Časopis pro pěstování matematiky

Pavel Krbec
On nonparasit generalized solutions of differential relations

Časopis pro pěstování matematiky, Vol. 106 (1981), No. 4, 368--372
Persistent URL: http://dml.cz/dmlcz/108495

Terms of use:

© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON NONPARASIT GENERALIZED SOLUTIONS OF DIFFERENTIAL RELATIONS

Pavel Krbec, Praha

(Received July 5, 1979)

0.

Introduction

In [5] Sentis introduced generalized solutions of the differential relation $\dot{x} \in F(t, x)$, F being an upper-semicontinuous but not necessarily convex mapping. It appears, that the set of the generalized solutions depends on the behaviour of F on $M \times R^{n}$, the Lebesgue measure of M being zero. We modify the definition of the generalized solutions to obtain independence with respect to such M.

1.

Definitions and Notation

Let F be a mapping from $Q=[0,1] \times B_{3}, B_{3} \subset R^{n}$ being the closed ball with center at origin and radius 3 , into the set \mathscr{K} of all compact nonempty subsets of the unit ball $B_{1} \subset R^{n}$. For $M \subset R$ the set $\left\{(t, x, y) \in Q \times B_{1} \mid t \notin M, y \in F(t, x)\right\}$ is denoted by $G_{M} F$. Thus $G_{M} F$ is the graph of $\left.F\right|_{([0,1]-M) \times B_{3}}, F$ being considered as a multivalued mapping into R^{n}. For M empty we shall write $G F$ instead of $G_{M} F$. A mapping $F: Q \rightarrow \mathscr{K}$ is upper-semicontinuous (u.s.c.) if $G F$ is closed in $R^{2 n+1}$ (see Kuratowski [3]). We say that a mapping Φ from $[0,1]$ into the set of all compact subsets of a ball B in R^{m} is approximately continuous at a point $t \in[0,1]$ if there exists a measurable set $A \subset[0,1], t \in A$, such that $\lim _{h \rightarrow 0^{+}}(\mu((t-h, t+h) \cap A) / 2 h)=$ $=1$ and $\left.\Phi\right|_{A}$ is continuous in the relative topology of A and the Hausdorff topology on compact subsets of B.

The set $h=\left\{0=h^{0}<h^{1}<h^{2}<\ldots<h^{m+1}=1\right\}$ is called a division of [0, 1], $|h|=\max _{i=0,1, \ldots, m}\left|h^{i+1}-h^{i}\right|, v(h)=m$ and $\mu(M)$ stands for the Lebesgue measure of $M \subset R$.

Definition 1 (Sentis [5]). A function $y(\cdot):[0,1] \rightarrow R^{n}$ is a g-solution of the differential relation

$$
\begin{equation*}
\dot{x} \in F(t, x), \quad x(0)=x_{0} \in B_{1} \tag{1}
\end{equation*}
$$

on $[0,1]$ if there exists a sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ of piecewise linear functions and a sequence $\left\{h_{n}\right\}_{n=1}^{\infty}$ of divisions such that (denote $y_{n}\left(h_{n}^{k}\right)$ by x_{n}^{k} and $v\left(h_{n}\right)$ by v_{n})
i) $\lim _{n \rightarrow \infty}\left|h_{n}\right|=0$,
ii) $x_{n}^{0}=x_{0}$,
iii) for every positive integer n and $k=0,1, \ldots, v_{n}$ there are $a_{n}^{k} \in F\left(h_{n}^{k}, x_{n}^{k}\right)$ and $\varepsilon_{n}^{k} \in R^{n}$ such that $x_{n}^{k+1}=x_{n}^{k}+a_{n}^{k}\left(h_{n}^{k+1}-h_{n}^{k}\right)+\varepsilon_{n}^{k}$ and $y_{n}(\cdot)$ is linear on every $\left[h_{n}^{k}, h_{n}^{k+1}\right), k=0,1, \ldots, v_{n}$,
iv) $\lim _{n \rightarrow \infty} \sum_{k=1}^{v_{n}}\left\|\varepsilon_{n}^{k}\right\|=0$,
v) $\lim _{n \rightarrow \infty} y_{n}=y$ uniformly on $[0,1]$.

2.

Sentis introduced this definition to cover the case (cl stands for closure)

$$
F(t, x)=\bigcap_{\delta>0} \bigcap_{\substack{N \subset R^{n+1} \\ \mu(N)=0}} \operatorname{cl} f\left(B_{\delta}(t, x)-N\right),
$$

$f: R^{n+1} \rightarrow R^{n}$ being possibly discontinuous, and his definition works well for such right-hand sides, see [5]. The following example shows that in general (i.e. for F being only u.s.c.) the definitions of g-solutions should be modified.
Example 1. For $R^{n}=R$ set $F_{1}(t, x)=\{-1\}$ for $x<0$ and every $t, F_{1}(t, x)=$ $=\{-1,1\}$ for $x=0$ and every t and $F_{1}(t, x)=\{1\}$ for $x>0$ and every $t, F_{2}(t, x)=$ $=F_{1}(t, x)$ for t dyadically irrational and every x. For $t=\left(k / 2^{m}\right), k$ odd set $F_{2}(t, x)=$ $=F_{1}(t, x)$ for $x \notin\left[-1 / 2^{m}, 1 / 2^{m}\right]$ and $F_{2}(t, x)=\{-1,1\}$ for $x \in\left[-1 / 2^{m}, 1 / 2^{m}\right]$. Then both F_{1} and F_{2} are u.s.c. mappings and $\mu\left\{t \in[0,1] \mid \underset{x}{\exists} F_{1}(t, x) \neq F_{2}(t, x)\right\}=0$. The function $y(\cdot)$, identically equal to zero on $[0,1]$, is not a g-solution of $\dot{x} \in$ $\in F_{1}(t, x), x(0)=0$ (see Sentis [5]) but it is a g-solution of the relation $\dot{x} \in F_{2}(t, x)$, $x(0)=0$ on $[0,1]$. The sequence $\left\{y_{n}\right\}_{n=1}^{\infty}$ can be constructed as follows: $h_{n}=$ $=\left\{0,1 / 2^{n}, 2 / 2^{n}, \ldots,\left(2^{n}-1\right) / 2^{n}, 1\right\}, x_{n}^{k}=1 / 2^{n}$ for k odd, $x_{n}^{k}=0$ for k even, $y_{n}(\cdot)$ is linear on every $\left[h_{n}^{k}, h_{n}^{k+1}\right]$. It is easy to see that $\left\{y_{n}\right\}$ and y fulfil the conditions (i), ..., (v).

3.

To avoid this discrepancy we will define generalized solutions of $\dot{x} \in F(t, x)$ (we will call them regular g-solutions or rg-solutions) through certain regular right-hand side F^{*}. To obtain F^{*} we set $G^{*} F=\bigcap_{M \subset[0,1], \mu(M)=0} \operatorname{cl} G_{M} F$ and define F^{*} by means of the relation $G F^{*}=G^{*} F$. Let $\pi: R^{2 n+1} \rightarrow R^{n+1}, \pi(t, x, y)=(t, x)$ be the projection.

Lemma 1. Let $F: Q \rightarrow \mathscr{K}$ be a u.s.c. mapping. Then there exists a set $M_{0} \subset$ $\subset[0,1]$ such that $\mu\left(M_{0}\right)=0, G^{*} F=\operatorname{cl} G_{M_{0}} F$ and $\pi\left(G^{*} F\right)=Q$.

Proof. It will be helpful to introduce the mapping $\Phi, \Phi: t \in[0,1] \rightarrow \Phi(t)=$ $=\left\{(t, x, y) \in R^{2 n+1} \mid(t, x) \in Q, y \in F(t, x)\right\}$. The upper semicontinuity of F implies that Φ is a u.s.c. mapping into the set of compact subsets of $Q \times B_{1}$. Therefore, there is a set $M_{0} \subset[0,1]$ such that Φ is approximately continuous at all points of $[0,1]-M_{0}$ and $\mu\left(M_{0}\right)=0$ (see Hermes [1]). For this M_{0} the set $\{(t, x, y) \in$ $\left.\in R^{2 n+1} \mid t \notin M_{0},(t, x) \in Q,(t, x, y) \in \Phi(t)\right\}$ will be denoted by $G_{0} \Phi$. We have $G_{0} \Phi=G_{M_{0}} F$ and we shall prove $G^{*} F \supset \mathrm{cl} G_{0} \Phi$.

Let $(t, x, y) \in \operatorname{cl} G_{0} \Phi$. Then there exists a sequence $\left\{\left(t_{n}, x_{n}, y_{n}\right)\right\} \rightarrow(t, x, y)$ for $n \rightarrow \infty$ such that $t_{n} \notin M_{0}$ and $y_{n} \in F\left(t_{n}, x_{n}\right)$. Let $\mu(M)=0$. In virtue of the approximate continuity of Φ we can find a sequence $\left\{\tau_{n}, \xi_{n}, \psi_{n}\right\}$ such that $\tau_{n} \notin M,\left(\tau_{n}, \xi_{n}, \psi_{n}\right) \rightarrow$ $\rightarrow(t, x, y)$ for $n \rightarrow \infty$ and $\psi_{n} \in F\left(\tau_{n}, \xi_{n}\right)$. Hence $(t, x, y) \in \operatorname{cl} G_{M} F$, i.e. $\operatorname{cl} G_{0} \Phi \subset$ $\subset \mathrm{cl} G_{M} F$ and since M was an arbitrary null set we conclude $\mathrm{cl} G_{0} \Phi \subset G^{*} F$. Since the converse inequality is obvious we have $\mathrm{cl}_{M_{0}} F=G^{*} F$ and $\pi\left(G^{*} F\right)=Q$.

Remark. The upper-semicontinuity of F is not necessary. The proof is still valid if we suppose F to be only Scorza-Dragonian, i.e., u.s.c. except for sets whose projection to the t-axis has "arbitrarily small" measure (for the precise definition of the Scorza-Dragonian property see Jarník, Kurzweil [2]), due to the fact that the ScorzaDragonian property implies Borel measurability of Φ (see Rzeżuchowski [4]).

For $F: Q \rightarrow \mathscr{K}$ let us define the mapping F^{*} by means of the relation $F^{*}(t, x)=$ $=\left\{y \in R^{n} \mid(t, x, y) \in G^{*} F\right\}$. Then as a consequence of Lemma 1 we obtain $F^{*}: Q \rightarrow$ $\rightarrow \mathscr{K}$ and since $G F^{*}=G^{*} F$ and $G^{*} F$ is closed we have that F^{*} is u.s.c. Moreover, $F^{*} \subset F$ and since the mapping Φ from Lemma 1 is approximately continuous at all points of $[0,1]-M_{0}$, it follows immediately that $\left\{\left.t \in[0,1]\right|_{x \in B_{3}} ^{\exists} F^{*}(t, x) \neq F(t, x)\right\} \subset$ $\subset M_{0}$.

Remark. The multivalued mapping F^{*} can be equivalently defined as $F^{*}(t, x)=$ $=\bigcap_{\substack{\delta>0 \\ \mu=M \times B_{3} \\ \mu(M)=0}} \mathrm{cl} F\left(B_{\delta}(t, x)-N\right)$, which is similar to the definition of Filippov's cone, see Vrkoč [6].

Definition 2. Let the mapping $F: Q \rightarrow \mathscr{K}$ be u.s.c. and let $y(\cdot)$ be a g-solution of the relation $\dot{x} \in F^{*}(t, x), x(0)=x_{0} \in B_{1}$ on [0,1]. Then $y(\cdot)$ is called an $r g$-solution of (1) and the set $\left\{y(\cdot) \mid y(0)=x_{0}, y(\cdot)\right.$ is an rg-solution of $\left.(1)\right\}$ is called Sol $F\left(x_{0}\right)$.

As a trivial consequence of Definition 2 and Lemma 1 we obtain that all "nice" properties of Sentis' g-solutions (see [5]) are preserved: there is always an rg-solution, any classic solution is also an rg-solution and any rg-solution of (1) is a classic solution of the relation $\dot{x} \in \operatorname{conv} F(t, x)$. Moreover, $\operatorname{Sol} F_{1}\left(x_{0}\right)=\operatorname{Sol} F_{2}\left(x_{0}\right)$ whenever $\mu\left\{\left.t \in[0,1]\right|_{x \in B_{3}} ^{\exists} F_{1}(t, x) \neq F_{2}(t, x)\right\}=0$ since then $F_{1}^{*}=F_{2}^{*}$.

Example 2. Let F_{1} and F_{2} be the same as in Example 1. Then $F_{1}^{*}=F_{2}^{*}=F_{1}$, there are exactly two rg-solutions fulfilling the initial condition $x(0)=0$ (namely $x^{+}(t)=t$ and $\left.x^{-"}(t)=-t\right)$ and these solutions are the classic ones. Let $M \subset R^{n}$. Denote $-M=\left\{x \in R^{n} \mid-x \in M\right\}$. Then neither the equation $\dot{x} \in-F_{1}(t, x)$ nor $\dot{x} \in-F_{2}(t, x)$ has a classic solution fulfilling $x(0)=0$ but the function $y(\cdot)$ identically equal to zero is an rg-solution of both $\dot{x} \in-F_{1}(t, x)$ and $\dot{x} \in-F_{2}(t, x), x(0)=0$. Moreover we have conv $\left(-F_{1}(\cdot, o)=[-1,1]\right.$, hence $y(\cdot)$ is a classic solution of both $\dot{x} \in \operatorname{conv}\left(-F_{1}(t, x)\right)$ and $\dot{x} \in \operatorname{conv}\left(-F_{2}(t, x)\right), x(0)=0$.

4.

The rg-solutions can be obtained not only in terms of F^{*} but via a direct modification of Definition 1 as well.

Theorem. A function $y(\cdot)$ is an rg-solution of (1) if and only if for every $M \subset$ $\subset[0,1], \mu(M)=0$ there are sequences $\left\{y_{n}\right\}_{n=1}^{\infty}$ and $\left\{h_{n}\right\}_{n=1}^{\infty}$ such that all conditions (i), \ldots, (v) of Definition 1 are fulfilled and $\bigcup_{n=1}^{\infty} h_{n} \cap M=\emptyset$.

To prove the theorem we will use the following trivial lemma.
Lemma 2. Let us suppose $a \in F^{*}(t, x), M \subset[0,1], \mu(M)=0$. Then there are sequences $\left\{\left(t_{n}, x_{n}\right)\right\}_{n=1}^{\infty}$ and $\left\{a_{n}\right\}_{n=1}^{\infty}$ such that $a_{n} \in F^{*}\left(t_{n}, x_{n}\right), t_{n} \notin M, \lim _{n \rightarrow \infty}\left(t_{n}, x_{n}, a_{n}\right)=$ $=(t, x, a)$.

Proof. From $a \in F^{*}(t, x)$ we obtain as a consequence of the identity $G F^{*}=G^{*} F$ and of Lemma 1 that $(t, x, a) \in G F^{*}=\operatorname{cl}_{M_{0} \cup M} F, \mu\left(M_{0} \cup M\right)=0$. Hence there exists a sequence $\left\{t_{n}, x_{n}, a_{n}\right\} \rightarrow(t, x, a)$ such that $t_{n} \notin M_{0} \cup M$ and $a_{n} \in F\left(t_{n}, x_{n}\right)$. Since $F^{*}(\tau, \xi)=F(\tau, \xi)$ for $\tau \notin M_{0}$ the proof is complete.

Proof of the theorem: Since $\left\{t \in[0,1] \mid \exists F_{x \in B_{3}} F^{*}(t, x)=F(t, x)\right\} \subset M_{0}, \mu\left(M_{0}\right)=0$, the "only if" part of the theorem follows immediately. To prove the "if" part let $y(\cdot)$ be an rg-solution and $M \subset[0,1], \mu(M)=0$. Then there is a sequence $\left\{y_{n}\right\} \rightarrow y$ and the sequence $\left\{h_{n}\right\}$ such that the conditions (i), ..., (v) from Definition 1 are fulfilled with F^{*} instead of F. Condition (iii) written explicitly has the following form:

$$
y_{n}\left(h_{n}^{k+1}\right)=y_{n}\left(h_{n}^{k}\right)+a_{n}^{k}\left(h_{n}^{k+1}-h_{n}^{k}\right)+\varepsilon_{n}^{k}, \quad a_{n}^{k} \in F^{*}\left(h_{n}^{k}, y_{n}\left(h_{n}^{k}\right)\right) .
$$

As a consequence of Lemma 2 we obtain that $y_{n}, h_{n}^{k}, a_{n}^{k}$ and ε_{n}^{k} can be replaced by $\bar{y}_{n}, \bar{h}_{n}^{k}, \bar{a}_{n}^{k}, \bar{\varepsilon}_{n}^{k}$ such that

$$
\begin{equation*}
\bar{h}_{n}=\left\{0=\bar{h}_{n}^{0}<\bar{h}_{n}^{1}<\ldots<\bar{h}_{n}^{v_{n}+1}=1\right\} \cap M=\emptyset \tag{2}
\end{equation*}
$$

for every $n=1,2,3, \ldots, \bar{h}_{n}^{k}<h_{n}^{k+1},\left(\bar{h}_{n}^{k}-h_{n}^{k}\right)<1 /\left(n . v_{n}\right), \sum_{K=1}^{v_{n}}\left\|\bar{\varepsilon}_{n}^{k}\right\| \rightarrow 0$ as $n \rightarrow \infty$
and

$$
\begin{equation*}
\bar{y}_{n}\left(\bar{h}_{n}^{k+1}\right)=\bar{y}_{n}\left(\bar{h}_{n}^{k}\right)+\bar{a}_{n}^{k}\left(\bar{h}_{n}^{k+1}-\bar{h}_{n}^{k}\right)+\bar{\varepsilon}_{n}^{k}, \quad \bar{a}_{n}^{k} \in F^{*}\left(\bar{h}_{n}^{k}, \bar{y}_{n}\left(\bar{h}_{n}^{k}\right)\right) \tag{3}
\end{equation*}
$$

for $n=1,2, \ldots$ and $k=0,1,2, \ldots, v_{n}$.
We can proceed for example as follows. For every $n=1,2, \ldots$ we set $\breve{h}_{n}^{0}=h_{n}^{0}=$ $=0, \bar{y}_{n}\left(h_{n}^{0}\right)=x_{0}, \bar{h}_{n}^{v_{n}+1}=1, \bar{y}_{n}(1)=y_{n}(1), \bar{a}_{n}^{0}=a_{n}^{0}$. Let us denote $1 /\left(n v_{n}\right)$ by ϱ. As a consequence of Lemma 2 we can choose $h_{n}^{k}, \bar{a}_{n}^{k}$ and ψ_{n}^{k} such that (2) is fulfilled and $\left|\bar{h}_{n}^{k}-h_{n}^{k}\right|<\varrho, \psi_{n}^{k} \in B_{e}\left(y_{n}\left(h_{n}^{k}\right)\right) \subset B_{3}, \quad \bar{a}_{n}^{k} \in F^{*}\left(h_{n}^{k}, \psi_{n}^{k}\right) \quad \bar{a}_{n}^{k} \in B\left(a_{n}^{k}, \varrho\right)$ holds for $k=1,2, \ldots, v_{n}$. We set $\bar{y}_{n}\left(h_{n}^{k}\right)=\psi_{n}^{k}$ and choose such $\bar{\varepsilon}_{n}^{k}$ that (3) is fulfilled. Then

$$
\bar{\varepsilon}_{n}^{k}=\bar{y}_{n}\left(h_{n}^{k+1}\right)-\bar{y}_{n}\left(h_{n}^{k}\right)-\bar{a}_{n}^{k}\left(h_{n}^{k+1}-\bar{h}_{n}^{k}\right)
$$

and

$$
\begin{gathered}
\left\|\bar{e}_{n}^{k}\right\| \leqq\left\|\bar{y}_{n}\left(h_{n}^{k+1}\right)-y_{n}\left(h_{n}^{k+1}\right)\right\|+\left\|y_{n}\left(h_{n}^{k}\right)-\bar{y}_{n}\left(\bar{h}_{n}^{k}\right)\right\|+\left\|\bar{a}_{n}^{k}-a_{n}^{k}\right\|\left\|\bar{h}_{n}^{k+1}-\bar{h}_{n}^{k}\right\|+ \\
\quad+\left\|a_{n}^{k}\right\|\left(\left|\bar{h}_{n}^{k+1}-h_{n}^{k+1}\right|+\left|\bar{h}_{n}^{k}-h_{n}^{k}\right|\right)+ \\
+\left\|y_{n}\left(h_{n}^{k+1}\right)-y_{n}\left(h_{n}^{k}\right)-a_{n}^{k}\left(h_{n}^{k+1}-h_{n}^{k}\right)\right\| \leqq 3 \varrho+2 \varrho+\left\|\varepsilon_{n}^{k}\right\| .
\end{gathered}
$$

Hence $\lim _{n \rightarrow \infty} \sum_{k=1}^{v_{n}}\left\|\bar{\varepsilon}_{n}^{k}\right\|=0$. Similarly we obtain $\lim _{n \rightarrow \infty} \bar{y}_{n}=y$ uniformly on $[0,1]$ and the proof is complete.

Remark. We have supposed $F: Q=[0,1] \times B_{3} \rightarrow \mathscr{K}$, where \mathscr{K} is the set consisting of all compact non empty subsets of B_{1}. The reasons for taking $[0,1]$, B_{1} and B_{3} are of course purely technical.

References

[1] H. Hermes: Calculus of Set Valued Functions and Control. Journal of Mathematics and Mechanics, Vol. 18, No. 1, 1968, pp. 47-59.
[2] J. Jarnik, J. Kurzweil: On conditions on right hand sides of differential relations. Čas. pěst. mat., 102 (1977), pp. 334-348.
[3] R. Kuratowski: Topology. Vol 1, 2 (Russian), Moscow 1966.
[4] T. Rzeżuchowski: Scorza-Dragoni Type Theorem for Upper Semicontinuous Multivalued Functions. Preprint, Institute of Mathematics, Warsaw Technical University, Warsaw 1978.
[5] R. Sentis: Equations differentielles a second membre measurable. Bolletino U.M.I. (5) 15-B (1978), pp. 724-742.
[6] I. Vrkoč: A new definition and some modifications of Filippov cone. Equadiff IV, Proceedings, Prague 1977, pp. 433-441. Lecture Notes in Mathematics, 703 Springer-Verlag 1979.

Author's address: 19905 Praha 9 - Letňany, Beranových 130 (Výzkumný a zkušební letecký ústav).

