
Časopis pro pěstování matematiky

Pavel Krbec
On nonparasit generalized solutions of differential relations

Časopis pro pěstování matematiky, Vol. 106 (1981), No. 4, 368--372

Persistent URL: http://dml.cz/dmlcz/108495

Terms of use:
© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/108495
http://project.dml.cz


Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

ON NONPARASIT GENERALIZED SOLUTIONS 
OF DIFFERENTIAL RELATIONS 

PAVEL KRBEC, Praha 

(Received July 5, 1979) 

Introduction 

In [5] Sends introduced generalized solutions of the differential relation x e F(t,x), 
F being an upper-semicontinuous but not necessarily convex mapping. It appears, 
that the set of the generalized solutions depends on the behaviour of F on M x Rn, 
the Lebesgue measure of M being zero. We modify the definition of the generalized 
solutions to obtain independence with respect to such M. 

Definitions and Notation 

Let F be a mapping from Q = [0, 1] x B3, B3 a Rn being the closed ball with 
center at origin and radius 3, into the set Jf of all compact nonempty subsets of the 
unit ball Bt c Rn. For M cz R the set {(t,x,y)eQ x Bx\ t$M, yeF(t,x)} 
is denoted by GMF. Thus GMF is the graph of F|([01]_M)xB3, F being considered as 
a multivalued mapping into Rn. For M empty we shall write GF instead of GMF. 
A mapping F : Q -> j f is upper-semicontinuous (u.s.c.) if GF is closed in jR2n+1 

(see Kuratowski [3]). We say that a mapping # from [0,1] into the set of all compact 
subsets of a ball B in .Rm is approximately continuous at a point t e [0, 1] if there 
exists a measurable set A c [0,1], t e A, such that lim (fi((t — h, t + h) n A)j2h) = 

= 1 and <P\A is continuous in the relative topology of A and the HausdorfT topology 
on compact subsets of B. 

The set h = {0 = h° < h1 < h2 < ... < hm+1 = 1} is called a division of [0,1], 
\h\ -= max |h I + 1 — ftf|, v(h) -= m and ju(M) stands for the Lebesgue measure 

i = 0,l,...,m 

o f M c i ? , 

Definition 1 (Sends [5]). A function y(>) : [0, 1] -* Rn is a g-solution of the dif
ferential relation 
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(1) X G F(t, x) , x(0) = X0 6 B1 

on [0, 1] if there exists a sequence {yn}n= t of piecewise linear functions and a sequence 
{hn}n=i of divisions such that (denote yn(hk) by x* and v(hn) by vw) 

i) lim \hn\ = 0, 
и-*oo 

„0 ii) xn = x0, 
iii) for every positive integer n and k = 0, 1, ..., v„ there are ak

neF(hk, xk) and 
8k e Rn such that xk+1 = xk

n + ak

n(hk+1 - hk) + e* and }>,,(•) is linear on every 
[hk,hk

n

+1), k = 0,l,...,v„, 

iv) lim £ ||e*|| = 0, 
H-+00 fc= 1 

v) lim y„ = y uniformly on [0, 1]. 
n-* oo 

2. 

Sentis introduced this definition to cover the case (cl stands for closure) 

F(t, x) = fl n olf(Bs(t, x)-N), 
«5>0 JVcRn+1 

M(N) = 0 

f: Rn + 1 -+ Rn being possibly discontinuous, and his definition works well for such 
right-hand sides, see [5]. The following example shows that in general (i.e. for F 
being only u.s.c.) the definitions of g-solutions should be modified. 

Example 1. For Rn = R set Fx(t, x) = {-1} for x < 0 and every t, Fx(t, x) = 
= { — 1, 1} for x = 0 and every t and Ft(t, x) = {1} for x > 0 and every t, F2(t, x) — 
— Fx(t, x) for t dyadically irrational and every x. For t = (k\2m), k odd set F2(f, x) = 
= Ft(t,x) for x £ [ - l / 2 w , l/2m] and F2(f, x) = {-1, 1} for x e [-l/2m , 1/2*]. 
Then both Fx and F2 are u.s.c. mappings and n{t e [0, 1] J 3 Ft(t, x) 4= F2(t, x)} = 0. 

The function y(>), identically equal to zero on [0,1], is not a g-solution of xe 
e Fx(t, x), x(0) = 0 (see Sentis [5]) but it is a g-solution of the relation x e F2(t, x), 
x(0) = 0 on [0, 1]. The sequence {yn}£=i can be constructed as follows: hn = 
= {0, 1/2", 2/2",..., (2n - l)/2", 1}, xk = 1/2* for k odd, xk„ = 0 for k even, yn(-) is 
linear on every [h£, hj+1]. It is easy to see that {yn} and y fulfil the conditions 
(i),...,(v). 

To avoid this discrepancy we will define generalized solutions of x 6 F(t, x) (we 
will call them regular g-solutions or rg-solutions) through certain regular right-hand 
side F*. To obtain F* we set G*F = f| cl GMF and define F* by means 

Mc=rO,l],M(M)--0 

of the relation GF* = G*F. Let n : R2n+1 -> JRW+1, n(t, x, y) = (t, x) be the pro
jection. 
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Lemma 1. Let F : Q -> X be a u.s.c. mapping. Then there exists a set M0 c 
cz [0, 1] such that n(M0) = 0, G*F = cl GMoF and n(G*F) = Q. 

Proof. It will be helpful to introduce the mapping $, $ : te [0, 1] -> <P(t) = 
= {(t, x, y) e R2n+1 | (t9 x)e Q, y e F(t, x)}. The upper semicontinuity of F implies 
that <P is a u.s.c. mapping into the set of compact subsets of Q x BY. Therefore, 
there is a set M0 cz [0,1] such that # is approximately continuous at all points 
of [0, 1] — M0 and fi(M0) = 0 (see Hermes [1]). For this M0 the set {(t, x, y) e 
eR2n + 1\t$M0, (t,x)eQ, (t, x, y)e<P(t)} will be denoted by G0&. We have 
G0$ = GMoF and we shall prove G*F ZD cl G0<P. 

Let (t, x, y) e cl G0#. Then there exists a sequence {(tn, xn, yn)} -> (t, x, y) for n -> co 
such that tn $ M0 and yn e F(tn, xn). Let /i(M) = 0. In virtue of the approximate 
continuity of <P we can find a sequence {rn, £n, \\/n} such that T„ £ M, (rn, £„, i/̂ n) -> 
-> (f, x, j ) for n -» co and i/>n e F(rn, £„). Hence (f, x, j ) e cl GMF, i.e. cl G0<P cz 
c cl GMF and since M was an arbitrary null set we conclude cl G0$ cz G*F. Since 
the converse inequality is obvious we have cl GMoF = G*F and 7r(G*F) = Q. 

Remark. The upper-semicontinuity of F is not necessary. The proof is still valid 
if we suppose F to be only Scorza-Dragonian, i.e., u.s.c. except for sets whose pro
jection to the f-axis has "arbitrarily small" measure (for the precise definition of the 
Scorza-Dragonian property see Jarnik, Kurzweil [2]), due to the fact that the Scorza-
Dragonian property implies Borel measurability of $ (see Rzezuchowski [4]). 

For F : Q -» X let us define the mapping F* by means of the relation F*(t, x) = 
= {y e Rn | (t, x, y) e G*F}. Then as a consequence of Lemma 1 we obtain F* : Q -> 
-* X and since GF* = G*F and G*F is closed we have that F* is u.s.c. Moreover, 
F* cz F and since the mapping <P from Lemma 1 is approximately continuous at all 
points of [0,1] - M0, it follows immediately that {t e [0, 1] | 3 F*(t, x) # F(t, x)} cz 
cz M0. xeB> 

Remark. The multivalued mapping F*can be equivalently defined as F*(f, x) = 
= fl H c- F(Bd(t> x) — -V)> which is similar to the definition of Filippov's cone, 

a>0N= -MxB 3 

see VrkoS [6]. 

Definition 2. Let the mapping F : Q -> X be u.s.c. and let y(>) be a g-solution of 
the relation x e F*(t, x), x(0) = x0 e Bt on [0, 1]. Then y(') is called an rg-solution 
of(l) and the set {>>(•) | y(0) = x0, y(') is an rg-solution of (1)} is called Sol F(x0). 

As a trivial consequence of Definition 2 and Lemma 1 we obtain that all "nice" 
properties of Sentis' g-solutions (see [5]) are preserved: there is always an rg-solution, 
any classic solution is also an rg-solution and any rg-solution of (1) is a classic 
solution of the relation x e conv F(t, x). Moreover, Sol Fi(x0) = Sol F2(x0) whenever 
n{t e [0,1] | 3 Fx(t, x) * F2(t, x)} = 0 since then Ft = F*. 

xeBs 
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Example 2. Let Fx and F2 be the same as in Example 1. Then F* = F* = Ft, 
there are exactly two rg-solutions fulfilling the initial condition x(0) = 0 (namely 
x+(t) = t and x~(t) = — t) and these solutions are the classic ones. Let M c R". 
Denote — M = {xeRn| — xeM}. Then neither the equation xe — Ft(t, x) nor 
x e —F2(t, x) has a classic solution fulfilling x(0) = 0 but the function y(*) identically 
equal to zero is an rg-solution of both x € —Ft(t, x) and x e —F2(t, x), x(0) = 0. 
Moreover we have conv(—F1(% 0) = [ — 1, 1], hence y(*) is a classic solution of 
both x G conv (—Fx(t, x)) and x e conv ( — F2(t, x)), x(0) = 0. 

The rg-solutions can be obtained not only in terms of F* but via a direct modifica
tion of Definition 1 as well. 

Theorem. A function y(*) is an rg-solution of (1) if and only if for every M c 
c [0, 1], n(M) = 0 there are sequences {y„}*=-i and {hn}n=i such that all con-

00 

ditions (i),..., (v) of Definition 1 are fulfilled and (J hn n M = 0. 
n = l 

To prove the theorem we will use the following trivial lemma. 

Lemma 2. Let us suppose a e F*(t, x), M cz [0, l ] , £t(M) = 0. Then there are 
sequences {(tn, xn)}n=1 and {an}n=l such that an e F*(tn, xn), tn $ M, lim (tn, xn, an) = 

n-* oo 

= (t, X, o). 

Proof. From o e F*(t, x) we obtain as a consequence of the identity GF* = G*F 
and of Lemma 1 that (t, x, o) e GF* = cl GMouMF, ju(M0 u M) = 0. Hence there 
exists a sequence {tn, xn, an} -> (t, x, o) such that tn $ M0 u M and o„ e F(tn, xn)> 
Since F*(r, £) = F(x, £) for T $ M0 the proof is complete. 

Proof of the theorem: Since {t e [0, 1] | 3 F*(t, x) = F(t, x)} cz M0, /i(M0) = 0, 
xeB3 

the "only if" part of the theorem follows immediately. To prove the "if" part let 
y(*) be an rg-solution and M c: [0,1], ju(M) = 0. Then there is a sequence {yn} -+> y 
and the sequence {hn} such that the conditions (i),..., (v) from Definition 1 are 
fulfilled with F* instead of F. Condition (iii) written explicitly has the following 
form: 

yM+1) = y«(h"n) + ak(hk„+1- hk
n) + Bk„, akeF*(hk, yn(h

k„)) . 

As a consequence of Lemma 2 we obtain that y,,, h„, ak and 6* can be replaced by 
y„, h~k, ak„, sj such that 

(2) K„ = {0 = K°n < ^ < ... < P„"+1 = 1} n M = 0 

for every n = 1,2,3,..., hk„ < hk+1, (hk„ - hk) < l/(n . vn), f \\ek„\\ -+ 0 as n -+ oo 
K = l 
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and 

(3) m+1) = U%) + 5 K + *-%) + -S, ak e F*(Rk, yn(K)) 

for n = 1, 2, .T. and k = 0, 1, 2,..., vw. 
We can proceed for example as follows. For every n = 1, 2, . . . we set hn = hn = 

= 0, yn(h-°n) = x0, Pn"
+1 = 1, y„(l) = y„(l), a°n = a„°. Let us denote l/(«v„) by Q. 

As a consequence of Lemma 2 we can choose hk, ak
n and \j/k„ such that (2) is fulfilled 

and \hn-h
k
n\<e, 4,neBe(yn(h

k
n))c:B3, ak

n e F*(Kk
n, tf) «J e B(a*, <?) holds for 

k = 1, 2 v„. We set j?B(h*) = \j/k and choose such ej that (3) is fulfilled. Then 

^ = ^+ 1)-yK)-«+ 1-^) 
and 

\\ek\\ < \\yn(hk") - yn(hk
n

+l)\\ + \\y,,(hk) - yjffi\ + \\ak - ak\\ ||/.* + 1 - «I + 

+ K i ( i r i - l t r i i + i^-hii) + 

+ IMC1) - yK) - «K+1 - «)ll = 3e + 2e + ||£*||. 
Vn 

Hence lim £ ||e*|| = 0. Similarly we obtain lim j!„ = y uniformly on [0, 1] and the 
n-*co fc= 1 n-+oo 

proof is complete. 

Remark. We have supposed F : Q = [0, 1] x B3 -> JT, where ^T is the set 
consisting of all compact non empty subsets of Bx. The reasons for taking [0, 1], 
2*! and B3 are of course purely technical. 
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