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ON THE LINEAR CONTROL PROBLEM x = Ax + Bu 

STEFAN SCHWABIK, Praha 

(Received January 16, 1967) 

NOTATIONS AND DEFINITIONS 

Let K be a compact subset of Ek (Ek is the k-dimensional Euclidian space). (,) is the 
scalar product in Ek. The hyperplane (cp, x) = y will be called the support hyperplane 
of K if (cp, y) g y for all y e K and if there is a z e K such that (cp, z) = y (then we 
write y = max (cp, x)). For any cp e Ek9 cp =# 0 a support hyperplane of K is de-

xeK 

termined, namely the hyperplane (cp, x) = max (cp, y). The point p e K will be called 
yeK 

an exposed point of K if there is a cp e £fc such that (cp, p) = y and (cp, y) < y for all 
y 6 K, y =j= p. The set of all exposed points of K will be denoted by A(K); further 
conv K let be the convex hull of K and dK the boundary of K. For a set M c Ek9 M is 
the closure of M in Ek. If K is a convex set then to each point of dK there is a support 
hyperplane which passes through this point. This fact is known in the case that K 
contains an interior point in Ek; if the dimension of K is less than k then the whole 
set K is contained in any hyperplane of the form (cp, x) = y9 cp 4= 0. Evidently is 
A(K) c= dK. STRASZEWICZ in [1] proved the following properties of the convex hull 
and the exposed points: 
1. convK = convA(K); 2. A(K) = A(convK); 3. the minimal set (in the sense of 
inclusion) in the system of all compact sets with the property that their convex hull 
is conv K is the set A(K). 

In this note we consider the linear control system 

(1) — = Ax + Bu 
v ' &t 

where x e Em u e U c Er9 A is an n x n matrix, B is an n x r matrix and the set 
U <= Er is compact. We suppose that T > 0 is fixed. 

The control u(t) : 0 S t g T will be called admissible if the function u(t) is 
measurable and u(t) e U for almost all t e <0, T>. The set of all admissible controls 
(with values in U for almost all t e <0, T>) is denoted by Q(U). 
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Definition. The control u e Q(U) will be called an extremal control corresponding 
to \|i 6 En9 ty # 0 if 

(2) (e~A'xty, BU(T)) = max (e~A'T\|/, Bu) 
ueU 

holds for almost all T G <0, T> (A is the transposed matrix to A). 

Remark. Each \|# e £w, i|/ =f= 0 determines at least one extremal control which cor
responds to \|#; this control certainly need not be unique. 

In the following we consider the set 

AT(U) =$Y£En, y = [ e-AtBu(T)dr, ueQ(U)\. 

By means of the set AT(U) we can express the set ST(U) of all points in En that can 
be reached from the point x0 in the time T with some control from Q(U) in the follow
ing way: 

ST(U) = eAT(x0 + AT(U)). 

PROPERTIES OF THE SET AT{U) 

L. W. NEUSTADT in [2] proved the following 

Proposition 1. AT(U) is convex and compact. 
Let us now introduce 

Proposition 2. Let y* e AT(U) and let (\|/, x) = y, \|# + 0 be a support hyperplane 
of AT(U) where (*|#, y*) = y. Then 

T 

dT (3) . y* = í e~AlBu*(x) 

where u* is an extremal control corresponding to i|/. 
If conversely y* is given by (3) where u* is an extremal control corresponding to 

any ty e Eni i|/ 4= 0 then y* is a common point of the set AT(U) and the support 
hyperplane of AT(U) which is determined by *|/. 

Proof. Since y* e AT(U) there is y* = J J e"AtBu*(T) dT with u* e Q(U). It holds 

(\|/, y*) = V (e-A'T*|i, BU*(T)) dT = y = max (i|/, x ) . 
J 0 X6AT(U) 

If (2) is not fulfilled by U*(T) on any part of <0, T> with positive measure then 
(I|I, y*) cannot reach its maximal value y in AT(U). Hence u* must be an extremal 
control corresponding to \|f. 
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Conversely if u* is an extremal control corresponding to \(/ then y* given by (3) 
is contained in AT(U). For an arbitrary y e AT(U) there is y = JJ e~AtBu(T)dT 
where ueQ(U) and (e"A'T\|/, BU(T)) ^ (e"A'T\|/, BU*(T)) holds for almost all T e 
e <0, T>. Hence 

ÍV A >, ßu(т 0 M = (^A>,Bu(T))dT < 
rт 

A'т, (<TA > , Bu*(x)) di = (*|/, y*) == y 

and therefore y* is contained in the hyperplane (\|/, x) = y which supports the set 
AT{U). 

Remark. J. KURZWEIL in [3] (cf. Theorem 3 in [3]) proved similarly an analogous 
statement for the set of all points which can be transfered in to the origin in time less 
or equal Tin the case of a convex set U which contains 0 as its interior point. As for 
each point of dAT(U) there is at least one support hyperplane of AT(U) passing 
through it, it is possible — by Proposition 2 — to express each point of dAT(U) in the 
form (3) where u* is some extremal control. 

We prove 

Lemma 1. AT(U) = AT(conv U). 

Proof. Evidently AT(U) c ylr(conv U). The converse inclusion will be proved by 
contradiction. Let exist y e Ar(conv U) such that y e AT(U). By the strict separation 
theorem for a compact convex set and a closed set (see [4]) there is a \|/ e En such 
that y = max (\|/, x) < (\|/, y); (\|/, x) = y is a support hyperplane of AT(U). We can 

X € A T ( U ) 

write y = /J e~AxBu(x) dx where u e ;Q(conv U). Further evidently max (e"A'T\|/, Bu) = 
ueU 

= max (e"Ax\|/, Bu). We determine u*eQ(U) such that (2) is fulfilled and write 
ueconvU 

y* = JJ <TATBU*(T) dT. Hence y* e AT(U) and (\|/, y*) = (\|/, y) > y. This contradic
tion gives AT(U) => ylr(conv U). 

From Lemma 1 AT(U) = AT(Ut) follows for such Ut that conv Ut = conv U 
holds. According to results of Straszewicz (see 3. page 141) the minimal compact 
set with this property is the set A(U) therefore AT(U) = AT(A(U)) holds. Hence 
ST(U) = ST(A(U)), too. 

We have the following 

Theorem. A point which can be reached from the point x0 e En by any control 

u e Q(U) in the time T can be reached by a control u* e Q(A(U)), too. 

Remark. This theorem is an analogon of the well known bang-bang principle of 
LaSalle (see J. P. LASALLE: The time optimal control problem, Contr. to the Theory 
of Nonlinear Oscillations, Vol. 5), Actually: if U is the unit cube |uf| g 1, i = 
= 1, ..., r then A(U) = V where V are the vertices of the cube U. 
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UNIQUE EXTREMAL CONTROLS 

We suppose in the following that Bu = 0 iff u = 0. Under this condition the follow
ing propositions are known (see [5]): 

Proposition 3. For almost all \|# 6 En (in the sense of the n-dimensional Lebesgue 
measure) the extremal control corresponding to \|/ is given uniquely almost every
where in <0, T>. 

Evidently if u* is an extremal control which is given uniquely almost everywhere 
in <0, T> then u* e Q(A(U)) with respect to the property of B. Further similarly as 
in [5] holds 

Proposition 4. Let the extremal control u* corresponding to ty e En be given 
uniquely -almost everywhere in <0, T> and let y* be given by (3). Then y* e 
eA(AT(U)). 
and also the converse 

Proposition 5. If y* e A(AT(U)) then it is possible to write y* in the form (3) where 
u* is an extremal control which corresponds to some \|/ e En and is uniquely de
termined almost everywhere in <0, T>. 

Remark. Proposition 4 holds even if the above condition for the matrix B is not 
fulfilled. 

Since by the quoted results of [ l ] is AT(U) = conv AT(U) = conv A(AT(U)) we 
receive from Propositions 4 and 5 the following 

Theorem. The set AT(U) is the convex hull of the closure of all points y* which can 
be written in the form (3), with an extremal control uniquely determined almost 
everywhere in <0, T>. 
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