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Časopis pro pěstování matematiky, rož. 106 (1981), Praha 

ON SOME MAPPINGS GENERATING VECTOR L-MEASURES 

JiRf BRABEC, Praha 

(Received November 2, 1977) 

1. NOTATION AND INTRODUCTORY REMARKS 

1.1. In this paper the letter Lwill be reserved for an orthomodular o-poset, that 
is a partially ordered set (with an ordering relation g) with the greatest element 1 
and with a binary relation 1 (the so called orthogonality) satisfying the conditions: 

(i) 1 is a symmetric relation; 
(ii) alb, c ^ a implies c JL b; 

(iii) for every at most countable family {an}neI (I c N) such that an 1 am for 
n =f= m, there exists sup an. 

n 

In this case we write sup an = Y,an a n ^ we call this supremum the orthosum of 
n n 

{an}„ and {an}n an orthofamily; if I = (1, 2,..., m} then we also write ax + ... + am. 

(iv) a^b + c, a±b implies a ^ c; 
(v) for every pair a, b such that a ^ b, there exists one and only one element c 

such that b = a + c. 

We write c = b — a and we call c the (relative) orthocomplement of a in b. 

1.2. Remarks, a) Since a ^ 1 for every a e L, the element 1 — a = d f a
1 exists 

according to (v); we call this element the orthocomplement of a. It is easy to show 
that the function a H* a1 is involutory and antitone. Further, the least element 0 
of L exists and 0 = l 1 . 

b) The least upper bound or the greatest lower bound of a family {at}ieI (which 
need not be orthogonal) will be denoted by \Z{a{ \ iel} or Afa; | J'e/}, respctively; 
for I = N we shall also use the notation 

00 00 

V"» of Aa„, 
n-=l n = l 

respectively. 
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c) The abbreviation (oOP) will be used for the term "orthomodular tr-poset". 
For some properties of (crOP) see e.g. [ l] . Boolean cr-algebra is a special case of 
(<TOP); a1 is then the Boolean complement of a. (crOP) is sometimes called an 
abstract logic 6f a physical system. The standard logic of quantum mechanics is the 
lattice of all closed subspaces of a separable Hilbert space H; this lattice is (crOP), 
where the ordering is given by the set inclusion and the orthogonality is the usual 
orthogonality of subspaces. 

1.3. Definition. A set M c L is called compatible in L if for each finite subset 
[a!,..., ak} a M there exists a finite orthogonal family in L such that every ele
ment at (i = 1,..., k) is the orthosum of a subfamily of this family. 

From Tukey's lemma it follows that for every compatible set M a L there exists 
a maximal compatible set B in L containing M. 

We call every maximal compatible set in La block of L. In the paper [1] the fol
lowing theorem was proved. 

Theorem. Every block B in Lis a Boolean c-subalgebra of L. 

If Lis a Boolean cr-algebra, then every subset of Lis compatible; one and only one 
block of Lis Lin this case. 

1.4. Definition. Let L, L be (<xOP). A mapping h : L -> L is called the a-ortho-
homomorphism if it has the following properties: 

(a) h(0) = 0, h(\) - 1, 
^ (b) a JL b implies h(a) ± h(b), 

(c) if a'i JL ak for i, k = 1, 2,. . . ; i 4= fc, then 

*(£-.)-I *(«.)• 
n = l n = l 

The class of all a-orthohomomorphisms of L into L will be denoted by horn (L, L'). 

Remark. If M is compatible in L, then h(M) is compatible in L. 

1.5. The letter E will be reserved for a separable Banach space. We denote by # 
the family of all open sets in £, by & the cr-algebra of all Borel sets in E. A multiplica
tive base in E is such an open base which is closed under finite intersections and 
which includes 0 and E; we denote it by ^A . It is clear that every (countable) open 
base in E can be extended to a (countable) multiplicative open base. 
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2. L-MEASURES AND L-SCALES IN E 

2.1. Definition. Each element of horn ($9 L) is called an L-measure in E. 

The class of all L-measures in E will be denoted by S£E. 

Remarks. 1) If x is an L-measure in E9 then Rx is a er-Boolean subalgebra in L. 
(By Rx we mean the range of the mapping x.) 

2) If Sf c J1 generates ^ and x, >> are L-measures in E such that x \ Sf = y | Sft 

then x = y. 

2.2. Definition. An L-scale in £ is a mapping/: ^A -• L, such that 

(1) ^A is a multiplicative base in L, 
(2) Rf is a compatible set in L, 
(3) /(Gx n G2) = /(G t) A /(G2) for every pair Gl9 G2e<$\ 
(4) for every r > 0 there exists a countable r-cover 8?r c <gA of E (i.e. £ -= 

= \J{G | G e ^ r } , diam G < r) such that V {/(<?) | Ge^ r } = 1. 

If instead of (4) the following stronger condition holds: 
00 

(4*) a) G = U G„, G„e$A, Ge$A implies 
B = l 

f(G) = V f(G„), 

b)f(£) = L 

then we call/a a-additive scale. 

The class of all L-scales in E will be denoted by SfE. 

2.3. Remarks. 1) It is clear that for every L-measure x in E and for every multi
plicative base ^A the restriction x \ ̂ A is a cr-additive L-scale in E. 

2) Real L-scale of Caratheodory (cf. [2]) is a mapping / : R -> L with the follow
ing properties: 

(a) / is isotonic, i.e. p ^ q implies J(p) ^ J(q)9 

(p) for every real sequence (p„)9 pn/ -Poo, 

V/(p.) = i , 
n = l 

(y) for every real sequence (pn)9 pn\ — oo, 

A/(p.) = o. 
n = l 
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If we define / : ISA -» L, where ^A is the base of open intervals in JR, 

f((p,q))=J(q)-?(p), P<q, 

then f is an L-scale in R from Definition 2.2. On the other hand, every L-scale in R 
defined on the base of open intervals induces a scale of Caratheodory. 

3) We shall try to motivate physically the definition of the L-scale. Suppose that 
we have a set 0E of objects, which we shall call observable vectors in E of a physical 
system. For every observable vector fe 0E and for every open set Ge 0A we shall 
interpret the pair (f, G) as the hypothesis that the "value" off lies in the set G. Let 
us assume that the set of all pairs (f, G),fe(9E,Ge&A is (crOP), where a ^ b means 
that the hypothesis b is a consequence of the hypothesis a and a Lb means that the 
hypotheses a, b exclude each other. For a fixed observable vector fe (9E the family 
{(f, G)}G€#A is a family of experimental hypotheses associated with the vector f 
Now, if we define a mapping / : G K ( / , G ) , then the conditions (1) — (4) from 
Definition 2.2 seem to be quite natural. 

Let us remark that L-measure in R are sometimes called observables (see e.g. [4]). 
In Section 3 we will show that L-measures are generated (in a certain sense) by L-
scales. 

2.4. Definition. Let h : #i -* U h'^i ~* L be two L-scales in £. We say that fL 

is equivalent to f2 (and we write fx ~ f2) if 

1) Gx G <3l, G2 e <$$, G, cz G2 implies h(G,) ^ f2(G2), 

2) Gi G ^ r , G2 e <$A, G2 cz Gl implies f2(G2) ^ /-.(GJ)-

3. A THEOREM ON GENERATING 

3.1. Theorem. Let f: @A -*> Lbe an L-scale in E. Then there exists one and only 
one L-measure x in E such that 

(i) x(G) g f(G) for all Ge<$\ 

(ii) f(Gt) £ x(G) whenever Gt a G, Gte^A, Ge<g. 

Iff is G-additive, then f = x | ^ A . 

This theorem immediately implies 

Corollary. The equivalence of L-scales from. Definition 2.4 is an equivalence 
relation on SfE. Let ir

E be the factor set SfE\~. Then there exists one to one 
function s from ir

E onto S£E such that s(X) \ <$A G X for every X e i^E and every 
multiplicative base <3A in E. 
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3.2. Proof of uniqueness of L-measure. It suffices to prove that the L-measure x 
from Theorem 3.1 satisfies 

(iii) x(G) = V/(GM), where UG„ = G, G„e «T , Gn c G , 
n = l n = l 

so it is uniquely defined on 0 and since ^ generates the --algebra ^ , the uniqueness 
follows from Remark 2, Section 2.1. 

If 
oo 

G = U G„, Gn 6 ST , G„ cz G , 
n = l 

then (i) implies 

x(G„)^/(Gn), so x(G) = V x ( G ^ V / ( G „ ) ; 
n = l n = l 

on the other hand, it follows from (ii) that f(Gn) ^ x(G), hence 

Vf(G„) ^ x(G) 
n = l 

and (iii) holds. If/ is cr-additive, then obviously/(G) = x(G) for all G e ^A . 
The existence of L-measure x from Theorem 3.1 will be proved for special cases 

of (ffOP) in the following sections 3.3 — 3.6. We may assume that the base #A is 
countable. 

3.3. The assertion of Theorem 3.1 holds provided that L is a d-field of sets. 
Namely, there exists a map g : 1 -> E such that g"1 : M h->g-1(M), M a E9 

has properties (i), (ii) and therefore x = g"1 | & is the L-measure from Theorem 3.L 

Proof. Let t be any element of 1 and let us denote 

^ , = { G e ^ A | * e / ( G ) } ; 
obviously <%t 4= 0 (see (4) of Definition 2.2). Further, Gl5 G2 e Jf, implies Gl n G2 e 
e J*, (this follows from (3), Definition 2.2). So @t is a base of a filter #"„ which is 
a Cauchy filter. Indeed, in view of (4), Definition 2.2, for every r > 0 there exists 
G e ^ A , diam G < r, such that G e ^,. Since £ is a complete space, we have $Ft -> s 
and this s is unique. We put g(t) = s, so a map g : 1 -> E is defined. If f e (/"^(G), 
G e 0A , then g(f) = s e G, thus G is a neighbourhood of s and therefore G e ^*r. 
Thus f e/(G), hence g_1(G) c / (G) and (i) holds. Let Gt a G (Gx e 0 \ G e ? ) ; 
we will prove that/(Gx) c g_1(G). Let f e/(Gj) and let us assume that t^g"1(G)9 

so g(t) = s$G. Since G1 c G, there exists G0 e 0A such that s e G0, G o P i G ^ 0. 
Hence f(G0) nf(Gt) = 0 (according to (3)). Now seG0 implies teg~1(G0) a 
c /(G0), a contradiction. Therefore (ii) holds. 
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3.4. The assertion of Theorem 3A holds provided that L is a factor (T-algebra 
M\I9 where Jt is a a-field of sets and I is a cr-ideal in Jt (we denote the greatest 
element of Jt by M). 

Namely, there exists g : M -» E such that the L-measure x from Theorem 3.1 
is defined by x(A) = [g-1(-4)] for every A e &. ([C] is the equivalence class of Jt\l 
such that C G [C], C e M\ the greatest element in Jt\l will be denoted by 1.) 

Proof. For every Ge&A let us choose one and only one element /(G)ef(G). 
We put 

F0 = U {(KG, n G2) - (/(GO n f(G2)) u 

u ( ( / ( G 1 ) n / ( G 2 ) ) - / ( G 1 n G 2 ) ) } . 
Since 

[/(Gt n G 2 ) ] = [/(GO] A [/(G2)] = [/(Gx) n /(G2)] , 

it is clear that F0 e L We have 

f(Gt n G2) - F0 = (/(G,) n/(G2)) - F0 

for every Gl9 G2e<&\ so if we put f(G) = /(G) - F0? then f(Gx n G2) = /(GO n 
nf(G2)9 thus / has the property (3) from Definition 2.2. Moreover, [/(G)] = 
= [/(G)] = f(G). For every rational r > 0 we denote by 0>r such an r-cover of E9 

0>ra<gA, that \/{f(G) | G G^r} = 1 (property (4) from Definition 2.2). Let us put 

F! = U (M - U f(G)), 

where Q+ is the set of positive rational numbers. For every rational r > 0 

1 = [M] = V{[/(G)] | G e ^ } = [U{/(G) | G e ^ r}] , 

so Fj e /. We put /°(G) = /(G) u Fu thus 

[f°(G)] = [/(G)]=/(G). 
It is clear that 

U { f ° ( G ) | G e ^ r } = M , 

sof° has the property (4) (with respect to the <r-field Jt). Obviously, f° also preserves 
intersections, so in view of 3.3 there exists 

x° e horn (^, M) ( x ^ g - 1 ! ^ , where g:M-*E) 

such that the conditions (i), (ii) from Theorem 3.1 are fulfilled for x° and f°. We 
then define 

x : ̂  -> Jt\l by x(A)' = [x°(A)] , 

so x e horn ($9 Jt\l) and the conditions (i), (ii) from Theorem 3.1 are fulfilled for x 
and f. 
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3.5. The assertion of Theorem 3.1 holds provided that L is an arbitrary cr-algebra. 

Proof. According to Loomis representation theorem of Boolean cr-algebras (see 
e.g. [3]) there exists a cr-field M of sets, a cr-ideal I in Jt and an isomorphism h from L 
onto Jt\L Iff is an L-scale in E, thenf1 = h of is an .^//-scale in E, thus the preceding 
section gives that there exists x1 e horn (0&, Ji\l) such that (i), (ii) hold for x1 andf1. 
If we put x = h"1 o x1, then x e horn (^, L) and (i), (ii) hold for x andf 

3.6. Now it is easy to complete the proof of Theorem 3.L Let Lbe any (crOP). 
Since Rf is compatible in L, there exists a Boolean cr-sublagebra B c L, B 3 Rf 

(see Section 1.3) and f: <&A -> B is also a U-scale in E. Therefore, in view of 3.5 
there exists x e horn (J^, B) such that (i), (ii) hold for x and f. Simultaneously, of 
course, x e horn ($?, L), so x is an L-measure in E and thus Theorem 3.1 is proved. 
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