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ČasopІs pro pěstování matematiky, roč. 98 (1973), Praha 

ON UNIQUELY COLORABLE GRAPHS WITHOUT SHORT CYCLES 

JAROSLAV NESETRIL, Praha 

(Received April 9, 1970) 

1. INTRODUCTION 

A uniquely colorable graph is defined in [3] as a graph X which possesses exactly 
one partition into n color classes, where n -= /(X) is the chromatic number of the 
graph X. 

Let A(X) denote the maximal degree of a point of X. We shall characterize uniquely 
colorable graphs X which satisfy A(X) ^ n = #(X). This is related to the problem of 
the existence of an n-chromatic graph with a large chord in the following way: 

A theorem established in [0] states that %(X) ^ -4(X), w ^ h the exception of an odd 
cycle and Kn (the complete graph with n points). On the other hand, the question if 
there is an n-chromatic graph without cycles of length ^ fc has been solved construc
tively only recently, see [4], [6], 

B. GRUNBAUM conjectured that for every n, fc there is an n-regular n-chromatic 
graph without cycles of length gk. (A graph is n-regular if all the points of X have 
the same degree n). This conjecture is proved to be true for couples (4, 3) and (4, 4), 
see [1, 2], except the trivial cases. 

From our result it will follow that there is no uniquely colorable graph satisfying 
this conjecture (for fc ^ 3, i.e. non-trivial), or that every such graph possesses at least 
two different colorings. For the same reason, the naturally arising question if there is 
a uniquely n-colorable graph without cycles of length ^fc, seems to be harder than 
for n-chromatic graphs in general; none of the known constructions of n-colorable 
graphs without short cycles gives uniquely colorable graphs. 

Nevertheless, we conjecture that the answer to this question is also affirmative. To 
support this we give here a construction of a uniquely fc-colorable graph (for every 
fc ^ 1) without triangles. In fact, we prove that there is a countable number of such 
graphs for every fc §: 1. This generalizes theorems from [3, 4]*). 

*) The examples of graphs given in [3] and [4], p 139 do not serve as examples of uniquely 
3-colorable graphs. 
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2. UNIQUELY COLORABLE GRAPHS WITH SMALL DEGREES 

Let us denote by UCn the class of all uniquely n-colorable graphs. Obviously all 
connected graphs X e UC2 which satisfy A(X) ^ 2 are exactly even cycles and paths. 
Thus, let be n > 2 from now on. Let X e UCn9 A(X) ^ n be a fixed graph, M = 
= {Ml9 . . . ,Mn} the coloring of X. For xeV(X) denote by V(x,K) the set of all 
adjacent points to x in X. 

We shall need the following: 

Lemma. Let % be the subgraph of X induced on the set \J{Mt; i ^ 2}. Then 
\J{V(x, X); x e Mx} = V(Jt) and if y e V(x, X) for exactly one x e Ml9 then either 
y ?- y' e V(x, X) implies y' e V(x'9 X)for some x ± x' eMxor V(x, X) = V(t). 

Proof. {V(x, X); x e M1} is a covering of V(%)9 for if there is a y e V(%) such that 
y i V(x, X) for every x e Ml9 then the coloring M' defined by M[ = M1 \J {y}9 

M\ = Mt \ {y}9 i ^ 2 is different from M. The proof of the second part of the state
ment proceeds similarly. 

Theorem 1. Kn and K„_i + K2 are the only UCn-graphs X for which it holds 
A(X) rg n. (Here X denotes the complement of the graph X and X + Y denotes the 
join (Zykov sum) of the graphs X and Y9 see [4]). 

Proof. Let X e UC39 A(X) <> 3, then (in the above notation) £ e UC2 and by 
Lemma A(%) ^ 2. It is easy to prove that \%\ ^ 4. It can be verified by examining 
the individual cases that K3 and K2 + K2 are the only uniquely 3-colorable graphs 
under consideration. 

It is easy to complete the proof of the statement by induction. 

Corollary. Odd cycles are exactly 2-regular elements of UC2. There are no 
n-regular elements of UCn9 n > 2. 

Remark. Adding two suitable edges to the graph described in [4], p. 139, one 
obtains a graph X from UC3 which has no triangles and for which A(X) = 4 holds. 

3. UNIQUELY COLORABLE GRAPHS WITHOUT TRIANGLES 

Let X be a graph, M £ V(X). The set M is called an independent subset if x, y e 
G M = > [ x , v ] £ £ ( K ) . 

Let Pn be the path of length n (i.e. V(P„) = {!,..., n + 1}, [i, i + 1] e E(Pn)9 

i = 1,. . . , n). Define by induction the graphs Pn9 i > 0. 

Let J(l = {Ml; i <; kl(n)} be the set of all independent sets M c v(Pn) with 
\M\ = 3 such that there are i =(= j e M with \i — j \ odd. 
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Let P\ be the graph defined by: V(P\) _ V(Pn) u J?1, 
[x, y] e -(P1) iff either x, y e V(F„) and [x, y] e _(PB) or x = M1 e J/1 and y e Af *. 

Let P;( be defined for all; g i, i ^ 1. 
Let „i"+ 1 - {Ml*1; i g fc'+1(n)} be the set of all independent sets M _ V(P$ 

such that \M\ — i + 3, M n ^ 4= 0 for every j g i and there are fc =f= m e M n 
n V(P„), |fc - in| being odd. 

Define the graph P j + 1 by: V(Pi*1) = T(P*) u J/i+1 [x, y] 6 £(P;+1) iff either 
x, y e V(P^) and [x, y] e -(Pj) or x = Mt'

+1 6 .^'+1 and y e M'+1 . By the definition, 
the graph does not contain a triangle for every j ^ 1. Further, it is obvious that 
X(P/,) g i + 2. 

We shall prove 

Theorem 2. Let k^\.Letn> 16(fc + 2) (2fc)2*+3. Then PkeUCk+2. 

Proof. Let C = {C_,..., Ck + 2} be a coloring of P*. We distinguish two cases. 

1) There are three classes, say C_, C2, C3 such that \Ct n V(PW)| __ n/(fc + 2), 
i = 1,2, 3. We prove first that there are (2fc)* pairwise disjoint sets M\ from M1 

such that all of them are colored exactly by 3 different colors (not necessarily 1, 2, 3). 
Suppose to the contrary that there are no such sets from M1. Then |C_ u C2 u C3| _g 
__ i " + 3(2fc)* (since |Cf n V(P„)| ^ w/(fc + 2), C_, C2 and C3 cannot contain "too 
many" couples i,j with |i — j \ odd, and the same argument shows that there is a set 
A c C_ u C2 such that |A n C.| ^ (2fc)*, i = 1, 2 and i ^ j e A implies |i — j \ even. 
Thus there is at least \n - 3(2fc)*)/4 > (fc - 1) (2fc)* elements i e V(P„) such that 
\i — j \ is odd for every j e A. From these facts a contradition easily follows). 

Now we shall construct an M* e Mk such that M* n C, 4= 0 for every i = 1, 2, . . . 
..., k -F 2. This will contradict the assumption that C is a coloring. 

Put m = (2fc)\ Without loss of generality, let M_,..., M* be sets from M1 such 
that M] n Mj = 0 for i 4= I __ m and Mj n C,. 4= 0 for i = 1,..., m and j = 
= 1,2,3. Since m = (2fc)(2fc)*~1 there is 2(2fc)*"1 = 2m _ elements of the set 
{M_,..., Mi} which are colored by the same color ^4 , wihout loss of generality let 
us assume that M\ e C4 for i = 1,..., 2m_. Define M2

2ieM2, i = 1,..., m_ by 
M2j = {M2J__} uM^.. (It is M\xe M2 since M} are pairwise disjoint.) Further 
M|, n C, * 0 for i = 1,..., m_ and ; = 1, 2, 3, 4. 

Now, without loss of generality, we can find again M), j = 1,..., 2m2 = 2(2fc)*~2 

such that {M2,..., M\m2} __ C, for an i 2> 5, say for i = 5. We can define M3
2i = 

= {M2f__} u M 2 i , i = 1,..., m2. It is M\xe Mz and Mf, n C, # 0 j = 1,..., 5. 
This procedure can be continued inductively and finally we get an M* e ^ * for 
which MknCj* Q,j = 1,..., fc + 2. 

2) There are exactly two classes, say C_, C2 such that 

| c . n r ( P „ ) | _ ~ - 2 , i - 1 , 2 . 

124 



Then one can easily prove that there are two color classes, say Ci9 C2, for which 
there is a set of pairs N1 _= Cx x C2 such that it holds: 

(i,j) e N1 => 1 < \i — j \ is an odd number ; 

(U j) * (}', f) ' N1 => i * V and j * f ; [IV11 = (2k)2k . 

Now we can go on similarly as in the above procedure: 

The set of all M\ for which M1 => {i9j}9 where (i,j)eNl
9 cannot be colored by 

less than three colors; thus there are again 2m x . m sets M\ which are colored by the 
same color and which are pairwise disjoint (this can be easily managed). Define 
analogously as above N2i = {M2i_i} u {a2i, b2i}, i = 1, ..., ml . m. (Here 
(a2b b2l) e N1, a2i, b2i $ M2i_ l5 which can be done by a suitable numbering of sets 
under consideration.) From the sets M2 containing an N\{ we can again choose 
2m2 . m disjoint sets which are colored by the same color. We can then define N2i 

and so on. Finally we can define m pairwise disjoint sets Nk such that |N*| = k + 1 
and Nk n Ct 4= 0, i = 1,..., k -f- 1. Now there are two possible cases. Let first 
xeV(Pk~l) n Ck+2 4= 0. Since we have m pairwise disjoint Nk with the above 
properties, there is Nk with Nk n x = 0. Thus Nk u {x} ~ Mk, a contradiction. Let 
V(P£-1) n Ck+2 = 0. Then it can be easily proved by induction that C is uniquely 
determined by Cx u C2 = V(P„), Ci+2 = M\ i = 1, ..., fc. 
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