Časopis pro pěstování matematiky

Jaroslav Nešetřil

On uniquely colorable graphs without short cycles

Časopis pro pěstování matematiky, Vol. 98 (1973), No. 2, 122--125
Persistent URL: http://dml.cz/dmlcz/108481

Terms of use:

© Institute of Mathematics AS CR, 1973

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON UNIQUELY COLORABLE GRAPHS WITHOUT SHORT CYCLES

Jaroslav Nešetríle, Praha
(Received April 9, 1970)

1. INTRODUCTION

A uniquely colorable graph is defined in [3] as a graph X which possesses exactly one partition into n color classes, where $n=\chi(X)$ is the chromatic number of the graph X.

Let $\Delta(X)$ denote the maximal degree of a point of X. We shall characterize uniquely colorable graphs X which satisfy $\Delta(X) \leqq n=\chi(X)$. This is related to the problem of the existence of an n-chromatic graph with a large chord in the following way:

A theorem established in [0] states that $\chi(X) \leqq \Delta(X)$, with the exception of an odd cycle and K_{n} (the complete graph with n points). On the other hand, the question if there is an n-chromatic graph without cycles of length $\leqq k$ has been solved constructively only recently, see [4], [6].
B. Grünbaum conjectured that for every n, k there is an n-regular n-chromatic graph without cycles of length $\leqq k$. (A graph is n-regular if all the points of X have the same degree n). This conjecture is proved to be true for couples $(4,3)$ and $(4,4)$, see $[1,2]$, except the trivial cases.

From our result it will follow that there is no uniquely colorable graph satisfying this conjecture (for $k \geqq 3$, i.e. non-trivial), or that every such graph possesses at least two different colorings. For the same reason, the naturally arising question if there is a uniquely n-colorable graph without cycles of length $\leqq k$, seems to be harder than for n-chromatic graphs in general; none of the known constructions of n-colorable graphs without short cycles gives uniquely colorable graphs.

Nevertheless, we conjecture that the answer to this question is also affirmative. To support this we give here a construction of a uniquely k-colorable graph (for every $k \geqq 1$) without triangles. In fact, we prove that there is a countable number of such graphs for every $k \geqq 1$. This generalizes theorems from [3, 4]*).

[^0]
2. UNIQUELY COLORABLE GRAPHS WITH SMALL DEGREES

Let us denote by $U C_{n}$ the class of all uniquely n-colorable graphs. Obviously all connected graphs $X \in U C_{2}$ which satisfy $\Delta(X) \leqq 2$ are exactly even cycles and paths. Thus, let be $n>2$ from now on. Let $X \in U C_{n}, \Delta(X) \leqq n$ be a fixed graph, $M=$ $=\left\{M_{1}, \ldots, M_{n}\right\}$ the coloring of X. For $x \in V(X)$ denote by $V(x, X)$ the set of all adjacent points to x in X.

We shall need the following:
Lemma. Let \hat{X} be the subgraph of X induced on the set $\cup\left\{M_{i} ; i \geqq 2\right\}$. Then $\cup\left\{V(x, X) ; x \in M_{1}\right\}=V(\hat{X})$ and if $y \in V(x, X)$ for exactly one $x \in M_{1}$, then either $y \neq y^{\prime} \in V(x, X)$ implies $y^{\prime} \in V\left(x^{\prime}, X\right)$ for some $x \neq x^{\prime} \in M_{1}$ or $V(x, X)=V(\hat{X})$.

Proof. $\left\{V(x, X) ; x \in M_{1}\right\}$ is a covering of $V(\hat{X})$, for if there is a $y \in V(\hat{X})$ such that $y \notin V(x, X)$ for every $x \in M_{1}$, then the coloring M^{\prime} defined by $M_{1}^{\prime}=M_{1} \cup\{y\}$, $M_{i}^{\prime}=M_{i} \backslash\{y\}, i \geqq 2$ is different from M. The proof of the second part of the statement proceeds similarly.

Theorem 1. K_{n} and $K_{n-1}+\bar{K}_{2}$ are the only $U C_{n}$-graphs X for which it holds $\Delta(X) \leqq n$. (Here \bar{X} denotes the complement of the graph X and $X+Y$ denotes the join (Zykov sum) of the graphs X and Y, see [4]).

Proof. Let $X \in U C_{3}, \Delta(X) \leqq 3$, then (in the above notation) $\hat{X} \in U C_{2}$ and by Lemma $\Delta(\hat{X}) \leqq 2$. It is easy to prove that $|\hat{X}| \leqq 4$. It can be verified by examining the individual cases that K_{3} and $K_{2}+\bar{K}_{2}$ are the only uniquely 3-colorable graphs under consideration.

It is easy to complete the proof of the statement by induction.

Corollary. Odd cycles are exactly 2-regular elements of $U C_{2}$. There are no n-regular elements of $U C_{n}, n>2$.

Remark. Adding two suitable edges to the graph described in [4], p. 139, one obtains a graph X from $U C_{3}$ which has no triangles and for which $\Delta(X)=4$ holds.

3. UNIQUELY COLORABLE GRAPHS WITHOUT TRIANGLES

Let X be a graph, $M \subseteq V(X)$. The set M is called an independent subset if $x, y \in$ $\in M \Rightarrow[x, y] \notin E(X)$.

Let P_{n} be the path of length n (i.e. $V\left(P_{n}\right)=\{1, \ldots, n+1\},[i, i+1] \in E\left(P_{n}\right)$, $i=1, \ldots, n)$. Define by induction the graphs $P_{n}^{i}, i>0$.
Let $\mathscr{M}^{1}=\left\{M_{\imath}^{1} ; \iota \leqq k^{1}(n)\right\}$ be the set of all independent sets $M \subseteq V\left(P_{n}\right)$ with $|M|=3$ such that there are $i \neq j \in M$ with $|i-j|$ odd.

Let P_{n}^{1} be the graph defined by: $V\left(P_{n}^{1}\right)=V\left(P_{n}\right) \cup \mathscr{M}^{1}$, $[x, y] \in E\left(P_{n}^{1}\right)$ iff either $x, y \in V\left(P_{n}\right)$ and $[x, y] \in E\left(P_{n}\right)$ or $x=M_{\imath}^{1} \in \mathscr{M}^{1}$ and $y \in M_{\imath}^{1}$.

Let P_{n}^{j} be defined for all $j \leqq i, i \geqq 1$.
Let $\mathscr{M}^{i+1}=\left\{M_{\imath}^{i+1} ; \iota \leqq k^{i+1}(n)\right\}$ be the set of all independent sets $M \subseteq V\left(P_{n}^{i}\right)$ such that $|M|=i+3, M \cap \mathscr{M}^{j} \neq \emptyset$ for every $j \leqq i$ and there are $k \neq m \in M \cap$ $\cap V\left(P_{n}\right),|k-m|$ being odd.

Define the graph P_{n}^{i+1} by: $V\left(P_{n}^{i+1}\right)=V\left(P_{n}^{i}\right) \cup \mathscr{M}^{i+1}[x, y] \in E\left(P_{n}^{i+1}\right)$ iff either $x, y \in V\left(P_{n}^{i}\right)$ and $[x, y] \in E\left(P_{n}^{i}\right)$ or $x=M_{\imath}^{i+1} \in \mathscr{M}^{i+1}$ and $y \in M_{\imath}^{i+1}$. By the definition, the graph does not contain a triangle for every $i \geqq 1$. Further, it is obvious that $\chi\left(P_{n}^{i}\right) \leqq i+2$.

We shall prove
Theorem 2. Let $k \geqq 1$. Let $n>16(k+2)(2 k)^{2 k+3}$. Then $P_{n}^{k} \in U C_{k+2}$.
Proof. Let $C=\left\{C_{1}, \ldots, C_{k+2}\right\}$ be a coloring of P_{n}^{k}. We distinguish two cases.

1) There are three classes, say C_{1}, C_{2}, C_{3} such that $\left|C_{i} \cap V\left(P_{n}\right)\right| \geqq n /(k+2)$, $i=1,2,3$. We prove first that there are $(2 k)^{k}$ pairwise disjoint sets M_{\imath}^{1} from \mathscr{M}^{1} such that all of them are colored exactly by 3 different colors (not necessarily $1,2,3$). Suppose to the contrary that there are no such sets from \mathscr{M}^{1}. Then $\left|C_{1} \cup C_{2} \cup C_{3}\right| \leqq$ $\leqq \frac{1}{2} n+3(2 k)^{k}$ (since $\left|C_{i} \cap V\left(P_{n}\right)\right| \geqq n /(k+2), C_{1}, C_{2}$ and C_{3} cannot contain 'too many" couples i, j with $|i-j|$ odd, and the same argument shows that there is a set $A \subset C_{1} \cup C_{2}$ such that $\left|A \cap C_{\imath}\right| \geqq(2 k)^{k}, i=1,2$ and $i \neq j \in A$ implies $|i-j|$ even. Thus there is at least $\left.\frac{1}{2} n-3(2 k)^{k}\right) / 4>(k-1)(2 k)^{k}$ elements $i \in V\left(P_{n}\right)$ such that $|i-j|$ is odd for every $j \in A$. From these facts a contradition easily follows).

Now we shall construct an $M_{\imath}^{k} \in \mathscr{M}^{k}$ such that $M_{\imath}^{k} \cap C_{i} \neq \emptyset$ for every $i=1,2, \ldots$ $\ldots, k+2$. This will contradict the assumption that C is a coloring.

Put $m=(2 k)^{k}$. Without loss of generality, let $M_{1}^{1}, \ldots, M_{m}^{1}$ be sets from \mathscr{M}^{1} such that $M_{i}^{1} \cap M_{j}^{1}=\emptyset$ for $i \neq j \leqq m$ and $M_{i}^{1} \cap C_{j} \neq \emptyset$ for $i=1, \ldots, m$ and $j=$ $=1,2,3$. Since $m=(2 k)(2 k)^{k-1}$ there is $2(2 k)^{k-1}=2 m_{1}$ elements of the set $\left\{M_{1}^{1}, \ldots, M_{m}^{1}\right\}$ which are colored by the same color $\geqq 4$, wihout loss of generality let us assume that $M_{i}^{1} \in C_{4}$ for $i=1, \ldots, 2 m_{1}$. Define $M_{2 i}^{2} \in \mathscr{M}^{2}, i=1, \ldots, m_{1}$ by $M_{2 i}^{2}=\left\{M_{2 i-1}^{1}\right\} \cup M_{2 i}^{1}$. (It is $M_{2 i}^{2} \in \mathscr{M}^{2}$ since M_{i}^{1} are pairwise disjoint.) Further $M_{2 i}^{2} \cap C_{j} \neq \emptyset$ for $i=1, \ldots, m_{1}$ and $j=1,2,3,4$.

Now, without loss of generality, we can find again $M_{j}^{2}, j=1, \ldots, 2 m_{2}=2(2 k)^{k-2}$ such that $\left\{M_{1}^{2}, \ldots, M_{2 m_{2}}^{2}\right\} \subseteq C_{i}$ for an $i \geqq 5$, say for $i=5$. We can define $M_{2 i}^{3}=$ $=\left\{M_{2 i-1}^{2}\right\} \cup M_{2 i}^{2}, i=1, \ldots, m_{2}$. It is $M_{2 i}^{3} \in \mathscr{M}^{3}$ and $M_{2 i}^{3} \cap C_{j} \neq \emptyset j=1, \ldots, 5$. This procedure can be continued inductively and finally we get an $M_{\imath}^{k} \in \mathscr{M}^{k}$ for which $M^{k} \cap C_{j} \neq \emptyset, j=1, \ldots, k+2$.
2) There are exactly two classes, say C_{1}, C_{2} such that

$$
\left|C_{i} \cap V\left(P_{n}\right)\right| \geqq \frac{n}{k+2}, \quad i=1,2
$$

Then one can easily prove that there are two color classes, say C_{1}, C_{2}, for which there is a set of pairs $N^{1} \subseteq C_{1} \times C_{2}$ such that it holds:

$$
\begin{gathered}
(i, j) \in N^{1} \Rightarrow 1<|i-j| \text { is an odd number } \\
(i, j) \neq\left(i^{\prime}, j^{\prime}\right) \in N^{1} \Rightarrow i \neq i^{\prime} \text { and } j \neq j^{\prime} ; \quad\left|N^{1}\right|=(2 k)^{2 k} .
\end{gathered}
$$

Now we can go on similarly as in the above procedure:
The set of all M_{ι}^{1} for which $M_{\iota}^{1} \supset\{i, j\}$, where $(i, j) \in N^{1}$, cannot be colored by less than three colors; thus there are again $2 m_{1} \cdot m$ sets M_{\imath}^{1} which are colored by the same color and which are pairwise disjoint (this can be easily managed). Define analogously as above $N_{2 i}^{2}=\left\{M_{2 i-1}^{1}\right\} \cup\left\{a_{2 i}, b_{2 i}\right\}, i=1, \ldots, m_{1} . m$. (Here $\left(a_{2 i}, b_{2 i}\right) \in N^{1}, a_{2 i}, b_{2 i} \notin M_{2 i-1}^{1}$, which can be done by a suitable numbering of sets under consideration.) From the sets M_{i}^{2} containing an $N_{2 i}^{2}$ we can again choose $2 m_{2} . m$ disjoint sets which are colored by the same color. We can then define $N_{2 i}^{2}$ and so on. Finally we can define m pairwise disjoint sets N_{ι}^{k} such that $\left|N_{\iota}^{k}\right|=k+1$ and $N_{\imath}^{k} \cap C_{i} \neq \emptyset, i=1, \ldots, k+1$. Now there are two possible cases. Let first $x \in V\left(P_{n}^{k-1}\right) \cap C_{k+2} \neq \emptyset$. Since we have m pairwise disjoint N_{t}^{k} with the above properties, there is N_{ι}^{k} with $N_{\iota}^{k} \cap x=\emptyset$. Thus $N^{k} \cup\{x\} \in \mathscr{M}^{k}$, a contradiction. Let $V\left(P_{n}^{k-1}\right) \cap C_{k+2}=\emptyset$. Then it can be easily proved by induction that C is uniquely determined by $C_{1} \cup C_{2}=V\left(P_{n}\right), C_{i+2}=\mathscr{M}^{i}, i=1, \ldots, k$.

References

[0] R. L. Brooks: On coloring the nodes of a network. Proc. Cambridge Phil. Soc. 37 (1941), 194-197.
[1] V. Chvátal: The smallest triangle free 4-chromatic 4-regular graph (To appear).
[2] B. Grünbaum: A problem in graph coloring (To appear).
[3] F. Harary, S: T. Hedetniemi and R. W. Robinson: Uniquely colorable graphs. J. Comb. Th. (1969), 260-270.
[4] F. Harary: Graph theory. Addison Wesley, Reading 1969.
[5] L. Lovász: On chromatic number of finite set-systems, Acta Math. Acad. Sci. Hungar. 19 (1968), 59-67.
[6] J. Nešetřil: k-chromatic graphs without cycles of length $\leqq 7$ (in Russian) Comment. Math. Univ. Carolinae 7 (1966), 373-376.

[^0]: *) The examples of graphs given in [3] and [4], p 139 do not serve as examples of uniquely 3-colorable graphs.

