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Časopis pro pěstování matematiky, roč. 98 (1973). Praha 

QUADRATIC FUNCTIONALS AND BILINEAR FORMS 

PAVLA VRBOVÁ, Praha 

(Received June 16, 1971) 

Let X be a vector space over the complex field. Let B be a bilinear form on X, i.e. 
a function defined on X x X which is linear in the first variable and conjugate-linear 
in the second variable. Let Q be the function on X defined by the formula Q(x) = 
= B(x, x); it is easy to see that the function Q possesses the following two properties 

1° Q(* + y) + Q(* ~ y) = 2Q(x) + 2Q(y) for all x, y eX 

2° Q(Xx) = \X\2 Q(x) for all x e X and all complex X . 

A function defined on X which satisfies conditions 1° and 2° will be called a quadratic 
functional on X. An obvious question presents itself: are the properties 1° and 2° 
characteristic for quadratic forms generated by bilinear forms? In other words, 
given a quadratic functional Q, does there exist a b:linear form B such that Q(x) = 
= B(x, x)? In the papers [1] and [2], S. Kurepa proved that the answer is affirmative 
and that the corresponding result for vector spaces over the real field is false. 

In the present note we prove a lemma concerning a certain functional equation; 
this lemma is then used to obtain a simple proof of the fact that every quadratic 
functional is generated by a bilinear form. 

Lemma. Let f be an additive complex-valued function of a complex variable 
which satisfies f(X) = - \X\2 f(\jX) for all X + 0. Then f(X) = f(i) Im X. 

Proof. Let t be a real number such that \t\ S 1- Let us show that f(t) = 0. 
Choose a real s such that t2 + s2 = 1 and set X =- t + is. It follows that f(t) + 
+ f(Is) =f(X) = - \X\2f(l) = -f(t) +f(is) whence f(t) = 0. If [r| > 1, we have 
|l/f| < 1 whence f(t) = —t2f(lji) = 0. Consider now a real number s with 0 < s ^ 
g 1. Choose a real number t such that t2 + s2 = s and set X = t + is. It follows 
that f(is) = f(X) = - |A|2f(l/^) = -sf(tjs - i) = sfO). If s > 1 we have f(is) = 
= ~s2f(l/is) = s2f(ijs) = sf(i). Since f is additive, the equation f(is) = sf(i) 
holds for s g 0 as well. The proof is complete. 
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Theorem* Let Q be a quadratic functional defined on a vector space X over the 
complex field. Then there exists a (unique) bilinear form B on X such that Q(x) = 
= B(x9 x) for alhx e X. 

Proof. Set (p(x9 y) = Q(x + y) — Q(x — y) and let us prove that q> is additive 
in the first variable. Using the relation 1° four times, we obtain 

<K*i + x29 y) = Q(xt + x2 + y) - Q(x, + x2 - y) = 2Q(x1 + y) + 2Q(x2) -

~ Q(*i + y - x2) - Q(x1 + x2 - y) = 

= Q(xi + y) + Q(xt + y) + 2Q(x2) - (Q(xx + y - x2) + e(xx + x2 - >>)) = 

= C(*i.+ y) + (2e(x0 + 2Q(y) - Q(x! - y)) + 2Q(x2) - (2fi(x1) + 

+ 2G(x2 - y)) = q>(xl9 y) + (2fiO0 + 2Q(x2)) - 2Q(x2 - y) = 

= ^ i » y) + (Q(x2 + y) + 2(^2 - y)) - 2Q(x2 - y) = <p(xl5 j ) + ^>(x2, y). 

We observe next that condition 1° alone implies Q(—x) = Q(x) for all xeX. Indeed, 
it suffices to write down and subtract the equating 1° for the pair x, 0 and 0, x. This 
implies q>(y9 x) = cp(x9 y) for all x and y so that (p is additive in the second variable 
as well. Now set B(x9 y) = i(cp(x9 y) + icp(x9 iy)) so that B(x9 x) = Q(x). Since cp is 
additive in both variables, the function B is additive in both variables as well. 

Now we use condition 2°. First of all, it follows that cp satisfies the relation 
cp(Xx9 y) = \k\2 cp(x9 y/X) for all X + 0. 

Let us prove now that B satisfies the following relations 

3° B(ix9 y) = iB(x9 y) 

4° B(x9iy)= -iB(x9y) 

Indeed, 4B(ix9 y) = cp(ix9 y) + iq>(ix9 iy) = cp(x, — iy) + icp(x9 y) = i((p(x9 y) — 
— iq>(x9 — iy) = i((p(x9 y) + i(p(x9 iy)) = 4iB(x9 y) which proves 3°. Furthermore, 
4B(x, iy) = (p(x, iy) + i<p(x9 -y) = (p(x9 iy) - icp(x9 y) = -i(<p(x, y) + i>(x, i>)) = 
= -4iB(x9y). 

With view to 3° and 4°, the proof will be complete if we show that 

5° B(tx, y) = J5(x, ty) = tB(x9 y) for real t. 

Let x and j ; be fixed elements of X. Define a complex-valued function / of a complex 
variable as follows f(X) = B(Xx9 y) — B(x9 Xy). Clearly / is additive. Also, it is easy 
to check the relation 

6 ° / W = - W 2 / ( ~ ) for A + 0. 
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Indeed, 

4f(X) = 4(B(Xx, y) - B(x, Xy)) = <p(Xx, y) + icp(Xx, iy) - (q>(x, Xy) + 

+ i(p(x, iXy)) = 

= cp(Xx, y) + i<p(Xx, iy) - (q>(Xy, x) + iq>(iXy, x)) = 

= \X\> [, (*, *) + I, (*, < J) - („ (,, ?) + ,V (,>, 0 ) ] -

-w[«H)-(»(^)+»^^)> 
-W'(«(*J)-«(^))~w/Q. 

According to our lemma /(A) = / ( i ) Im A. In particular, f(t) = 0 for real t so that 
B(tx, y) = B(x, iy) for all real i. If X = ii, f real, we obtain 

B(ifx, y) - B(x, ity) = /(if) = tf(i) = <B(ix, j!) - B(x, iy)) ; 

using 3° and 4°, this yields i(B(tx, j>) + B(x, ty)) = 2i*J3(x, y) whence 2i£(fx, y) = 
= 2itB(x, y) which proves 5° and completes the proof. 
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