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Časopis pro pěstováni matematiky, roč. 93 (1968), Praha 

DEFORMATIONS OF SUBMANIFOLDS OF HOMOGENEOUS SPACES 

ALOIS SVEC, Praha 

(Received July 11, 1966) 

Among the topics of the classical differential geometry there is the theory of the 
deformations of submanifolds of homogeneous spaces (first order deformation 
of surfaces in Euclidean 3-space, second order deformation of surfaces and line 
congruences in projective 3-space, etc.). It is interesting that there is no general 
definition of the deformation, the paper [1] being not very precise. The purpose 
of this paper is to present such a definition and to produce a process solving the 
question whether two given submanifolds are in a deformation. The deformation 
of high order being an equivalence, the theory of deformations may lead to the 
solution of the equivalence problem for submanifolds in homogeneous spaces. 
I present this process explicitly for the second order deformation of curves; the 
generalisation to submanifolds is quite trivial. The deformations of higher order 
lead to very complicated calculations, and I have no general formulas. 

The main problem in the theory of deformations is as follows: Be given a homo­
geneous space GJHy a manifold M with dim M < dim GJH and a natural number n; 
we have to find out all couples V, W: M -» GJH which are in the deformation of 
order n without being equivalent. I think that there are no general theorems covering 
the known results. 

1. Be given a Lie group G and its closed subgroup H; let us consider the homo­
geneous space GjH. For the sake of simplicity, suppose that G is a linear group, 
i.e. a subgroup of the full linear group GL(/J, R). Further, let us suppose that the 
normalizer of H coincides with H, i.e., 

(1.1) gHg~l czH=>geH> 

(1.2) fcf>]c=f>=>t>el>. 
In the Lie algebra g, we have 

(1.3) [A, B] - AB - BA, &d(g)A=°gAg~l; A,BeQ,geG. 

Let us recall the well known formula 

(1.4) ad (g) [A, B] - [ad (g) A, ad (g) B] . 
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Let M be a differentiate manifold, dim M g dim GjH. Consider the embedding 
V: M -* GjH. The lift of Vis a map t;: M -• G such that the diagram 

(1.5) 

is commutative; of course, n : G -> G/H is the natural projection. If vx, v2 : M -» G 
are two lifts of the embedding V: M -> G/H, there is the map h : M ~> H such that 

(1.6) v2(m) = t>i(m) ft(m) for meM. 

To each t?: M -> G, there is associated the g-valued 1-form cov on M defined by 

(1.7) cov = v~1dv. 

If the lifts vu v2 : M -* G satisfy (1.6), we have 

(1.8) c ^ = ad (IT1) ©Pa + I T Ufc. 

If i>: M -> G is a lift of the embedding V: M -> G/H, 

(1.9) (0.,(rro(M)) n 1) = 0 for each meM . 

Let us present the fundamental existence theorem. 

Theorem 1.1. Be given a Lie group G, a manifold M and a ^-valued l-form cop 

on M such that 

(1.10) dcov = — cov A cov . 

Further, be given points m0e M and g0 e G. Then there is a neighborhood U a M 
of the point m0 and a unique map v :U -» G satisfying (1.7) and v(m0) = g0. 
If dimM = 1 and M is an interval, we may set U = M; the condition (1.10) is 
always satisfied. 

The group G acts transitively on G/H to the left; to the element geG there is 
associated the map Ag : GjH -> GjH given by Ag(giH) = (^^t) H. 

Definition 1.1. The embeddings F, W: M -> G/H are equivalent if there is an 
element geG such that the diagram 

(1.11) Л 

G/H 

is commutative. 
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In the differential geometry, the following problem is of fundamental importance: 
Be given a homogeneous space GJH and a manifold M, dim M S dim GjH. On M, 
be given g-valued 1-forms col9 co2 such that (i = 1, 2) 

(1.12) " dcoi = -co* A cot, (^(Tm(M)) n I) = 0 . 

Suppose that there are mappings (according to Theorem 1.1) vl9 v2:M -• G such 
that a)j -= vf1 dt?f. Define the embeddings Vl9 V2 : M -» G/H by Vf = AI^. We have 
to decide whether Vt and V2 are equivalent. 

From (1.8), we get 

Theorem 1.2. The embeddings Vl9 V2 : M -> GJH are equivalent if and only 
if there is a map h : M -* H such that 

(1.13) co2 ̂ ^d(h~i)co1 -f ft^dh. 

The condition (1.13) is, of course, a differential equation for h, and it is not very 
convenient for our purposes. In what follows, we wish to replace it by a sequence 
of algebraic conditions. 

Denote by Gr (g/I)) the Grassman manifold of all subspaces Keg such that 
dim K = dim I). Further, denote by St (g/l)) the Stiefel manifold of all ordered sets 
(bl9..., fer) of linearly independent vectors bl9..., bt e g, T = dim I). Let n : St (g/fj) -> 
~» Gr(g/I)) be the natural projection. The group G acts on St (g/I)) to the left; if 
M = (61}..., bt) € St (g/f)) we set 

(1.14) ad (g) <% - (ad (#) b1 ? . . . , ad (#) bt) G St (g/I)) . 

If K e Gr (g/!)) and &l9 @2 e St (g/I)) are such that rc^) = TZ(@2) = K, we have 
7t(ad (g) *#t) = rc(ad (g) 0i2)9 and the group G acts on Gr (g/l)) to the left; we denote 
its action by ad, and we have 

(1.15) n(2Ld(g)@) = ad(g)n(0g) for J> € St (g/l)). 

The full linear group GL(dim I), R) acts on the Stiefel manifold St (g/I)) to the right 
according to the rule 

(1.16) as = (b» ..., bx) (s>) = ( t ivi,..., t feis') • 
i=-l . = 1 

Be given an embedding V: M ~» G/H and let t>: M -> G be its arbitrary lift. 
Define the mapping V* : M -+ Gr (g/l)) by 

(1.17) V*(m) = ad (v(m))I). 

The mapping V* is obviously independent on the choice of the lift v: M -* G. 
Be given another embedding W: M -» G/H and its associated mapping W* : M -• 
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-> Gr (g/!)). Suppose that Vand Ware equivalent; hence, there is an element g e G 
such that the diagram (1.11) is commutative. If v : M -> G is a lift of V, #t> is a lift 
of PV, and we have 

(1.18) W*(m) = ad (g) V*(m) for each meM . 

Now, suppose the existence of an element g e G such that we have (1.18), and let 
us choose lifts t?, w : M -» G of the maps V, FV: M -+ GjH. Then the equation (1.18) 
may be written as ad (w(m)) f) = ad (g) ad (tf(m)) 1), i.e. ad (v(m)~x g"1 w(m)) 1) = I). 
There is a mapping h:M -* H such that 

i^m)"1 g""1 w(m) = h(m) , i.e. w(m) = g v(m) h(m). 

The embedding V: M ~> G/H has a lift t/(m) = v(m) h(m) such that w(m) = # t>'(m), 
and the embeddings Vand JVare equivalent. We have just proved 

Theorem 1.3. The embeddings V, W: M -» GJH are equivalent if and only if there 
is an element g eG such that we have (1.18). 

Be given the embeddings V, W: M -> GJH and the associated mappings V*, 
W* : M -> Gr (g/f)). Introduce the following 

Definition 1.2. Let Z be a vector space, r, s : M -> Z mappings and m e M a fixed 
point. Let £A be a basis of the space Z and ua; a = 1,..., fc; be local coordinates 
in a neighborhood [ / c M o f m ; let ua(m) = w$. The restrictions of the mappings r 
and sto U are given by the functions zA = r^(tia) and zA = sx(ua) in such a manner 
that we have r(ua) = r^(ua) O, s(ua) = ŝ (wa) fx. We write fjr) = j^(s) if 

(1.19) 
5%(m) aV(m) _ A ^ ^ 

. — d i _ ^ — _ = L_J— for 0 = # = r, ^ + ... + gk = Q. 
(duaiy\..., (du**y* (du*iy\..., (ov*)** 

It is well known that this is a good definition. The spaces St (g/l)) c J^g and K*g 
being vector spaces, the relation j j , ( f ) = jm(i^)9 ^ and iF : M -+ St (g/f)) being 
given, is well defined. Be given mappings V*, W* : M~»Gr (g/fy). We write j^(V*) = 
= fm(W*) if and only if there are lifts f, W : M -+ St (g/1)) o/ rhe mappings 
V*, W* swcft ffca* we havefjr) = ;*(#*). 

Definition 1.3. Be given the embeddings V, W: M -* G/H. We say that the embed­
dings V and W are in the deformation of order t if there is a mapping g : M ~* G 
such that for each m0 e M we have 

(1-20) j;0(ad (g(m0)) V*) - jj,0(rf*), 

V*, Wt* : M -> Gr (g/l>) being the associated mappings (1.17). 
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2. Let GjH be a homogeneous space, M = (t%912) c R an interval and V: M -* 
-* G\H an embedding. Let 0: M -• G be an arbitrary lift of V, and let A : M -» g 
be defined by 

(2.i) ' 40-KO" 1 -^ - . 

Analogously, be given an embedding W: M -* G/ff, its lift w : M -+ G and the 
associated mapping 

(2.2) mo-* (») - * -$- . 

The mappings _4, B : M -> g being given, we have to decide whether the embeddings 
V, W: M ~> G/ff are in the deformation of the given order. 

The associated mappings V*9 W* : M -> Gr (g/I)) are 

(2.3) V*(t) = ad (t?(r)) I), W* = ad (w(*)) I). 

Let ^ e St (g/I)) be a fixed basis of the space I). The mappings r *,W* : M -» 
-* St (g/f>) given by 

(2.4) f*(*) = ad «*)) @, 1T*(0 = ad (w(*)) ^ 

are lifts of the mappings V*9 W* : M -> Gr (g/I)). If S : M -> GL(dim I), R) is an 
arbitrary mapping, the mapping iV% : M -> St (g/I)) given by 

(2.5) ir*(t)~ad(w(t))@S(t) 

is certainly a lift of W*; we get all the lifts of W* by means of this procedure. Obviously 
we have 

Theorem 2.1. The embeddings V9 W: M -* GjH are in the deformation of order k 
at the point t0 if and only if there is g e G and S : M -> GL(dim Ij, R) such that 

(2.6) ad (g) ~~ r*(t0) = ^ iT*(t0) ; 0 £ x g fc . 

Let us study the deformations of low orders; first of all, let us consider the deform­
ation of order 0. For the sake of simplicity, let us write v(t0) = t?0, etc. We have 

(2.7) r$ - ad (v0) 0, ir*0 = ad (w0)^S0, 

and the condition (2.6) reduces to the existence of g e G and S0 e GL (dim I), R) 
such that ad (gv0) SI = ad (w0) &S0> i.e. 

(2.8) • ad(w0 V o ) * « « S o ' -
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0SSo being a basis of the space I) we have w0
 lgv0 e H. The general solution g and S0 

of (2.7) is obtained as follows: choose ft e If, set # = (o0hv0
x
9 and determine S0 from 

(2.9) ad(A)^ = ^ S 0 . 

Every two curves are thus in the deformation of order 0; of course, this is obvious, 
the group G acting on GJH transitively. 

Let us now consider the deformation of order k = 1. From (2.4), we get 

r*(t)v(t)~v(t)$S9 

and we have 

ì.e. 

^ ^ v(t) + v(t) <% A(i) « v(t) A(t) äS, 
àt 

(HO) ^ = a d « t ) ) [ 4 ( ( ) ^ ] ; 
at 

here, we use the obvious notation [A, (bi9..., bt)~] = ([.4, b{\9..., [.4, fct]). Ana­
logously, we get 

(2.11) ^ = ad(w( ())[B( ()^] . 

From (2.5), we get 

^ ^ = ad (w(0) ( ^ ^ + [B(0, ® S(*)]l • 
d? ( dt J 

The condition (2.6) for x == 0,1 and # = w0ftv0
 1 yields (2.9) and 

ad (w0ft) [AQ9 Of] = ad (w0) ( ^ + [B09 ad (A) i»]); Sx = ^ ^ . 
d* 

Applying ad (h"xw0
 1), we get 

(2.12) [4 , - ad (h-1) B0, Jf] = ad (/T1) aSx. 

The curves V9 W: M -+ G/if are in the deformation of order 1 at the point t = *0 

if and only if there is an element heH and a (dim i) x dim I))-matrix Sx — possibly 
singular - such that we have (2.12). From (2.12), we get [A0 - ad (ft""1) B0, i>] c § 
and v40 — ad (A"1) B0 e I). We have proved 

Theorem 2.2. Be given curves V9W:M -~> G/ff, lifts v,w :M -> G and ffte associat­
ed mappings A9B:M -+ g (2.1) and (2.2) resP. The curves V and JF are in ffte 
deformation of order 1 i/ and only if there is a mapping h : M -* H such that 

(2.13) # ) - ad( / . ( f ) - 1 ^)e l> /or eacft f e M . 
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Suppose that the curves V9 W: M -> GJH are in the deformation of order 1. For 
each f e M, choose h(t) e H satisfying (2.13), and replace the lift w : M -* G by the 
lift w' : M -• G defined by w'(t) = w(f) /*(*). For the associated mapping 

BXO-tfW-1-*-®. 
df 

we have 
B'(*) = ad(fc(l)-1)B(l) 4- h(i)~x ^ 

dt 

according to (1.8), and the relation (2.13) is equivalent to A(t) ~ B'(t)e\). Thus 
we have 

Theorem 23 . The curves V9 W: M -> G/ff are in t/ie deformation of order 1 i/ 
and only if there are lifts v7 w : M -> G such f/iat we /lave 

(2.14) 4(f) - B(f) e $ /or each * e M 

/or ffte associated mappings A9 B : M -> g. 

Finally, let us consider the deformation of order 2. From (2.10) and (2.11), we get 

(2.15) ^ W - ad (KO) { [ ^ , * ] + [#) , [40. <,]}. 

(2.16) **£& - ad (w(.)) {[--?&- , * ] + [B((), [B{t), * ] ] } . 

Further, 

^ - 0 - s ) = ad(w0){T-^-, ad(fc)a\ + [B0, ad(fc)Of]\ + 

+ 2[B0, [ad (fc) A0 - B0, ad (fc) 0]] + asX. 

The condition (2.6) x = 2 yields 

(2.17) f M - 2 - - ad (fc"1) - ^ 2 - + [Ao, ad (fc"1) B0], *\ = 
L dt d* J 

- ad (fc-1) ®S2 - [AQ - ad (ft"1) B0, [A0 - ad (ft"1) B0, * ] ] , 

and we have 

Theorem 2.4. Be #it>en curves V9 W: M -» G/if, f fte Ii/*ts u, w : M -* G and the 
associated mapping A9B : M -* g fifiven 6y (2.1) and (2.2) resp. Tfte curt?es Vand W 
are in the deformation of order 2 if and only if there is a mapping h:M -* H 
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such that we have (2.13) and 

(2.18) ^ - ad (h(r)"1) ^ ® + [i4(0, ad (h(t)~x) B(t)} e rj 
dt dt 

for each teM. 

Let there be a mapping h : M -> H such that we have (2.13), i.e. 

A(t) - ad (fe(*)"x) B(t) = <?(*) , cp(t) e t). 
Then 

h(t) A(t)-B(t)h(t) = h(t)<p(t), 

and we get 

^-«.)-)^+[M.)-^.)]e». 
The relation (2.18) is equivalent to 

(2.19) rA(r)5 ad (HO"1) B(t) + fc(f)"1 - ^ 1 e t> for each r e M . 

Replacing w by the lift w'(t) = w(t) h(t), we get 

Theorem 2.5. The curves V, W:M -+ GJH are in the deformation of order 2 
if and only if there are lifts v, w : M -> G such that we have (2.14) and 

(2.20) [AuY),B(t)]eJ) for each teM 

for the associated mapping A, B : M -> g. 
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