-)) is a regular 
matrix for t e [0, Tx) but I - H(rA) = / - {K(Tl9 Tx) - K(Tl9 Tx -)) is not regular. 
Hence there exists z e /?„ such that the linear algebraic equation 

(7) [i - (K(rl5 r.) - Kfr., r. -))] x = x 
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has no solution in Rn. If we define the function yA : [0,1] -» Rn by the relations 
yA(t) = 0 for t € [0,1], t * Tx and yA(7\) = z then yA G BV„. Let us now consider 
the Volterra-Stieltjes integral equation 

(8) x(0 - j V M ] x(s) = y*(0 • 

Since / — (K(t, t) — K(t, t—))is regular for t e [0, Tt), every solution x of (8) vanishes 
on the interval [0, Tx) by the first part of the theorem and for t = Tx we have 

^ - [ ^ [ K ^ s X K s ) 

Г 

z . 
Jo 

Using the relation 

d.[K(T., s)] x(s) = (K(r., TO - K(T., T. - ) ) x(T.) 

(see [1]) we get 

X(TX) - (K(TU r.) - K ^ , r. -)) x(r.) = z 
but the value x(7\) cannot be determined since the linear algebraic equation (7) has 
no solution. Hence there is no x e BVn[0,1] satisfying the equation (8), i.e. the range 
of the operator 

X Є BV„ -> x(í) - ľds[K(f, s)] x(s) є BV„ 

is a proper subspace in BVn[0, 1]. 
Since the Volterra-Stieltjes integral equation is a special case of the Fredholm-

Stieltjes integral equation we obtain by the Fredholm Theorem (see Theorem 6 
in [3]) that there exists in BVn a nonzero solution of the homogeneous equation (3) 
and our theorem is completely proved. 

2. Corollary. Let K: J -* L(Rn) satisfy (1) and (2). Then the nonhomogeneous 
Volterra-Stieltjes integral equation 

(9) x(0-£ds [K(M)]x(s) = y(0 

has a unique solution x e #VW[0, l ] /0r any y e BVB[0, 1] if and only if the condition 
(4) is satisfied. 

Proof. Since (5) holds the equation (9) can be written in the Fredholm-Stieltjes 
form 

x(0 - £d s[K^, ,)] x(s) = y(t) 

where KA : J -+ L(R„) is given by (6). By Theorem 1 the corresponding homogeneous 
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equation has only the trivial solution x = 0 in BV„ and consequently by the Fredholm 
Theorem (see Theorem 6. in [3]) we obtain the statement of the corollary. 

3. Theorem. Let K : J -> L(Rn) satisfy (1) and (2). If the condition (4) is satisfied 
then for every y e BVn[0, 1] the unique solution of the equation (9) is given by the 
formula 

(10) x(t) « y(r) + fd.[r(r, s)] y(s) * e [0,1] 

where r(t, s), 0 = s <* t = 1 is a uniquely determined n x n — matrix valued 
function such that 

(11) r(f, s) = K(t, s) - K(r, 0) + fdr[K(r, r)] T(r, s) 

if 0 <i s £ * = 1. If we define F(f, s) = r(t, t) for 0 £ t < s = 1 then v(r) < oo 
and var0 F(f, •) < oo for et;e?ry r e [0, 1]. 

Proof. Since the equation (9) can be rewritten in the form of a Fredholm-Stieltjes 
integral equation 

*(0 - f W t , *)] *(s) = y(t) 

we obtain by Theorem 8. from [3] that the unique solution of this equation can be 
given by the formula 

(12) *(.) - y(r) + j* V ( f , ,)] y(s) 

where T : J -> L(Rn) satisfies the equality 

r(t, s) = K\t, s) - K*(t, 0) + f dr[K
A(r, r)] T(r, s) 

for all M e [0,1], varjT(0, •) < oo, F(f, 0) = 0 for all te [0,1], and v(r) < oo. 
Using the definition (6) of the "triangular" kernel KA and the relation (5) we obtain 

f' dr[K*(*, r)] r(r, s) = f dr[K(r, r)] T(r, s) 
Jo Jo 

and this yields the relation (11) for 0 <* s <J r <g 1. Further, evidently r(t, s) = 
= r(t, t) for 0 S t < s.<£ 1 and also 

f1dJ[r(ř,s)]y(5)= f'ds[r^s)]y(s) 
Jo Jo * 

for every y e BVn. Hence by (12) we obtain the representation (10) for the solution 
of the equation (7). I<et us finally mention that by Theorem 8. in [3] the matrix 
valued function r(t, s) is uniquely determined on the square J. 
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