Časopis pro pěstování matematiky

Hwang Wen Pu; Huo Hui Min Pu
On the maximum of generalized Darboux functions

Časopis pro pěstování matematiky, Vol. 112 (1987), No. 4, 411--416
Persistent URL: http://dml.cz/dmlcz/108557

Terms of use:

© Institute of Mathematics AS CR, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON THE MAXIMUM OF GENERALIZED DARBOUX FUNCTIONS

H. W. Pu, H. H. Pu, College Station

(Received April 2, 1986)

Abstract

Summary. The authors show that the proof of a theorem on the maximum of generalized Darboux functions given by Farková contains a gap, and prove the theorem for the special case of the Euclidean space with the collection of all open intervals as a base.

Keywords: generalized Darboux functions.

Let X be a topological space with a base \mathscr{B}. A real valued function f on X is said to be in $D_{0}(\mathscr{B})$ if it has the following property:

If $B \in \mathscr{B}, x, y \in \bar{B}$, the closure of B, and η is a real number with $f(x)<\eta<f(y)$, then for an arbitrary $\varepsilon>0$ there is a point $z \in B$ such that $f(z) \in(\eta-\varepsilon, \eta+\varepsilon)$.

The conditions (1^{*}) and (2) below imposed on the base \mathscr{B} are required for some conclusions.
$\left(1^{*}\right)$ For arbitrary $x \in X, B \in \mathscr{B}$, if \mathcal{O} is an open set and $x \in \mathcal{O} \cap \bar{B}$, then there exists $U \in \mathscr{B}$ such that $U \subset \mathscr{O} \cap B$ and $x \in \bar{U}-U$.
(2) For every $B \in \mathscr{B}$ and every decomposition of $B, B=C \cup D, C \cap D=\emptyset$, $C \neq \emptyset \neq D$ with the property that $\bar{U} \cap B \subset C$ or $\bar{U} \cap B \subset D$ whenever $U \in \mathscr{B}$ and $U \subset C$ or $U \subset D$, respectively, we have $C^{\prime} \cap D \neq \emptyset \neq C \cap D^{\prime}$, where C^{\prime}, D^{\prime} are the derived sets of C, D, respectively.

Farková proved some interesting results about the maximum of functions in $D_{0}(\mathscr{B})$ ([1], pp. 113-114):

Theorem F1. Let X be a topological space with a base \mathscr{B} satisfying (1*) and (2). Let $f, g \in D_{0}(\mathscr{B})$ be such that every $x \in X$ is a point of the upper semi-continuity of f or g. Then $\varphi=\max (f, g) \in D_{0}(\mathscr{B})$.

Theorem F2. Let X be a topological space with a base \mathscr{B}. Let $f \in D_{0}(\mathscr{B})$. If f is not upper semi-continuous, then there exists a function $g \in D_{0}(\mathscr{B})$ such that $\varphi=\max (f, g) \notin D_{0}(\mathscr{B})$.

Unfortunately, the function g constructed in the proof of Theorem F2 is not necessarily in $D_{0}(\mathscr{B})$, as the example below shows. Therefore Theorem F2 is dubious.

We consider the Euclidean plane E_{2}. Let \mathscr{B} be the collection of all open intervals $\{(x, y): a<x<b, c<y<d\}, a<b, c<d$. Define f on E_{2} as follows:

$$
\begin{gathered}
f(x, y)=\frac{y}{x+y} \sin \frac{1}{x+y} \text { if } x \geqq y>0, \\
=\frac{x}{x+y} \sin \frac{1}{x+y} \text { if } y>x>0 \\
=0 \quad \text { otherwise } .
\end{gathered}
$$

Clearly f is continuous at every $(x, y) \neq(0,0)$ and it can be easily shown that $f \in D_{0}(\mathscr{B})$. f is not upper semi-continuous at $(0,0)$, since

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=\frac{1}{2}>f(0,0)
$$

The function g constructed in [1] is defined by $g(0,0)=f(0,0)=0, g(x, y)=$ $=2 K-f(x, y)$ if $(x, y) \neq(0,0)$, where K is a number with $\frac{1}{4} \geqq K>0$. It is obviously not in $D_{0}(\mathscr{B})$.

The purpose of the present paper is to prove the validity of Theorem F2 for the case that X is E_{2} and \mathscr{B} is the collection of all open intervals in E_{2}. Before we proceed to the main result, we state two theorems given in [2] (p. 418 and p. 422) which will be needed.

Theorem M1. Let X be locally connected topological space, \mathscr{B} a base consisting of open connected sets and satisfying (1*). Let $f, g \in D_{0}(\mathscr{B})$. If each x is a point of continuity of f or g, then $f+g \in D_{0}(\mathscr{B})$.

Theorem M2. Let X and \mathscr{B} be as in Theorem M1. If g is a continuous function on X and $f \in D_{0}(\mathscr{B})$ such that f is bounded at each $x \in X$ where $g(x)=0$, then $f g \in D_{0}(\mathscr{B})$.

Theorem 1. Let \mathscr{B} be the collection of all open intervals in E_{2}. If f is a function on E_{2} such that $\max (f, g) \in D_{0}(\mathscr{B})$ for every $g \in D_{0}(\mathscr{B})$, then $f \in D_{0}(\mathscr{B})$ and f is upper semi-continuous on E_{2}.

Proof. Since every constant function is in $D_{0}(\mathscr{B})$, the hypothesis clearly implies that $f \in D_{0}(\mathscr{B})$. To show that f is upper semi-continuous, we assume the contrary and construct a function $g \in D_{0}(\mathscr{B})$ such that $\max (f, g) \notin D_{0}(\mathscr{B})$.

Suppose f is not upper semi-continuous at $p_{0}=\left(x_{0}, y_{0}\right)$. Then $\lim _{p \rightarrow p_{0}} f(p)>f\left(p_{0}\right)$. Let K be a number such that

$$
f\left(p_{0}\right)<K<\lim _{p \rightarrow p_{0}} f(p) \text { and } 2 K<f\left(p_{0}\right)+\varlimsup_{p \rightarrow p_{0}} f(p)
$$

Since $f \in D_{0}(\mathscr{B})$, it can be easily shown that, if $p=(x, y)$,

$$
\lim _{p \rightarrow p_{0}} f(p)=\lim _{\substack{p \rightarrow p_{0} \\ x \neq x_{0}, y \neq y_{0}}} f(p)
$$

Let $p_{0}(\mathrm{I})=\left\{p=(x, y): x>x_{0}, y>y_{0}\right\}, p_{0}(\mathrm{II})=\left\{p=(x, y): x<x_{0}, y>y_{0}\right\}$, $p_{0}($ III $)=\left\{p=(x, y): x<x_{0}, y<y_{0}\right\}$ and $p_{0}($ IV $)=\left\{p=(x, y): x>x_{0}, y<y_{0}\right\}$. Then at least one of

$$
\lim _{\substack{p \rightarrow p_{0} \\ p \in p_{0}(\Lambda)}} f(p) \quad(\Lambda=\text { I, II, III, IV })
$$

is equal to $\lim _{p \rightarrow p_{0}}(p)$.
Let $\hat{f}(p) \stackrel{\substack{p \rightarrow p_{0} \\=}}{\max }\left(f(p), f\left(p_{0}\right)\right)$. Then $\hat{f} \in D_{0}(\mathscr{B})$,

$$
\lim _{p \rightarrow p_{0}} \hat{f}(p)=\lim _{p \rightarrow p_{0}} f(p)>f\left(p_{0}\right)=\hat{f}\left(p_{0}\right)
$$

and

$$
\max (\hat{f}, g)=\max \left(f, \max \left(f\left(p_{0}\right), g\right)\right) \in D_{0}(\mathscr{B})
$$

for every $g \in D_{0}(\mathscr{B})$. Therefore, every statement above remains valid if f is replaced by \hat{f}, and we can assume with no loss of generality that f is bounded below on E_{2}.

Using $f \in D_{0}(\mathscr{B})$ we can show that, for each $\Lambda=I$, II, III or IV, there exists a sequence $\left\{p_{n}\right\}_{n=1}^{\infty} \subset p_{0}(\Lambda)$ such that $p_{n} \rightarrow p_{0}$ and $f\left(p_{n}\right) \rightarrow f\left(p_{0}\right)$. In the case

$$
\operatorname{iim}_{\substack{p \rightarrow p_{0} \\ p \in p_{0}(\Lambda)}} f(p) \leqq 2 K-f\left(p_{0}\right)
$$

there exists $U_{\Lambda} \in \mathscr{B}$ such that $U_{\Lambda} \subset p_{0}(\Lambda), p_{0} \in \bar{U}_{\Lambda}$ and $f(p) \leqq 2 K-f\left(p_{0}\right)+1$ for every $p \in U_{\Lambda}$. Thus f is also bounded above on U_{Λ}. With no loss of generality, we assume that the above sequence $\left\{p_{n}\right\} \subset U_{\Lambda}$. Let $X_{\Lambda}=\operatorname{cl}\left(p_{0}(\Lambda)\right)-\left\{p_{0}\right\}$. Then $\mathscr{B}_{\Lambda}=\left\{B \cap X_{\Lambda}: B \in \mathscr{B}, B \cap X_{\Lambda} \neq \emptyset\right\}$ is a base for the subspace X_{Λ}, and the sets $A_{\Lambda 1}=\left\{p_{n}: n=1,2, \ldots\right\}, A_{\Lambda 2}=X_{\Lambda}-U_{\Lambda}$ are two disjoint, closed (relative to X_{Λ}) sets on X_{Λ}. The function h_{Λ} on $X_{\boldsymbol{\Lambda}}$ defined for each $p \in X_{\boldsymbol{\Lambda}}$ by

$$
h_{\Lambda}(p)=\frac{\left.d^{\prime} p, A_{\Lambda \mathbf{1}}\right)}{d\left(p, A_{\Lambda \mathbf{1}}\right)+d\left(p, A_{\Lambda_{2}}\right)},
$$

where d is the usual distance, is continuous on $X_{\Lambda}, h_{\Lambda}\left(A_{\Lambda 1}\right)=0, h_{\Lambda}\left(A_{\Lambda_{2}}\right)=1$ and $h_{\Lambda}(p) \in(0,1)$ if $p \in X_{\Lambda}-A_{\Lambda 1}-A_{\Lambda 2}$. Also, it is easily seen that the restriction $f \mid X_{\Lambda} \in D_{0}\left(\mathscr{B}_{\Lambda}\right)$. Noting that f is bounded on U_{Λ} and $2 h_{\Lambda}(p)-1=0$ only at some points $p \in X_{\Lambda}-A_{\Lambda 1}-A_{\Lambda 2} \subset U_{\Lambda}$, we apply Theorems M1 and M2 and conclude that the function g_{Λ} on X_{Λ} defined by

$$
g_{\Lambda}(p)=2 K h_{\Lambda}(p)-\left(2 h_{\Lambda}(p)-1\right) f(p) \text { for } p \in X_{\Lambda}
$$

is in $D_{0}\left(\mathscr{B}_{\mathrm{A}}\right)$.
In the case $\varlimsup_{\substack{p \rightarrow p_{0} \\ p \in p_{0}(\Lambda)}} f(p)>2 K-f\left(p_{0}\right)$ we define

$$
g_{\Lambda}(p)=2 K-f(p) \text { for } p \in X_{\Lambda},
$$

and we also have $g_{\Lambda} \in D_{0}\left(\mathscr{B}_{\Lambda}\right)$. In particular, for all $\Lambda=I$, II, III, IV, the following holds:
(\#) If $B \in \mathscr{B}, B \subset p_{0}(\Lambda), q_{1}, q_{2} \in \bar{B}-\left\{p_{0}\right\}\left(\bar{B}-\left\{p_{0}\right\}\right.$ is the closure of B relative to the subspace $\left.X_{\Lambda}\right), \eta \in R$ such that $g_{\Lambda}\left(q_{1}\right)<\eta<g_{\Lambda}\left(q_{2}\right)$, then for given $\varepsilon>0$, there exists $z \in B$ with $g_{\Lambda}(z) \in(\eta-\varepsilon, \eta+\varepsilon)$.

It should be noted that, for $p \in X_{\Lambda} \cap X_{\Lambda^{\prime}}, g_{\Lambda}(p)=g_{\Lambda^{\prime}}(p)$. Thus we can define g on E_{2} as follows:

$$
\begin{aligned}
g(p) & =g_{\Lambda}(p) \quad \text { if } \quad p \in X_{\Lambda} \quad(\Lambda=\mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{IV}), \\
& =f\left(p_{0}\right) \quad \text { if } \quad p=p_{0}
\end{aligned}
$$

Now we show that $g \in D_{0}(\mathscr{B})$. Let $B \in \mathscr{B}, q_{1}, q_{2} \in \bar{B}, \eta \in R$ such that $g\left(q_{1}\right)<\eta<$ $<g\left(q_{2}\right)$, and $\varepsilon>0$ be given. We want to show there is a $z \in B$ with $g(z) \in(\eta-\varepsilon$, $\eta+\varepsilon)$.

Case 1. $B \subset p_{0}(\Lambda)$ for some Λ. If $q_{1} \neq p_{0} \neq q_{2}$, then the conclusion follows from (\#) above. Hence we assume that either $q_{1}=p_{0}$ or $q_{2}=p_{0}$. Also, for this Λ, we may have

$$
\lim _{\substack{p \rightarrow p_{0} \\ p \in p_{0}(\Lambda)}} f(p) \leqq 2 K-f\left(p_{0}\right) \quad \text { or } \operatorname{iim}_{\substack{p \rightarrow p_{0} \\ p \in p_{0}(\Lambda)}} f(p)>2 K-f\left(p_{0}\right) .
$$

1.1. $\lim _{\substack{p \rightarrow p_{0} \\ p=0}} f(p) \leqq 2 K-f\left(p_{0}\right)$ and $q_{1}=p_{0}\left(\right.$ or $q_{2}=p_{0}$). We recall that the set $p \in p_{0}(\Lambda)$
$A_{\Lambda 1}$ is a sequence $\left\{p_{n}\right\}$ in $p_{0}(\Lambda)$ such that $p_{n} \rightarrow p_{0}$ and $f\left(p_{n}\right) \rightarrow f\left(p_{0}\right)$. Since $p_{0}=q_{1}$ (or $p_{0}=q_{2}$), $p_{0} \in \bar{B}$. Hence we see that there exists n such that $p_{n} \in B$ and $f\left(p_{n}\right)<\eta$ (or $f\left(p_{n}\right)>\eta$). Also, $p_{n} \in A_{\Lambda_{1}}$ implies $h_{\Lambda}\left(p_{n}\right)=0$ and $g\left(p_{n}\right)=g_{\Lambda}\left(p_{n}\right)=f\left(p_{n}\right)$. Consequently, p_{n} and q_{2} (or q_{1} and p_{n}) are points in \bar{B}, both different from p_{0} and satisfying $g\left(p_{n}\right)<\eta<g\left(q_{2}\right)$ (or $g\left(q_{1}\right)<\eta<g\left(p_{n}\right)$). By (\#), there exists $z \in B$ with $g(z)=g_{\Lambda}(z) \in(\eta-\varepsilon, \eta+\varepsilon)$.
1.2. $\lim _{p \rightarrow p_{0}} f(p)>2 K-f\left(p_{0}\right)$ and $q_{1}=p_{0}$. Since $B \subset p_{0}(\Lambda)$ and $p_{0} \in \bar{B}$, we have $\underset{\substack{p \rightarrow p_{0} \\ p \in p_{0}(\Lambda)}}{ }$

$$
\lim _{\substack{p \rightarrow p_{0} \\ p \in B}} f(p)=\lim _{\substack{p \rightarrow p_{0} \\ p \in p_{0}(\Lambda)}} f(p)>2 K-f\left(p_{0}\right)=2 K-g^{\prime}\left(q_{1}\right)>2 K-\eta
$$

and hence there is a point $p \in B$ with $f(p)>2 K-\eta$. That is, $g(p)=g_{\Lambda}(p)=2 K-$ $-f(p)<\eta$. Now $p, q_{2} \in \bar{B}, g(p)<\eta<g\left(q_{2}\right)$ and $p \neq p_{0} \neq q_{2}$. We can use (\#) again.
1.3. $\lim _{p \rightarrow 0} f(p)>2 K-f\left(p_{0}\right)$ and $q_{2}=p_{0}$. By the choice of $K, f\left(p_{0}\right)<K$ and $\underset{\substack{p \rightarrow p_{0} \\ p \in p_{0} \\(\Lambda)}}{ }$
hence $f\left(p_{0}\right)<2 K-f\left(p_{0}\right)$. Thus we have $g\left(q_{1}\right)=g_{\Lambda}\left(q_{1}\right)=2 K-f\left(q_{1}\right)$ and $g\left(q_{2}\right)=$ $=g\left(p_{0}\right)=f\left(p_{0}\right)<2 K-f\left(p_{0}\right)=2 K-f\left(q_{2}\right)$. The inequalities $g\left(q_{1}\right)<\eta<g\left(q_{2}\right)$ imply $f\left(q_{2}\right)<2 K-\eta<f\left(q_{1}\right)$. Since $f \in D_{0}(\mathscr{B})$, there exists $z \in B$ with $f(z) \in$ $\epsilon(2 K-\eta-\varepsilon, 2 K-\eta+\varepsilon)$. It follows that $g(z)=g_{A}(z)=2 K-f(z) \in(\eta-\varepsilon$, $\eta+\varepsilon)$.

Case 2. $B \notin p_{0}(\Lambda)$ for $\Lambda=I$, II, III, or IV. Let $B_{\Lambda}=B \cap p_{0}(\Lambda)$. Then either $B_{\Lambda} \neq \emptyset$ for all four Λ 's or for exactly two Λ 's (that is, for $\Lambda=$ I, II, or II, III, or III, IV, or IV, I).
2.1. $B_{\Lambda} \neq \emptyset$ for two Λ 's. For example, $B_{1} \neq \emptyset \neq B_{\text {II }}$ (the other cases are similar). Then $\bar{B}=\bar{B}_{1} \cup \bar{B}_{\mathrm{II}}$. If q_{1}, q_{2} are both in \bar{B}_{I} or \bar{B}_{II}, then this is reduced to Case 1. We assume that $q_{1} \in \bar{B}_{1}, q_{2} \in \bar{B}_{I I}$ and pick any point $q_{3} \in B-\left(B_{1} \cup B_{I I}\right)$ (thus $\left.q_{3} \in \bar{B}_{1} \cap \bar{B}_{I I}\right)$. There is nothing more to prove if $g\left(q_{3}\right)=\eta$. If $g\left(q_{3}\right)<\eta$, we consider $q_{3}, q_{2} \in \bar{B}_{\text {II }}$. If $g\left(q_{3}\right)>\eta$, we consider $q_{1}, q_{3} \in \bar{B}_{\mathrm{I}}$. In either case, it is solved by Case 1 .
2.2. $B_{\Lambda} \neq \emptyset$ for all four Λ 's. Let $C_{1}=B-\left(\bar{B}_{\mathrm{III}} \cup \bar{B}_{\mathrm{IV}}\right)$ and $C_{2}=B-\left(\bar{B}_{\mathrm{I}} \cup \bar{B}_{\mathrm{II}}\right)$. Then $C_{1}, C_{2} \in \mathscr{B}$, both are of the type in 2.1 above and $\bar{B}=\bar{C}_{1} \cup \bar{C}_{2}$. For this case, the conclusion follows from 2.1 in the same manner as 2.1 follows from Case 1.

We have just showed that $g \in D_{0}(\mathscr{B})$. It remains to show that $\varphi=\max (f, g) \notin$ $\notin D_{0}(\mathscr{B})$. Since there exists at least one Λ such that

$$
\lim _{\substack{p \rightarrow p_{\mathrm{o}} \\ p \in p_{0}(\Lambda)}} f(p)=\lim _{p \rightarrow p_{0}} f(p)>2 K-f\left(p_{0}\right)
$$

we have $g(p)=2 K-f(p)$ for every $p \in X_{\Lambda}=\operatorname{cl}\left(p_{0}(\Lambda)\right)-\left\{p_{0}\right\}$ for this Λ. For $B \in \mathscr{B}$ such that $B \subset p_{0}(\Lambda)$ and $p_{0} \in \bar{B}, g(p)=2 K-f(p)$ or $f(p)+g(p)=2 K$ for every $p \in B$ and hence $\varphi(p) \geqq K$ for every $p \in B$. But $\varphi\left(p_{0}\right)<K$. Clearly $\varphi \notin D_{0}(\mathscr{B})$. The proof is completed.

Theorem 2. Let \mathscr{B} be the collection of all open intervals in E_{2} and $f \in D_{0}(\mathscr{B})$. Then $\max (f, g) \in D_{0}(\mathscr{B})$ for every $g \in D_{0}(\mathscr{B})$ if and only if f is upper semi-continuous on E_{2}.

Proof. In view of Theorem F1 and Theorem 1, all we need to show is that \mathscr{B} satisfies the conditions (1^{*}) and (2). It is trivial that \mathscr{B} satisfies (1^{*}). We now prove that \mathscr{B} also satisfies (2). Let $B \in \mathscr{B}, B=C \cup D, C \cap D=\emptyset, C \neq \emptyset \neq D$ such that for $U \in \mathscr{B}, \bar{U} \cap B \subset C$ or $\bar{U} \cap B \subset D$ whenever $U \subset C$ or $U \subset D$, respectively, be given. We want to show that $C^{\prime} \cap D \neq \emptyset \neq C \cap D^{\prime}$. Suppose $C^{\prime} \cap D=\emptyset$. Then $B \cap C^{\prime} \subset C, C$ is closed relative to B and hence D is open. Since $C \neq \emptyset \neq D$, we can pick $p \in C, q \in D$ and $B_{1} \in \mathscr{B}$ such that $p, q \in B_{1}$ and $\bar{B}_{1} \subset B$. Let $C_{1}=B_{1}$ ค $\cap C, D_{1}=B_{1} \cap D$. Then q is a point of the open set D_{1}. We can partially order the collection $\mathscr{I}=\left\{U \in \mathscr{B}: q \in U \subset D_{1}\right\}$ by inclusion. It is clear that every chain is bounded above. By Zorn's lemma, there is a maximal member U_{0} in \mathscr{I}. Now $U_{0} \in \mathscr{B}$ and $U_{0} \subset D_{1} \subset D$. By our assumption, $\bar{U}_{0} \cap B \subset D$. That is $\bar{U}_{0} \subset D$ since $\bar{U}_{0} \subset$ $\subset \bar{B}_{1} \subset B$. For the compact interval \bar{U}_{0} in the open set D, we can easily construct a $U \in \mathscr{B}$ such that $\bar{U}_{0} \subset U \subset D$. Let $U_{1}=B_{1} \cap U$. Then $U_{1} \in \mathscr{B}$ and $U_{0} \subset B_{1} \cap$ $\cap \bar{U}_{0} \subset U_{1} \subset D_{1}$. Since $C_{1} \neq \emptyset, B_{1} \cap \bar{U}_{0}$ properly contains U_{0} and so does U_{1}. This contradicts the maximality of U_{0}. Thus $C^{\prime} \cap D \neq \emptyset$. Similarly $C \cap D^{\prime} \neq \emptyset$. Theorem 2 is proved.

Remark. The results in this paper can be easily extended to the n-dimensional Euclidean space with the base \mathscr{B} consisting of all open intervals in E_{n}. It is not known whether the same conclusion is true for a general topological space X.

References

[1] J. Farková: About the maximum and the minimum of Darboux functions. Mat. Čas. 21 (1971), 110-116.
[2] L. Misik: Ưber die Eigenschaft von Darboux und einiger Klassen von Funktionen, Rev. Roum. Math. Pures et Appl. 21 (1966), 411-430.

Souhrn
 O MAXIMU ZOBECNĚNÝCH DARBOUXOVÝCH FUNKCf

H. W. Pu, H. H. Pu

Autoři ukazují, že dủkaz vð̌ty o maximu zobecň̌ných Darbouxových funkcí podaný Farkovou obsahuje mezeru, a dokazují tuto větu pro speciální připad eukleidovského prostoru s bází danou soustavou všech otevřených intervalủ.

> Резюме
> О МАКСИМУМЕ ОБОБЩЕННЫХ ФУНКЦИЙ ДАРБУ
> Н. W. РЧ, Н. Н. РU

Авторы показывают, что в доказательстве теоремы Фарковой о максимуме обобщенных функций Дарбу имеется пробель, и доказывают эту теорему для специального случая евклидова пространства с базисом состоящим из всех открытых интервалов.

Authors' address: Department of Mathematics, Texas A \& M University, College Station Texas. U.S.A.

