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ON A CERTAIN MAPPING ON THE SET WITH ORTHOGONALITY

JAN HAVRDA, Praha
(Received April 7, 1987)

Summary. We consider a set with orthogonality (£2, 1) and the corresponding complete lattice
with orthogonality & = (S,<, 1,2, {0}). We investigate the mapping T:exp Q—>expQ
defined as T(4) = 2 — A* for 0 &= 4 = Q and T(P) = 9. As an application, we have used the
mapping T for the characterization of the maximality of an independent set M < Q. At the end,
we have used the mapping T for the construction of an isomorphism of the center of some ortho-
modular lattice to the family of all subsets of a given set.

Keywords: set with orthogonality, lattice with orthogonality, mapping T(4) = Q — A‘L,
independent set, center of an orthomodular lattice.

AMS Classification: Primary 06C15, Secondary 81B10.

1. This paper is devoted to a study of the mapping T:exp Q — exp Q where
(@, 1) is a given set with an orthogonality relation and we put T(4) = Q — A* for
Ac Q, A+ 0 and T(9) = 0. First of all, we summarize some properties of the
mapping T. Then we state some of its applications.

2. In addition to the pair (22, 1), we shall consider the generated complete lattice
with orthogonality & = (S, =, 1, @, {o}) with the support S = {40 + 4 = Q} =
={AcQ; 0+ A4=A"}, where A' = {yeQ; yLx for all xe A}. Here, the
set Q plays the role of the unit element of & and the set {0} plays the role of the

nought element of &.

First of all, the mapping T has the followmg properties which one can easily prove.
2.1. T({o}) = 0, T(Q) = 2 — {0}.

2.2. If A = B, then T(A4) = T(B).

2.3. If 0 % A, then A c A** < T(4) U {0}.

2.4. T(4 v B) = T(4) v T(B).

2.5. T(A n B) = T(A) n T(B).

2.6. T(44) = Q — 4*~.

2.7. If A,BeS, then T(4 v B) = T(4) u T(B).

28. If A,BeS, A* v B = A* U B, then T(4 n B) = T(4) A T(B).

29. If AeS, then T(4Y) = Q — A.
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2.10. If A,BeS, A + B, then T(4) + T(B).

211. If A,BeS, A B, then T(B) = T(4) u [T(4%) A T(B)].

2.12. If A is an atom of &, then @ = T(B) = T(A) for some Be S implies that
either T(B) = @ or T(B) = T(A).

2.13. If A, Be S and the set B covers the set A (4 < B), then T(4) = T(C)
< T(B) for some Ce S implies that either T(C) = T(4) or T(C) = T(B).

For x € Q, x + o, let us write T(x) instead of T({x}).

214. If x,ye 2, x + 0 + y, x L y, then T(x) + T(y).

Let us recall that we say that the lattice & satisfies axiom A when, for every x € Q,
x % o, the set {x}** is an atom of the lattice &.

2.15. If the lattice & contains more than two elements and satisfies axiom A,
then N T(x) =0

xeN - {of{

Proof. If N T(x) # 0, then there is an element pe @ — {0} such that p £ x

xe—{o

for any x e Q ({fo} Hence {p}* = {o} which implies {p}** = Q, a contradiction.

We say that the lattice & satisfies axiom P when, for every xe Q, x ¢ 4, x ¢ A*
(where A4 € S, A arbitrary), there is an atom 4, = 4 and an atom 4, < A* such that
x€e A, v A,. If, moreover, the lattice & is orthomodular and satisfies axiom A,
then 4; = An (44 v {x}**), 4, = 4* n (4 v {x}*).

Letd += M < Q,0¢ M andlet the set M contain at least two points. We call the set M
j-independent if ) (M — {x})** = {0}. We call the set M k-independent if 4** n

xeM

N B** = {0} whenever M = AUB, A+ 0 + B, AnB = 0. We call the set M
l-independent if x ¢ (M — {x})** for all x € M.

2.16. Let the lattice & be orthomodular and let & satisfy axiom A and axiom P.
Let M be an i-independent set. Then it is maximal i-independent if and only if

UT(x) =92 — {o},i=jkL
xeM

Proof. a) Let M be maximal. If |J T(x) + 2 — {o}, then there is an element
' - xeM

ze Q = {o} such that z L x for all x e M. According to Lemma 2.7 of [3], the set
M v {z} is i-independent as well, i = j, k, I, contrary to the maximality of M.
b) Let us suppose that {J T(x) = Q@ — {o}. If M is not maximal, then in ac-
xeM

cordance with Lemma 2.8 of [3] there is z€ Q, z # o, such that z L x for all x e M.
Hence z ¢ T(x) for all x € M, and consequently U T(x) + Q — {o}.

This assertion immediately implies: For every ye Q- {o} there is an element
x € M such that y e T(x).
Combining the last assertion and Lemma 2.8 of [3] we have the following
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2.17. Theorem. Let the lattice & be orthomodular and let it satisfy axiom A
and axiom P. If M = Q is an i-independent set, i = j, k, 1, then the following
assertions are equivalent.

a) M is maximal.

b) M =V {x}* = Q.
xeM

c) J}GJMT(x) = Q — {o}.

3. Now, we shall deal with some applications of the mapping T. First we shall
prove the following lemma.

3.1. Lemma. Let the lattice & be orthomodular and let & satisfy axiom A and
axiom P.If M,, M, are maximal i-independent sets, i = j, k, 1, and if one of them
is finite then the other set is finite as well and both of them have the same number
of elements.

Proof. Let M, = {x,,...,x,} and let card M, = n. For each element y, e M,
there exists an element x;, € M, such that y, ¢ (M, — {x;})** because otherwise
we should have y, € (M, — {x})** = {o}. The last identity follows from Theorem

xeMy

2.12 of [1]. Let us denote x;, = x,. According to Theorem 2.10 of [3], it is true that
{y:1} v (M, — {x,}) is an i-independent set, i = j, k, I. In accordance with Theorem
2.10 of [2], we have (M, — {x,})** < {x,}** v (M; — {x;})** = Q. Of course,
(M, — ()™ @ (™ v (M, = () @, hence {y 1 v (M, — {x, ) =
= Q because the identity (M; — {x,})** = {y,}** v (M; — {x,})** is not true.

There exists an element x;, € M; — {x,} such that, for y, € M,, y, # y1, we have
v2 ¢ ({(y1} v My — {x;} — {x;,})**. Indeed, otherwise we should have y,e

e N ({yi}yvM - {xg,x})* = {y,}** where the last identity follows from
xeMy—{x1}
Theorem 2.12 of [1]. However, the relation y, € {y,}** is not true. Let us denote

x;, = x3. The set {y, y,} U (M, — {xy, x5}) is i-independent, i = j, k, I, and the
identity {y,, y,}** v (M — {x, x,})** = Q is valid.

Let us suppose that we already know that the set {y;, ..., yu—q} U {x.}, where
Vis s Ya—1 € My, x, € My, is i-independent, i = j, k, I, and that {y,, ..., ya=g}** v
v {x}** = Q. We take y,e M, — {yy, ..., Vn-1}. At the same time, y, ¢ {yy, ...
eees Yu—1}tt hence {yy, ..., y,} isani-independent set, i = j, k, I, and {y,, ..., y.}** =
= QI M, ={J1sees Yu» Vut1» .-} thenwe have @ = {y1, ..., v} = {y1s o0 Vs
Vastr oot =2V {ypsy, ...}t hence yoiy €2 = {yy,..., y}**, a contradiction.
Thus, card M; = n = card M,.

3.2. Theorem. Let the lattice & be orthomodular and let & satisfy axiom A
and axiom P. Let us suppose that there exists at least one infinite maximal i-

independent set, i = j, k, 1, in the set Q. For every two maximal i-independent
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sets M, M,, i = j, k,1, let the following assertion hold: For every x € M,, it is
true that card [T(x) n M;] < card M. Then and only then card M, = card M.

Proof. According to Lemma 3.1, every maximal i-independent set is infinite.

a) If card M; = card M,, then, for every x € M,, we have card [T(x) n M,] <
< card M, = card M,.

b) Let us suppose that card [T(x) n M,] < card M, for every x € M;. According
to 2.16 we have U [T(x)n M,] = M,. Hence card M, < card M, .card M, =

xeMy

= card M,. If we replace M; by M, and M, by M,, we have card M, < card M,
which yields card M; = card M,.

At the end of the paper, we shall construct an example of an orthomodular lattice
whose center is isomorphic to the family of all subsets of a given set and which has
two different blocks (a block is the maximal set of pairwise compatible elemenis).

3.3, Example. Let D stand for the given set which has at least two points. Suppose
that de D. We put A = D — {d}, 2 = Au {o,u,v, x, y}. Let us define the ortho-
gonality relation L as follows: o L z for every z € Q; a L b for every different a, b €
eAd;julv,xLy;ula,vla,xLla,ylafor every a € A. The support of this
orthogonality generated lattice & consists just of the following subsets of the set
Q: Agu {0}, 4, U {o,u}, 4; U {0, v}, 4; U {0, x}, 44 L {0, ¥}, 45U {0, u,v, X, y}
where A4;, for i =0,1,...,5, are arbitrary subsets of the set A. The lattice & is
orthomodular and satisfies axiom A and axiom P. There are just two maximal
orthogonal sets in the set 2, namely M; = AuU {u, v} and M, = A v {x, y}. The
set M, generates the block B, = {4, U {0}, 4; U {o,u}, 4;U {o,v}, 430U
u{o,u,v,x,y}; A, 4,i=0,1,2,3}. The set M, generates the block B, = {4, U
U {0}, 4; u{o,x}, 4, U {0,y}, 450 {0, u,v,x%,y}; 4; = 4,i =0,1,2,3}. Thus,
the center C of the lattice ¥ is C = B; n B, = {4, U {0}, 43U {0, u,v,x, y}; 4,
< A, A5 = A}. We define an isomorphism i: C — exp D as follows: i(4, L {0}) =
= T(4ou {0}) = 4o, (450 {o,u,v,x,y}) = [T(43 v {0, u, v, x, y}) — {u, v,

x, yYJu {d} = 450 {d}.

References

[1] J. Havrda: Independence in a set with orthogonality. Casopis p€st. mat. 107 (1982), 267—272.

[2] J. Havrda: Projection and covering in a set with orthogonality. Casopis pést. mat. 112 (1987),
245—248.

{3] J. Havrda: A study of independence in a set with orthogonality. Casopis pést.mat. 112 (1987),
249—256.

163



Souhrn

O JISTEM ZOBRAZENf V MNOZINE S ORTOGONALITOU

JAN HAVRDA

UvaZujeme mnoZinu s ortogonalitou (2, 1) a odpovidajici Gplny svaz s ortogonalitou & =
= (S,c,1,9, {o}). VySettuje se zobrazeni T: exp 2 — exp 2 definované jako T(4) = 2 — 4%
pro @ = A< Q a T(9) = 9. Jako aplikace se vyuZiva zobrazeni T k charakterizaci maximality
nezAvislych podmnoZin M < Q. Nakonec se zobrazeni T vyuZije ke konstrukci izomorfismu
centra jistého ortomodualniho svazu se systémem vSech podmnoZin dané mnoZiny.

Pe3iome

OB OJTHOM OTOBPAXXEHHHU HA MHOXECTBE C OPTOI'OHAJIBHOCTBIO

JAN HAVRDA

PaccMaTpuBaeTCX MHOXECTBO C OTHONIEHAEM OPTOTOHANBHOCTH (2, | ) ¥ HNOpPOXKACHHAst HM
HOoJHAsA p2meTka ¢ OPTOroHalIbHOCTIO < = (S, <, |, Q, o}) H ucciaenyercs orobpaxenme T
exp 2 — exp 2 onpenenennoe dpopmyitama T(A) = Q2 — AT pa P+ A< Q 1 T®) = 0. B ka-
4ecTBE NPHIOKEHUS OTOOpaXEHHEe NPUMEHEHO K XapaKTePH3aUUHd MaKCHMaIbHOCTH HE3aBHCHMBIX
MHOXECTB M < £2. Kpome TOoro orobpaxeHue T MCOONB30BAHO AJIs KOHCTPYKUHH m3oMopdusMa
IEHTPA HEKOTOPOM OPTOMOJYIATHOK PeINeTKU Ha CHCTEMY BCEX OJAMHOXECTB AAHHOTO MHOXECTBA.

" Author’s address: Katedra matematiky FEL CVUT, Suchbétarova 2, 166 27 Praha 6 - Dejvice.
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