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ON THE MAXIMUM OF GENERALIZED DARBOUX FUNCTIONS
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Summary. The authors show that the proof of a theorem on the maximum of generalized
Darboux functions given by Farkova contains a gap, and prove the theorem for the special case
of the Euclidean space with the collection of all open intervals as a base.
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Let X be a topological space with a base Z. A real valued function f on X is said
to be in Dy(4) if it has the following property:

If Be &, x, y € B, the closure of B, and 7 is a real number with f(x) < n < f(»),
then for an arbitrary & > 0 there is a point z € B such that f(z) e (n — ¢, n + ).

The conditions (1*) and (2) below imposed on the base # are required for some
conclusions.

(1*) For arbitrary xe X, Be 4, if 0 is an open set and x € 0 n B, then there
exists Ue # such that U « ¢ n Band xe U — U.

(2) For every Be # and every decomposition of B, B=CuD, Cn D =90,
C + 0 + D with the property that Un B < C or Un B = D whenever U € %
and U = C or U < D, respectively, we have C'n D %+ 0 = Cn D', where C’, D’
are the derived sets of C, D, respectively.

Farkovd proved some interesting results about the maximum of functions in D (%)

([1], pp. 113—114):

Theorem F1. Let X be a topological space with a base & satisfying (1*) and (2).
Let f, g € Do(%) be such that every x € X is a point of the upper semi-continuity
of for g. Then ¢ = max (f, g) € Dy(%).

Theorem F2. Let X be a topological space with a base #. Let f € Do(%B). If f is
not upper semi-continuous, then there exists a function g€ Do/#B) such that
¢ = max (f, g) ¢ Dyo(%).

Unfortunately, the function g constructed in the proof of Theorem F2 is not
necessarily in Do(4%), as the example below shows. Therefore Theorem F2 is dubious.

We consider the Euclidean plane E,. Let & be the collection of all open intervals
{(x,y):a <x<b,ec<y<d},a<b,c < d. Define f on E, as follows:
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f(x,y) = Y sin
x+y x+y

if x=2y>0,

x . 1
= sin
x+y x+y

if y>x>0,

= 0 otherwise.

Clearly f is continuous at every (x, y) % (0, 0) and it can be easily shown that
f € Dy(). f is not upper semi-continuous at (0, 0), since
Iim f(x,y)=1%>f(0,0).
(%,)-(0,0)
The function g constructed in [1] is defined by g(0,0) = f(0, 0) = 0, g(x, y) =
= 2K — f(x, y) if (x, y) # (0, 0), where K is a number with + > K > 0. It is ob-
viously not in Dy(%).

The purpose of the present paper is to prove the validity of Theorem F2 for the
case that X is E, and 4 is the collection of all open intervals in E,. Before we proceed
to the main result, we state two theorems given in [2] (p. 418 and p. 422) which will
be needed.

Theorem M1. Let X be locally connected topological space, # a base consisting
of open connected sets and satisfying (1*). Let f, g € Do(%). If each x is a point of
continuity of f or g, then f + g € Dyo(2).

Theorem M2. Let X and # be as in Theorem M. If g is a continuous function
on X and f e Dy(%) such that f is bounded at each x € X where g (x) = 0, then
fg € Do(2B).

Theorem 1. Let # be the collection of all open intervals in E,. If f is a function
on E, such that max (f, g) € Do(2%B) for every g € Do(%), then fe Dy(%) and f is
upper semi-continuous on E,.

Proof. Since every constant function is in Dy(%), the hypothesis clearly implies
that f € Do(%). To show that f is upper semi-continuous, we assume the contrary
and construct a function g € Dy(%) such that max (f, g) ¢ Do(%).

Suppose f is not upper semi-continuous at py = (X, yo). Then lim f(p) > f(po)-

P~Po

Let K be a number such that
f(po) <K <Tmf(p) and 2K < f(po) + Iim f(p).

P—*po P~*po
Since f € Do(4B), it can be easily shown that, if p = (x, y),
Imf(p) = TIm f(p).

P=*Ppo P~*Ppo
x*x0,y¥yo
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Let pO(I) = {p = (xa y):x > Xg, Y > .Vo}’ Po(H) = {p = (x! .V):x < Xg, ¥ > yO}’
po(II) = {p = (x, y): x < x¢, ¥ < Yo} and p(IV) = {p = (x, y): x > X0, ¥ < yo}.
Then at least one of

Iim f(p) (A =LILIILIV)

P~ po
Pepo(A)

is equal to Eﬁf(p).
Let f(p) = max (f(p), f(po))- Then /€ Do),
Iim f(p) = Tim f(p) > f(po) = f(po)

P=Ppo P—*PpPo

max (f, g) = max (f, max (f(po), 9)) € Do(%)

for every g € Do(%). Therefore, every statement above remains valid if f is replaced
by f, and we can assume with no loss of generality that f is bounded below on E,.
Using f e Do(#) we can show that, for each A = L, IL, III or IV, there exists
a sequence {p,}:>; = po(A) such that p, — p, and f(p,) = f(po). In the case
Im f(p) < 2K — f(po)

P=*po
Pepo(A)

there exists U, € # such that U, < po(A), po € U, and f(p) < 2K — f(po) + 1 for
every p € U,. Thus f is also bounded above on U,. With no loss of generality, we
assume that the above sequence {p,} = U,. Let X, = cl(po(A)) — {po}. Then
Br={BnX,:BeB, BnX, + 0} is a base for the subspace X,, and the sets
Apy = {psin =1,2,...}, Ay, = X, — U, are two disjoint, closed (relative to X)
sets on X,. The function h, on X, defined for each p € X, by

d(P, AAI)
d(p, Apy) + d(p, Apz)

where d is the usual distance, is continuous on X, h(Aa;) = 0, ha(4s;) = 1 and
ha(p) € (0, 1) if peX, — Apy — Ap,. Also, it is easily seen that the restriction
f|Xa € Do(#,). Noting that f is bounded on U, and 2h,(p) — 1 = 0 only at some
points pe X, — Apy — Ap, = U,, we apply Theorems M1 and M2 and conclude
that the function g, on X, defined by

ga(p) = 2Khx(p) — (2ha(p) — 1) f(p) for peX,

and

hA(P) =

is in Dy(4,).
In the case Tim f(p) > 2K — f(p,) we define

P~ Ppo
pepo(A)

ga(p) = 2K — f(p) for peX,,
and we also have g, € Dy(%,). In particular, for all A = I, II, ITI, IV, the following
holds: )
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(#) IfBe &, B < py(A), 41,9, € B — {po} (B — {po} is the closure of B relative
to the subspace X,), n € R such that g,(q,) < n < ga(q,), then for given ¢ > 0,
there exists z € B with g,(z) e(n — &, n + ¢).

It should be noted that, for p e X, N X4, ga(p) = ga(p). Thus we can define g
on E, as follows:

9(p) = ga(p) if peX, (A=LILIILIV),
=f(po) if p=po.
Now we show that g € Dy(%). Let Be 8, q,, 4, € B, € R such that g(gq,) < n <

< ¢(g,), and & > 0 be given. We want to show there is a z € B with g(z) e(n — &,
N+ e).

Case 1.'B < py(A) for some A. If g; # po + g5, then the conclusion follows
from (#) above. Hence we assume that either q; = p, or g, = p,. Also, for this A,
we may have

m f(p) < 2K - f(po) or Iim f(p) > 2K — f(po) .

P=Ppo P=Ppo
pepo(A) Pepo(A)

1.1. Tm f(p) £ 2K — f{(po) and q; = p, (or g, = p,). We recall that the set
P~ Ppo
pepo(A)

Ay, is a sequence {p,} in py(A) such that p, - p, and f(p,) = f(p,)- Since p, = q,
(or po = q3), po € B. Hence we see that there exists n such that p, € B and f(p,) < #
(or f(ps) > n). Also, p,eAn, implies hx(p,) = 0 and g(p,) = ga(ps) = f(Ps).
Consequently, p, and g, (or g, and p,) are points in B, both different from p, and
satisfying g(p,) < n < g(q2) (or g(q;) < n < g(p,)). By (#), there exists z € B with
9(2) = ga(z) e(n — &, n + o).

1.2. Tim f(p) > 2K — f(p,) and g, = p,. Since B = po(A) and p, € B, we have

perolA)
imf(p) = Tm f(p) > 2K — f(po) = 2K — g{q,) > 2K — 1
pp_;go p:pofx)

and hence there is a point p € B with f(p) > 2K — 7. That is, g(p) = ga(p) = 2K —

— f(p) < n. Now p,q,€B, g(p) <n < g(q,) and p % p, #+ q,. We can use (#)
again.

1.3. Im f(p) > 2K — f(p,) and g, = p,. By the choice of K, f(p,) < K and
pP—*PpPo
pepo(A)

hence f(po) < 2K — f(po). Thus we have g(q,) = ga(q,) = 2K — f(q,) and g(q,) =
= g(po) = f(po) < 2K — f(po) = 2K — f(q,). The inequalities g(q,) < 1 < g(q,)
imply f(q;) < 2K — n < f(q,). Since fe Dy(%), there exists ze B with f(z) e
€(2K —n — ¢, 2K — n + ¢). It follows that g(z) = g,(z) = 2K — f(z)e(n — ¢,
n + e).

414




Case 2. B ¢ pofA) for A = LIL III, or IV. Let B, = B n po(A). Then either
B, + 0 for all four A’s or for exactly two A’s (that is, for A = I, II, or IL III, or
IIL, IV, or IV, I).

2.1. B, # 0 for two A’s. For example, By # 0 = By (the other cases are similar).
Then B = Byu By,. If q,, g, are both in B; or By, then this is reduced to Case 1.
We assume that g, € By, g, e By, and pick any point q; € B — (B;uU By,) (thus
g3 € By n Byy). There is nothing more to prove if g(qs) = . If g(q3) < #, we consider
43, 92 € By If g(q3) > 1, we consider gq,, g3 € B;. In either case, it is solved by Case 1.

2.2. B, #* 0 for all four A’s. Let C; = B — (Bjy U By) and C; = B — (B u By).
Then C,, C, € &, both are of the type in 2.1 above and B = C, u C,. For this case,
the conclusion follows from 2.1 in the same manner as 2.1 follows from Case 1.

We have just showed that g € Do(%). It remains to show that ¢ = max (f, g) ¢
¢ Dy(4B). Since there exists at least one A such that

Im f(p) = im f(p) > 2K — f(po),

P—po P=*po
Pepo(A)

we have g(p) = 2K — f(p) for every pe X, = cl(po(A)) — {po} for this A. For
B e & such that B = py(A) and p, € B, g(p) = 2K — f(p) or f(p) + g(p) = 2K for
every p € B and hence ¢(p) = K for every p € B. But ¢(p,) < K. Clearly ¢ ¢ Do(%).
The proof is completed.

Theorem 2. Let B be the collection of all open intervals in E, and f e Do(%).
Then max (f, g) € Do(%) for every g € Do(%) if and only if f is upper semi-con-
tinuous on E,.

Proof. In view of Theorem F1 and Theorem 1, all we need to show is that #
satisfies the conditions (1*) and (2). It is trivial that & satisfies (1*). We now prove
that & also satisfies (2). Let Be 8, B=Cu D, Cn D =0, C + 0 + D such that
for Ue B, UnB < C or Un B c D whenever U c C or U c D, respectively,
be given. We want to show that C'n D =0 3+ Cn D’. Suppose C'n D = 0.
Then Bn C’' = C, Cis closed relative to B and hence D is open. Since C # @ & D,
we can pick pe C,q € D and B, € # such that p, ge B, and B, = B.Let C; = B; A
N C, D; = B; n D. Then q is a point of the open set D,. We can partially order
the collection # = {U e #:q e U < D,} by inclusion. It is clear that every chain is
bounded above. By Zorn’s lemma, there is a maximal member U, in #. Now U, € #
and U, = D, = D. By our assumption, U, n B = D. That is U, = D since U, =
< B; < B. For the compact interval U, in the open set D, we can easily construct -
aUed% suchthat Uy c U = D.Let Uy = By U. Then U; e # and U, = B; n
N Uy, =« U; = D,. Since Cy + 0, B, n U, properly contains U, and so does U,.
This contradicts the maximality of U,. Thus C’'n D % Q. Similarly Cn D’ = 0.
Theorem 2 is proved.
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Remark. The results in this paper can be easily extended to the n-dimensional
Euclidean space with the base £ consisting of all open intervals in E,. It is not known
whether the same conclusion is true for a general topological space X.
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Souhrn
O MAXIMU ZOBECNENYCH DARBOUXOVYCH FUNKC{

H. W. Pu, H. H. Pu
Autofi ukazuji,.Ze dukaz vty o maximu zobecn®ngych Darbouxovych funkci podany Farkovou

obsahuje mezeru, a dokazuji tuto v&tu pro specidlni ptfipad eukleidovského prostoru s bazi
danou soustavou viech otevienych intervalu.

PesomMme
O MAKCMMYME OBOBIIEHHBIX ®VHKLUMUI JAPBY

H. W. Pu, H. H. Pu
ABTOpBI MOKa3bIBAIOT, YTO B AOKA3aTeILCTBE Teopemsl PapkoBOil 0 MakCAMyMe 00OGINEHHBIX

dysxumit [JapOy nmee1csa npobenb, B AOKA3LIBAIOT 3Ty TEOPEMY AJIA CHELHAIBLHOIO CIy4yas eBKIIH-
J0Ba IPOCTPAHCTBA C 6a3HCOM COCTOAIIMM M3 BCEX OTKPHITHIX HHTEPBAJIOB.
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