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In this paper we shall relate the bichromaticity of a connected finite bipartite graph 
(shortly bigraph) to its domatic number. 

The bichromaticity of a connected bigraph was introduced by F. Harary, D. Hsu 
and Z. Miller [2], Let B be a bigraph on the vertex sets C, D. A bicomplete homo-
morphism of B is a homomorphic mapping <p of B onto the complete bigraph Krs 

(where r, s are positive integers) with the property that for any two vertices x, y of B, 
the identity cp(x) = cp(y) holds only if either x e C, y e C, or x e D, y e D. The maxi
mal value of r + s for all graphs Kr s with the property that there exists a bicomplete 
homomorphism of B onto Krs is called the bichromaticity of B and denoted by f}(B). 

If B is a finite bigraph on sets C, D, then the majority of B is the number ji = 
= max( |C | , |D |) . 

The domatic number of a graph was introduced by E. J. Cockayne and S. T. 
Hedetniemi [1]. A dominating set in an undirected graph G is a subset D of the 
vertex set V(G) of G with the property that for each vertex x e V(G) — D there 
exists at least one vertex yeD adjacent to x. A domatic partition of G is a partition 
of V(G), all of whose classes are dominating sets in G. The maximal number of classes 
of a domatic partition of G is called the domatic number of G and denoted by d(G). 

First we state a lemma. 

Lemma. Let B be a connected bigraph on sets C, D, let ^ be a domatic partition 
of B. Then either 0> = {C, D), or C n X 4= 0, D n X * 0 for each X e 0>. 

Proof. Let X e £P. If 2? = {X}, then the assertion is evidently true. If X is a proper 
subset of C, then C — X #- 0; let u e C — X. As C is an independent set in B, then 
there is no vertex of X adjacent to u and X is not a dominating set in B, which is 
a contradiction. Therefore X cannot be a proper subset of C and analogously, it 
cannot be a proper subset of D. If X = C and Ye &, Y + X, then Y is a subset 
of D. As it cannot be a proper subset of D, we have Y = D and 9 = {C, D}; ana
logously if X = D. Thus the assertion is proved. 

Now we prove a theorem. 
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Theorem 1. For every connected finite bigraph B we have 

(}(B)_n + [}d(B)-]. 

This inequality cannot be improved. 

Proof. Let the colour sets of B be C, D,let \c\ = |D|, i.e. \i = | c | . As B is a con
nected bigraph, it contains no isolated vertices and therefore d(B) ^ 2. If d(B) ^ 3, 
then ii + [_ d(B)~\ = ft + 1 and fi(B) __ \x + 1 according to [2]; therefore the as
sertion holds. Suppose that d(B) __ 4. Then there exists a domatic partition P = 
= {Pl9 ..., Pd{B)) of B and, by Lemma, Pf n C * 0 and Pf n D 4= 0 for i = 
= 1, . . . , d(B). Denote C, = Pj n C, Dt = Ptn D for i = 1, . . . , d(B). Further, 
denote a = [id(-B)]. Now we shall define sets Ql9..., Qa. For i = 1, . . . , a — 1 
let Q; = D2l_x u D2i. If d(B) is even, then Qa = Dd(5)-i u Dd(By9 if d(B) is odd, 
then Qa = Dd(B)_2 u Dd(B)_1 u Dd(B). Let x be an arbitrary vertex of C. If x e 
e C — Cl9 then there exists y e D! adjacent to x; if x e Cl9 then there exists yeD2 

adjacent to x. In both these cases yeQx. Quite analogously we can prove that for 
each xeC and for each i e { 1 , . . . , a} there exists y e Qt adjacent to x. Take the 
complete bigraph KM>2

 o n ^ e s e t s C, {Qi,..., Qa) and define the mapping cp so that 
<p(.x) = x for x e C, <p(x) = Qt for x e Qt and i = 1, . . . , a. The mapping <p evidently 
is a bicomplete homomorphism of B onto K^>fl and hence /?(B) ̂  ^i + a = fi + 
+ [i d(B)]. If B is a circuit of the length 6, then /i = 3, d(B) = 3 and £(B) = 
= A* + [ i ^(-^)] = 4. Hence the inequality cannot be improved. 

Corollary. For every connected finite bigraph B with d(B) _% 3 we have 

f}(B)_[$d(B)]. 

Note that Lemma implies that each class of a domatic partition of B with d(B) 
classes has a non-empty intersection with each colour class and thus d(B) cannot 
exceed \i. Hence [f d(B)~\ <\ pi + [\ d(B)\\. If d(B) = 2 the inequality need not hold; 
we have fi(Kltl) =2 , d(Kul) = 2. 

At the end we shall disprove a conjecture from [2]. The authors have conjectured 
that fi(B) = fi + 6(B) — x, where 6(B) is the minimum degree of a vertex of B and x 
is a non-negative integer "small" compared with 3(B). 

Theorem 2. Let q be an arbitrary positive integer. Then there exists a connected 
finite bigraph B for which 

p(B) = » + 6(B) + q . 

Proof. Let B be a bigraph on sets C, D, let | c | = q + 3. |D | = q + 2. Let 
q e C j C i e Q d e . D b e vertices of B such that cx is adjacent only to d, c2 is adjacent 
to all vertices of D except d and each vertex of C — {cl9 c2) is adjacent to all vertices 
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of D. Obviously n = q + 3, d(B) = 1 (this is the degree of c j . By identifying the 

vertices cl9 c2 the complete bigraph Kq + 2 q+2 is obtained and hence /?(B) = 2q + 4 = 

= ii + 6(B) + q. 
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