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114(1989) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 2.138—145 

SOME PROPERTIES OF LATTICE HOMOMORPHISMS 

VfTEZSLAV NOVAK, Brno 

Dedicated to Professor Otakar Boruvka on the occasion of his ninetieth birthday 

(Received December 12, 1986) 

Summary. Let L be a chain and K, Kx be lattices. We show that an isomorphism of powers 
LK, LKl does not imply an isomorphism of lattices K, Kx. In particular: for any lattice K there 
exists a distributive lattice Kt such that the ordered sets LK, LKl are isomorphic. 
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B. Zastera proved ([6]) the following assertion: Let Land Lx be lattices. If the sets of 
join homomorphisms of L and Lt into reals are isomorphic as ordered sets by pointwise 
ordering, then the lattices L, Lt are isomorphic. In this note we study the set of 
homomorphisms of a lattice K into a chain L, i.e. the power Lx. 

1. INTRODUCTORY CONCEPTS AND ASSERTIONS 

The cardinality of a set A is denoted by \A\. Throughout the paper, any set G will 
be called nontrivial iff \G\ = 2. 

Let G be an ordered (---partially ordered) set. For any a e G denote 

(a~\ = {xeG; x = a} , (a) = {xeG; x < a} . 

Let G be an ordered set and H £ G. We call H dense in G iff it has the property 

x,yeG,x<y=> there exist u9ve H with x ^ u < v ^ y . 

1.1. Lemma. Let G be an ordered set which is a join-semilattice, let H Q G 
be dense in G. Then a = inf {x e H; x ^ a} for any ae G. 

Proof. Let a e G and denote H(a) = {x e H; x — a}. Clearly, a is a lower bound 
of H(a). Let b be any lower bound of H(a) and suppose b % a. Then a v b > a 
and thus there exist u,ve H such that a _̂  u < v ^ a v b. This means u e H(a) 
which implies a <£ u, b ^ u. Hence a v b _̂  u which is a contradiction. Thus 
b ^ a and a = inf if (a). 

Let G be a set, H an ordered set and / : G -> H a mapping. We denote by Qf the 
mapping of H into exp G defined by 

Qf(a) =fi((a]) = {xeG;f(x) = a} for any aeH. 
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Analogously we define the mapping Rf: H -> exp G as 

Rf(a) = /"'((a)) = {xeG; f(x) < a] for any a e H . 

Let Lbe a lattice, I ^ L.I is called an ideal in Liff it has the properties 

x, y el => x v y el; xeL, yel, x—^y=>xel. 

An ideal I in a lattice Lis called prime iff 

x, yeL, x/\yel=>xel or J>G/ . 

We denote by J(L) the set of all ideals of a lattice Land by &(L) the set of all prime 
ideals of L. Both sets ^(L), &*(L) are ordered by set inclusion. 

Note that, according to our definition, 0 e &*(L), Le &>(L) for any lattice L. 
If Lis a lattice and aeL, then (a] e ^(L); it is called a principal ideal of L. As 

de(fl], the necessary condition for (a]e&(L) is that a is meet irreducible. An 
element a of a lattice Lis meet irreducible iff 

x, yeL, a = xAy=>x = a or y = a . 

However, as is well known, (a] e &*(L) may also hold when a is meet irreducible. 
Let us call an element a of a lattice L ( v , A ) — distributive, iff 

a v (x A y) = (a v x) A (a v y) for any x, y e L. 

1.2. Lemma. Let Lbe a lattice and a e L o ( v , A ) - distributive element. Then 
(a] e &(L) if and only if a is meet irreducible. 

Proof. The necessity of the condition is clear; we prove its sufficiency. Thus, let a 
be meet irreducible and suppose be (a], b = x A y. Then a = avb = av 
v (x A y) = (a v x) A (a v y) and hence a = a v x or a = a v y, i.e. x _̂  a 
or y _̂  a. Thus xe (a ] or y e (a] and (a] e &(L). 

Especially, if L is a distributive lattice and aeL, then (a] e &*(L) iff a is meet 
irreducible ([l], p. 67 or [2], p. 28). 

1.3. Remark. Let Lbe a chain. Then Lis a distributive lattice and any element 
of Lis meet irreducible. Thus (a] e 0>(L) for any aeL. Further, it is easy to see that 
also (a) e &>(L) for any aeL. 

Let K, L be lattices. We denote by Horn (K, L) the set of all homomorphisms 
of K into L. 

1.4. Lemma. Let K, L be lattices and f e Horn (K, L). If P e 0>(L) then f~\P) e 
eP(K). 

Proof. Let Pe&(L) and x,yef\P). Then f(x)eP, f(y)eP, f(x v y ) = 
= f(x) v f(y) e P and x v y ef~\P). Let xeK,y ef~\P), x = y. Then/(>>) e P 
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and f(x) ;=f(y) as f is monotone. Thus f(x)eP and xe f 1(P). Let x, yeK, 
x A y ef-'CP). Then f(x A y) = f(x) A f(y) e P, hence f(x) e P or f(y) e P and 
xef'^P) or yef-^P). 

1.5. Lemma. Let Lbe a lattice. Put 0(x) = {P e 0(L); xe P} for any x e Land 
0t = {0(x); xe L}. Then 0 is a ring of sets (thus a distributive lattice with respect 
to set operations) and 0 is a surjective dual homomorphism of L onto 0. 

Proof. Clearly, 0 is a surjective mapping of L onto 0. Let x, y e L. Then 
&>(x v y) = {Pe 0(L); x v y e P} = {P e 0(L); xeP and y e P} = {P e 0(L); 
x e P} n {P e 0(L); y e P} = 0(x) n 0(y), 0(x A y) = {P e 0(L); x A y e P} = 
= {P e 0(L); xeP or y e P} = { P e 0(L); x e P) u {P e 0(L); yeP} = 0(x) u 
u 0(y). Thus 0 is a dual homomorphism and simultaneously we obtain that 0 is 
a ring of sets. 

2. CHARACTERIZATION OF LATTICE HOMOMORPHISMS 

2.1. Theorem. Let K,Lbe lattices andf: K -* La mapping. If there exists a subset 
H £ L dense in L such that Qf(y) e 0(K) for any y e H, then fe Horn (K, L). 

Proof. Let xt,x2eK and denote f(xt) = yl9 f(x2) = y2. We prove first 
f(xi v xi) = /(*i) v f(x2) = y! v v2. Denote y± v y2 = y, f(xx v x2) = z and 
assume z $ y. Then j < j! v z and thus there exist ul9 v1eH with y S u1 < v1 ^ 
^ j v z . Then j i = ul9 y2 S uu i.e. x t e Q/(wi), x2 e 2/(wi), and as Q/uJe 
e0(K), we have xt v x2e Qf(ux), i.e. f(xx v x2) = z g w1# Hence y v z ^ wl5 

a contradiction. Thus z ^ j ; assume that z < y. Then there exist w2, v2e H such 
that z ^ w2 < v2 !g j . As xx v x2 e Qf(u2) and Q/(w2) e ^(K), we have xx G Q/(w2) 
and x2 e Q/(w2). Hence f(xx) = yx <; w2,f(x2) = y2 ^ w2 and yi v j 2 = j g w2, 
a contradiction. Thusf^ v x2) = f(xx) v f(x2). Further, we prove f(xx A X2) = 
= / ( x i ) A f(xi) = yi A y2- Denote f(xx A X2) = u, yt A y2 = v; we show first 
w ^ j ^ . If this is not the case then yi < yi v w and thus there exist u3,v3eH 
with yi ;= w3 < v3 ^ yt v w. As xx e Q/(w3) and Q/(w3) e 0(K), we have x± A x2e 
e Qf(u3), i.e. f(xt A X2) = u g w3. Then jlx v w ̂  w3, a contradiction. Thus 
w .= yi and similarly u ^ y2. Hence w S yi A y2 = v'> suppose that u < v. Then 
there exist w4, v4e H with w ^ w4 < i;4 <* v. As xx A x2 e 6/(w4) and Q/(w4) e 0(K), 
we have xt e Qf(u4) or x2 e Qf(u4), i.e. f(xx) = }>i ;= w4 or f(x2) = y2 ^ w4. But 
then yi A j / 2 = v ^ w4, which is a contradiction. Thusf^ A X2) = f(xt) A f(x2) 
and fe Horn (K,L). 

2.2. Lemma. Let K be a lattice, L a chain and f:K ~* L a mapping. If there 
exists a subset H <= L dense in L such that Rf(y) e 0(K) for any y e H9 then fe 
eUom(K,L). 
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Proof. Let xl9 x2 eK,f(Xi) = yi,/(x2) = y2. Then either yt =S y2 or y2 = yl9 

let us assume that yx ^ y2. Denote f(xx v x2) = y and assume that y = y2 does 
not hold. If y2 < y, then there exist ul9 vveH with y2 ~ MX < t^ = y; then 
Xj G Rf(vi), x2 e Rf(Vi) and xx v x2e Rf(vi)9 i .e. /(x! v x2) = y < vl9 a contradic
tion. If y < y2, then there exist u2, v2e H with j> = u2 < v2 ~ y2; then xt v x2e 
eRf(v2), thus x2eRf(v2), i.e. / (x 2 ) === y2 < v2, a contradiction. Thus y = y2, 
i.e. f(xx v x2) = y2 = yt v y2 = / (x x ) v f(x2). 

Denote further f(x± A X2) = z and assume that z = j! t does not hold. Let yt < z; 
then there exist u3, v3eH such that yx = u3 < v3 = z. As xx e K/(r3), we have 
xx A x2 e -R/(t;3), i . e . / ^ A x2) = z < v3, a contradiction. Let z < yt; then there 
exist w4, i;4 e if with z ^ u4 < u4 ^ y1# As xx A x2 e -R/(u4) and Rf(v4) e 0>(K)9 

we have xx e K/(u4) or x2 e Rf(v4), i.e. / ( X l ) = yi < v4 or / (x 2 ) = y2 < vA. As 
yi = y2»wehaveyi < u4 and this is a contradiction. Hence z = yl9i.e.f(x1 A X2) = 
= yt= yi A y2= f(xt) A f(x2) a n d / e Horn (K, L). 

2.3. Theorem. Let K be a lattice, La chain and f:K -* La mapping. Then the 
following statements are equivalent: 

(l)feHom(K,L); 

(2) Qj(y)e&(K) for any yeL; 

(3) there exists a subset H ^ L dense in Lsuch that Qf(y) e &>(K) for any yeH; 

(4) Rf(y) e &(K) for any yeL; 

(5) there exists a subset H £ L dense in Lsuch that Rf(y) e &>(K) for any yeH. 

Proof. (1) ==> (2) by 1.3 and 1.4. (2) => (3) is trivial and (3) => (1) by 2.1. (l) => (4) 
by 1.3 and 1.4, (4) => (5) is trivial and (5) => (l) by 2.2. 

2.4. Theorem. Let K be a lattice, La nontrivial chain, and let xl9 x2 eK. Then 
the following statements are equivalent: 

(1) f(*i) = f(x2) for any fe Horn (K, L); 

(2) Xi e P o x2 e P for any P e 0>(K). 

Proof. 1. Let (l) hold and let Pe&>(K). Choose any yl9y2eL9 yt < y2 and 
define a mapping / : K -> L by f(x) = yt for x e P and f(x) = y2 for x e K — P. 
It is easy to show that fe Horn (K, L): if u9 v e K9 u9ve P, then u v veP and 
f(u v v) = yt = y! v yt = f(u) v /(1;); if ueP or u e P , then u v veP and 
/(w v 1;) = y2 = f(u) v f(v). If ueP,veP9 then M A D G P and f(u A v) = y2 = 
= y2 A y2 = f(u) A f(v); if u e P or v e P, then « A V e P and f(u A V) = j ^ = 
= f(u) Af(v). Thus / e H o m ( K , L ) and by (1) f(xt) = / (x 2 ) . But this implies 
xteP ox2e P. 

2. Let (2) hold and let fe Horn (K, L). Denote /(xA) = yi, / (x 2 ) = y2. By 2.3, 
we have Qf(y2) e ^(K) and as x2 e Qf(y2), we have xx e Qf(y2)> --e./(-*i) = ^ 1 = y2. 
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Similarly Qf(yx) e &(K) and xt e Q/(yi), thus x2 e G/(yi)> i.e. f(x2) = y2 = yi-
We have yt = y2, i . e . f^) = f(x2). 

3. FURTHER PROPERTIES OF LATTICE HOMOMORPHISMS 

3.1. Lemma. Let K be a lattice, La distributive lattice and fe Hom(K, L). Let 
there exist a subset L0 ^f(K) dense inf(K) and containing only meet irreducible 
elements in L. Then Qf: L0 -> 3?(K) is an isomorphic embedding and f(x) = 
= inf {zeL0\xe Qf(z)} holds for any xeK. 

Proof. By 1.2 and 1.4 we have Qf(y) e 0>(K) for any y e L0, so that Qf maps L0 

into 0>(K). Let yl9 y2 e L0, yx = y2. Then x e Qf(y±) =*/(*) = -Vi =*/(*) = ^2 => 
=> x e e/(j;2) and thus Qf(y^) <= S/(y2)- Let Q/(yi) = 6/^2) and choose xx GK, 
x2 eX such that f(xt) = yl9 f(x2) = y2. Then xt e Q/(yi), thus xx e Qf(y2)

 a n d 

xi e G/(y2). As Q/(y2) e ^(K), we have x1 v x2 e Q/(y2) so that f(xx v x2) = 
= f(xi) v /(^2) = yi v y2 IS y2 which implies yx <; y2. Thus Qy-: L0 -> &(K) is 
an isomorphic embedding. Let xeK be any element and putf(x) = y. By 1.1 we 
have y = inf {z e L0; y = z} = inf {z e L0\ f(x) ^ z} = inf {z e L0; x e Qf(z)}> 

3.2. Theorem. Let K be a lattice, L a chain and f:K -> La mapping. If there 
exists a subset L0 1= Lsuch that Qf: L0 -• &(K) is an isomorphic embedding and 
f(x) = inf {z e L0; x e Qf(z)} for any xeK, then fe Horn (K, L). 

Proof. Put tf0 = {Qf(z)\ zeL0} £= 0>(K)\ by assumption, QJ1: X0 -> L0 is an 
isomorphism. Denote 0t(x) = \PeX0\ xeP} for any xeK ; by assumption we 
have f(x) = inf {zeL0\ xeQf(z)} = inf {QJX(P)\ Pe^(x)}. For any xl9x2eK 
we have 0l(x1 v x2) = {Pe X0\ xt v x2eP} = {Pe X0\ x1eP and x2eP} = 
= m(x^) n ^(x2), m(x1 A x2) = {PeJf0\ xt A x2eP} = {Pe X0\ xxeP or 
x2eP} = 0t(x^) u 0t(x2). Denote f(xx) = yl9 f(x2) = y2. Then either yt ^ y2 

or y2 ^ yi; let us suppose that y1 = y2. Let first yx < y2 and P2 e ^(x2). As 
y± = inf {QJ^P); P e ^ i ) } <^{QJ1(P)\ P e ^(x2)} = y2, there must exist 
P1e@(x1) such that QJ1(P1) <; Q J 1 ^ ) - As QJ1 is an isomorphism, we have 
P1 c P2. Then P2 e R(xx) and this shows ^(x2) = ^(xx). This implies f(xt v x2) = 
= inf {QJ^P); Pe<%(Xl v x2)} = inf {Qj\P)\ P e ^ ) n ^(x2)} = 
= inf {Q}\P)\Pem(x2)} =/(x 2) = h = J i V J 2 = f(*i) v f(x2),f(x! A X2) = 
= inf { Q J ^ P 6 «(x t A x2)} = inf {G71(P);Pe^(x1)u ^(x2)} = i n f ^ ; 1 ^ ) ; 
Pe0t(x^)} =f(xj) = yi = yi A y2 = f(*i) A f(x2). Now suppose that yx = y2 

holds. If for any P2 e 0t(x2) there exists Pt e M(xx) with QJ^Pi) = QJ *(P2), then 
repeating the preceding consideration we obtain f(x1 v x2) = f(xj) v f(x2), 
f(x1 A x2) =f(xx) Af(x2). Thus let there exist P2 e 0t(x2) such that QJ (P) > 
> QJ1(P2) for any P e ^ x J . As QJ1 is an isomorphism, this means P 3 P2 for 
any P e ^(xx). As x2 e P2, we have x2 e P for any P e ^t(xt) and hence 0t(x^) £ 
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c ^(x 2 ) . Now we obtain f(x1 v x2) = inf {Q}\P); Pe0t(x1 v x2)} = 
= inf {QJX(P); P e ®(xx) n ^(x2)} = inf {Qj\P); P e M(xx)} = f(xt) = yt = 
= yi v j ; 2 =f(x,) v f (x 2 ) , f(xj A x2) = inf { e j ^ P ) ; P e ^ A X 2 )} = 
= inf {Q7\P); Pe®(x,) u 0t(x2)} = inf {Q}1 (P);P e ®(x2)} = f(x2) = y2 = 
= yi A y2 = f(xx) A f(x2). Thusfe Horn (K, L). 

3.3. Theorem. Let K be a lattice, La chain and f:K -> La mapping. Then the 
following statements are equivalent: 

(1) fe Horn (K,L); 

(2) Qf:f(K) -> 0>(K) is an isomorphic embedding and f(x) = inf {y ef(K); xe 

e Qf(y)} for any xeK; 

(3) there exists a subset L0 -=f(K) dense in f(K) such that Qf: L0 -> 0>(K) is an 
isomorphic embedding and f(x) = inf {y e L0; xe Qf(y)} for any xeK. 

Proof. (1) => (2) by 3.1, (2) => (3) is trivial and (3) => (l) by 3.2. 

4. POWER OF LATTICES 

4.1. Lemma. Let K be a lattice, La nontrivial chain and let xl9 x2 eK. Let the 
mapping 0 have the same meaning as in 1.5. Then the following statements are 
equivalent: 

(1) 0>(xt) = &(x2); 

(2) f(*i) = f(x2) for any fe Horn (K, L). 

Proof. 0(xx) = ^(x 2 ) means {Pe0>(K); xteP} = { P e ^ ( K ) ; x 2 e P } which 
means x1 e P o x2 e P for any P e &(K). But by 2.4 this statement is equivalent 
t o / ( x i ) = f(xi) f ° r any fe Horn (K, L). 

4.2. Definition. Let K, Lbe lattices. The power L*is the set Hom(K , L) equipped 
with an order = given byf = g <=>f(x) = g(x) for any xeK. 

The power LK of lattices L, K is thus a subset of a cardinal power (L, ^ ) ( K ' - ) of 
ordered sets (L, ^ ) , (K, ^ ) which consists of all monotonic mappings of K into L. 
The cardinal power (L, ^){K>^ is a lattice in which f v # :x -» f (x ) v #(x), 
f A g:x -*f(x) A a(x), x e K . L* is, however, not a sublattice of (L, ^ ) ( K , - } as 
/ v g, f A g need not be homomorphisms of K into L whenever f, # are such 
homomorphisms. 

4.3. Theorem. Let K be a lattice, L a chain. Then there exists a distributive 
lattice Kt such that the ordered sets LK, LKi are isomorphic. 
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Proof. If Lis trivial, then the assertion is clear; thus let | L | = 2. For the lattice K9 

let us construct the lattice 0t and the mapping 0* as given in 1.5 and let 0t* be a dual 
of 0t. Then 0> is sC surjective homomorphism of L onto 0t* and 01* is a distributive 
lattice. We show that the ordered sets L* and L** are isomorphic. Let us define 
a mapping q>: Horn (^*, L) -* Horn (K, L): for g e Horn (^?*, L) let (p(g) = # o 0>9 

i.e. <?(#)- X -* Lis such a mapping/ that f(x) = tf(^(x)) for any xeK. As <p(#) -s 

a composition of two homomorphisms 0> and #, it is a homomorphism of K into L 
so that really <p: Horn (0t*9 L) -+ Horn (K9 L). 

We show that (p is surjective. Let / e Horn (K, L). Let us define a mapping 
0: 0t* -> L by #(^(x)) = f(x) for any ^(x) e ^ * . This definition is correct, for if 
0>(xx) = 0>(x2) for some xl9 x2 e K9 thQnf(xx) = /(x2) by 4.1. Now, if 0>(x1)9 0>(x2) e 
e 01*9 then g(0>(x1) v 0>(x2)) = g(0>(xx v x2)) = f(xx v x2) = f(xx) v /(x2) = 
= 0v^(xi)) v ^(^(X2)) a n d similarly we see that g(0>(xx) A 0>(X2)) = gO^(*i)) A 

A g(0*(x2)). Thus g e Horn (01*9 L) and from its definition we conclude (p(g) = /. 
We show further that (p is injective. Let gl9 g2 e Horn (01*9 L), gx 4= # 2 . Then there 
exists a ^(x) e ^ * such that tfi(^(x)) + 92(^(x)) and then <p(gi) (x) = gx(0>(*)) * 

* 02 v^(*)) = <f>(92) (*), i.e. ^ 1 ) * <Kg2). 
Thus (p is a bijection of Horn (^*, L) onto Horn (K, L). For any two elements 

gl9 g2 e Horn (0t*9 L) we now have gx ^ g2 in L** o g^&fa)) ^ g2(0>(x)) for any 
^(x) e ^ * <=> <p(#i) ( x) = <K#2) ( x) f° r a n y x G -K <=> <p(gi) ^ <K02) in L*. Hence <p 
is an isomorphism of L** onto LK. 

Note that 4.3 in particular implies that the isomorphism of ordered sets L*, L*1 

does not generally imply the isomorphism of the lattices K9 Kx. 
4.4. Problem. Let K9KX be distributive lattices and La nontrivial chain. Does 

the isomorphism of ordered sets LK, L*1 imply the isomorphism of the lattices K9 Kx7 
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Souhrn 

N KTERÉ VLASTNOSTI SVAZOVÝCH HOMOMORFISMÜ 

VÍTЙZSLAV NovÁк 

Nechť L je řet zec a K, Kt jsou svazy. V práci je ukázáno, že z izomoгfìsmu mocnin Lк, LKï 

obecn neplyne izomorfismus svazû K, K^. Zejména platí: pгo každý svaz K existuje distributivní 
svaz Kx tak, že uspořádané množiny Lк

9 LKl jsou izomorfní. 

Резюме 

НЕКОТОРЫЕ СВОЙСТВА ГОМОМОРФИЗМОВ РЕШЕТОК 

V^ТЁ28̂ АV NоVЛк 

Пусть ^ —- цепь и КуК^ — решетки. В статье показано, что из изоморфизма степеней 
1,к, ^к^ не следует изоморфизм решеток К9 Кх. В частности: для всякой решетки К существует 
дистрибутивная решетка Кх такая, что упорядоченные множства Ь^91,*1 изоморфны. 

Ашког'з аййгеьз: Рпгоаоуёс1еска Гакииа ШЕР, ^апа5коVО пат. 2а, 662 95 Вгпо. 
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