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ON THE MAXIMUM OF GENERALIZED DARBOUX FUNCTIONS 

H. W. Pu, H. H. Pu, College Station 

(Received April 2, 1986) 

Summary. The authors show that the proof of a theorem on the maximum of generalized 
Darboux functions given by Farkova contains a gap, and prove the theorem for the special case 
of the Euclidean space with the collection of all open intervals as a base. 
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Let X be a topological space with a base $&. A real valued function / on X is said 
to be in D0(@) if it has the following property: 

If B e &9 x9 y e B9 the closure of B9 and rj is a real number with f(x) < r\ < f(y)9 

then for an arbitrary e > 0 there is a point z e B such that/(z) e (rj — e9 r\ -f s). 
The conditions (1*) and (2) below imposed on the base & are required for some 

conclusions. 
(1*) For arbitrary x e X9 B e @9 if 0 is an open set and x e 0 n B9 then there 

exists Ue@ such that U cz 0 n B and xeU - U. 
(2) For every Be ^ and every decomposition of B9 B = Cu D9 C n D = 0, 

C #= 0 + D with the property that U n B cz C or U n B cz D whenever U e® 
and U a C or U a D9 respectively, we have C n D 4= 0 4= C n D', where C', D' 
are the derived sets of C, D, respectively. 

Farkova proved some interesting results about the maximum of functions in D0($) 
([1], pp. 113-114): 

Theorem Fl. Let X be a topological space with a base & satisfying (1*) and (2). 
Let f9g e D0($) be such that every xeX is a point of the upper semi-continuity 
off or g. Then <p = max (/, g) e D0( 

Theorem F2. Let X be a topological space with a base {%. Let fe D0(&). If f is 
not upper semi-continuous, then there exists a function g e D0{$) such that 
<p = max (/, g) $ D0(@). 

Unfortunately, the function g constructed in the proof of Theorem F2 is not 
necessarily in D0($)9 as the example below shows. Therefore Theorem F2 is dubious. 

We consider the Euclidean plane E2. Let & be the collection of all open intervals 
{(x9 y): a < x < b9 c < y < d}9 a < b9 c < d. Define / on E2 as follows: 
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f(x, y) = — - — sin if x = y > 0, 
x + y x + y 

X . 1 . . л 

sin ìf y > x > 0 , 
x + y x + y 

= 0 otherwise . 

Clearly / is continuous at every (x, y) =j= (0, 0) and it can be easily shown that 
fe Do(08)./is not upper semi-continuous at (0, 0), since 

Bm f{x9 y) = i > /(0, 0). 
( * ,y) - (0 ,0) 

The function g constructed in [1] is defined by g(0, 0) = /(0, 0) = 0, g(x, y) = 
= 2K - f(x, y) if (x, y) =f= (0, 0), where K is a number with \ = K > 0. It is ob­
viously not in Do(08). 

The purpose of the present paper is to prove the validity of Theorem F2 for the 
case that X is E2 and 08 is the collection of all open intervals in E2. Before we proceed 
to the main result, we state two theorems given in [2] (p. 418 and p. 422) which will 
be needed. 

Theorem Ml. Let X be locally connected topological space, 08 a base consisting 
of open connected sets and satisfying (1*). Let f, g e Do(08). If each x is a point of 
continuity off or g, then f + g e D0( 

Theorem M2. Let X and 08 be as in Theorem Ml. If g is a continuous function 
on X and fe Do(08) such that f is bounded at each xeX where g (x) = 0, then 
fg e Do{0). 

Theorem 1. Let 08 be the collection of all open intervals in E2. Iff is a function 
on E2 such that max (/, g) e Do(08) for every g e Do(08), then fe Do(08) and f is 
upper semi-continuous on E2. 

Proof. Since every constant function is in Do(08), the hypothesis clearly implies 
that fe Do(08). To show that / is upper semi-continuous, we assume the contrary 
and construct a function g e Do(08) such that max (/, g) £ Do(08). 

Suppose / is not upper semi-continuous at p0 = (x0, y0). Then Iim/(p) > /(P0)-
P^Po 

Let K be a number such that 

f(p0) < K < Bm/(p) and 2K < f(p0) + E5/(p) . 
p->p0 P~*Po 

Since fe Do(08), it can be easily shown that, if p = (x, y), 

fim/(p) = Iim f(p) . 
P~>PO 

x*x0,y*yo 
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Let p0(I) = {p = (x, y): x > x0, y > y0}, p0(Il) = {p = (x, >>): x < x0, y> y0}, 
p0(IIl) = {p = (x, y): x<x0,y< y0} and p0(IV) = {p = (x, >-): x > x0, >> < >>„}. 
Then at least one of 

hm/(p) (A = I, II, III, IV) 
P-*Po 

Pєpo(Л) 

is equal to Umf(p). 
P~*PO 

Let /(p) = max (f(P),f(P0)). Then / G DoV 

Em/(p) = II5f(P) > f(P0) = f(p0) 
P-*Po p-*Po 

and 
max (/, g) = max (f, max (f(P0), g)) e D0( 

for every g e D0(@). Therefore, every statement above remains valid iff is replaced 
by /, and we can assume with no loss of generality that f is bounded below on E2. 

Using fe D0($) we can show that, for each A = I, II, III or IV, there exists 
a sequence {pn}™=i <= P0(A) such that pn -> p0 andf(pn) ->f(P0). In the case 

• nsf(p) = 2K-f(Po) 
P~*PO 

pєpo(A) 

there exists UAe@l such that UA c P0(A), p0 e UA and f(p) = 2K — f(P0) + 1 for 
every p e UA. Thus f is also bounded above on UA. With no loss of generality, we 
assume that the above sequence {pn} c UA. Let XA = cl(p0(A)) — {p0}. Then 
@lA = {B n XA: Be&, B n XA #= 0} is a base for the subspace XA, and the sets 
AAl = {pn: n = 1, 2,...}, AA2 = XA — UA are two disjoint, closed (relative to XA) 
sets on XA. The function hA on XA defined for each p e XA by 

h (n\
 dÍP> ^AI) 

d(p, AAl) + d(p, AA2) 

where d is the usual distance, is continuous on XA, hA(-4Ai) = 0, hA(-4A2) = 1 and 
hA(p)e(0, 1) if peXA — AAl — AA2. Also, it is easily seen that the restriction 
f|XA e D0(@A). Noting that f is bounded on UA and 2hA(p) —1 = 0 only at some 
points peXA — AAl — AA2 c UA, we apply Theorems Ml and M2 and conclude 
that the function gA on KA defined by 

gA(p) = 2KhA(p) - (2hA(p) - l)f(p) for peXA 

is in D0(@A). 
In the case lim f(p) > 2K — f(p0) we define 

P~*PO 
PєPo(Л) 

gA(p) = 2K - f(p) for pєXA, 

and we also have gA e D0(@A). In particular, for all A = I, II, III, IV, the following 
holds: 
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(#) If Be&, Be p0(A), qi9q2e B - {p0} (5 - {p0} is the closure of B relative 
to the subspace XA), ^ e R such that gA(qi) < ^ < 0\(q2), then for given e > 0, 
there exists z e B with gA(z) e (*/ — e, ^ + e). 

It should be noted that, for peXAn XA>, gA(p) = gA'(P)- Thus we can define g 
on E2 as follows: 

0(P) = 0A(P) if ^ I A (A = 1,11, III, IV), 

= f(Po) 1f P = Po -
Now we show that g e D0($). Let Be ffl, qu q2 e B, ĵ e K such that g(qx) < 17 < 
< g(q2)> a nd e > 0 be given. We want to show there is a z e £ with g(z) e (t\ — e„ 
17 + «). 

Case 1. J5 c= p0(A) for some A. If qi + p0 + q29 then the conclusion follows 
from (#) above. Hence we assume that either q± = p0 or q2 = p0. Also, for this A, 
we may have 

115 f(p) = 2K - /(po) °r M f(p) > 2K - /(po) . 
р-*Po p-*Po 

pєpo(Л) pєpo(Л) 

1.1. Ilm f(p) = 2K — /(po) a n d qi = po ( o r q2 = Po)- We recall that the set 
Р-+РO 

рєрo(Л) 

AA1 is a sequence {pn} in p0(A) such that pn -* p0 and/(p„) ->/(p0)- Since p0 = qt 

(or p0 = q2)» Po G -B. Hence we see that there exists n such that pne B and f(pn) < ^ 
(or /(p„) > IJ). Also, pn e AlA1 implies hA(p„) = 0 jmd g(pn) = gA(p„) = f(pn). 
Consequently, pn and q2 (or qx and pn) are points in B, both different from p0 and 
satisfying g(pn) <^ < g(q2) (or g(qt) < ^ < g(pn)). By (#) , there exists z e B with 
#00 = 0A(z) 6 (IJ - e, I; + e). 

1.2. Hm /(p) > 2K — /(po) a n d qi = po- Since £ c p0(A) and p0 e B, we have 
P~*PO 

рєрo(Л) 

IÎE/(p) = Bm f(p) >2K- f(p0) = 2 - g(qi) > 2K - ц 
p-+Po p-+Po 

pєB pєpo(Л) 

and hence there is a point p e B with/(p) > 2K — ^. That is, g(p) = gA(p) = 2K — 
- f(p) < n> N o w P, qi e B, g(p) < ^ < g(q2) and p + p0 + q2. We can use ( # ) 
again. 

1.3. Hm f(p) > 2K — /(po) a n d q2 = p0- By the choice of K, /(p0) < K and 
P~*PO 

pepo(A) 

hence/(p0) < 2K - /(p0). Thus we have g(qx) = gA(qi) = 2K - /(qj) and g(q2) = 
= g(Po) =/(Po) < 2K ~/(Po) = 2K -/(q2)- The inequalities g(qx) <^ < g(q2) 
imply /(# 2) < 2K — ^ <f(qt). Since / e D0(^)> there exists zeB with /(z) e 
e(2K - ^ - e, 2K - ^ + e). It follows that g(z) = gA(z) = 2K - /(z) e (1/ - e„ 
ij + e). 
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Case 2. B * p0(A) for A = I, II, III, or IV. Let BA = B n p0(A)- T h e n e i t h e r 

BA 4= 0 for all four A's or for exactly two A's (that is, for A = I, II, or II, III, or 
III, IV, or IV, I). 

2.1. BA 4= 0 for two A's. For example, Bx 4= 0 4= Bn (the other cases are similar). 
Then B = 5- u J5n. If g l f g2 are both in Bx or S„, then this is reduced to Case 1. 
We assume that q1eBl, q2eBn and pick any point q3 e B - (Bx u Bn) (thus 
q3e Bxn 5n) . There is nothing more to prove if g(q3) = r\. If g(q3) < tj, we consider 
q3, q2 e Bn. If g(q3) > r\, we consider ql9 q3 e Bx. In either case, it is solved by Case 1. 

2.2. BA 4= 0 for all four A's. Let Ct = B - {Bxn u BIV) and C2 = B - (BX\J Bn). 
Then Cl5 C2 e <%, both are of the type in 2.1 above and B = Cx u C2. For this case, 
the conclusion follows from 2.1 in the same manner as 2.1 follows from Case 1. 

We have just showed that g e D0($). It remains to show that <p = max (f, g) $ 
$ D0(&). Since there exists at least one A such that 

Em f(p) = mf(p) >2K- f(Po), 
P-+Po P~*Po 

we have g(p) = 2K - f(p) for every p e XA = cl (P0(A)) — {p0} for this A. For 
B e @ such that B c p0(A) and p0 G S, g(p) = 2K - f(p) or f(p) -f a(p) = 2K for 
every peB and hence q>(p) = K" for every peB. But <p(p0) < K. Clearly cp 4 D0( 
The proof is completed. 

Theorem 2. Let & be the collection of all open intervals in E2 and fe D0\ 
Then max (f, g) e D0($) for every g e D0($) if and only iff is upper semi-con­
tinuous on E2. 

Proof. In view of Theorem Fl and Theorem 1, all we need to show is that 3S 
satisfies the conditions (1*) and (2). It is trivial that & satisfies (l*). We now prove 
that ^ also satisfies (2). Let Be @9 B = Cu D9 C n D = <fr9 C 4 = 0 4 = D such that 
for U e$l9 V n B cz C or U n B cz D whenever U cz C or U cz D9 respectively, 
be given. We want to show that C n D 4= 0 4= C n D'. Suppose C n D = 0. 
Then B n C cz C, C is closed relative to B and hence D is open. Since C 4= 0 4= Dy 

we can pick pe C9qe D and Bt e & such that p9qeBx and B1 cz B. Let Ct = Bth 
n C, Dx = Bln D. Then q is a point of the open set Dx. We can partially order 
the collection J = [Ue &: qeU cz Dt} by inclusion. It is clear that every chain is 
bounded above. By Zorn's lemma, there is a maximal member U0 in J. Now U0e $t 
and U0 cz Dt cz D. By our assumption, U0n B cz D. That is U0 cz D since U0 cz 
cz Bx cz B. For the compact interval L70 in the open set D9 we can easily construct 
a [ / 6 i l such that U0 cz U cz D. Let Ut = Btn U. Then UYe3 and U0 cz Btn 
nU0czU1czDl. Since Ct 4= 0, -Bx n [70 properly contains L70 and so does 1^. 
This contradicts the maximality of U0. Thus C n D 4= 0. Similarly C n D' 4= 0. 
Theorem 2 is proved. 
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Remark. The results in this paper can be easily extended to the n-dimensional 
Euclidean space with the base $8 consisting of all open intervals in En. It is not known 
whether the same conclusion is true for a general topological space X. 
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Souhrn 

O MAXIMU ZOBECNĚNÝCH DARBOUXOVÝCH FUNKCÍ 

H. W. Pu, H. H. Pu 

Autoři ukazují,.že důkaz věty o maximu zobecněných Darbouxových funkcí podaný Farkovou 
obsahuje mezeru, a dokazují tuto větu pro speciální případ eukleidovského prostoru s bází 
danou soustavou všech otevřených intervalů. 

Резюме 

О МАКСИМУМЕ ОБОБЩЕННЫХ ФУНКЦИЙ ДАРБУ 

Н. \У. Р ^ Н. Н. Ри 

Авторы показывают, что в доказательстве теоремы Фарковой о максимуме обобщенных 
функций Дарбу имеется пробель, и доказывают эту теорему для специального случая евкли­
дова пространства с базисом состоящим из всех открытых интервалов. 

Аигкоп? аййгезз: Ограггтепг оГ МафетаНсз, Техаз А & М Цпгуешгу, Со11е§е Зшюп 
Техаз. и8.А. 
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