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Summary. It is proven that the only surjective (semi-)weak homomorphisms of implication 
algebras are usual homomorphisms. 
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Denote by A = (A, F) an algebra with a support A and a set F of (fundamental) 
operations. Given two algebtas A = (A, F), B = (B, G), a mapping h: A --> B is 
called a semi-weak homomorphism (see [5]) if for each n-ary operation fe F there 
is an n-ary term g of B such that 

(*) h(f(al9...9 an)) = g(h(at)9..., h(an)) for all ateA . 

If, in addition, for each n-ary operation g e G there exists an n-ary term f of A such 
that (*) holds, h is called a weak homomorphism. 

The concept of weak homomorphism was introduced by A. Goetz [4] and E. 
Marczewski [6] and intensively studied by some authors, see e.g. [2], [3], [4], [5], 
[7] and the references there. For some classes of algebras, the concept of (semi-)weak 
homomorphism coincides with the concept of homomorphism (or its dual). Especially, 
K. Glazek, J. Michalski, A. Goetz, T. Katrinak, T. Traczyk and M. Kolibiar gave 
a number of such classes among Boolean and Post algebras, p-algebras, lattices, 
integral domains, groups, semigroups and median algebras. The aim of this short 
note is to describe (semi-)weak homomorphisms in implication algebras (see [1]). 

Definition. An algebra A = (A, {•}) with one binary operation is an implication 
algebra if it satisfies 

(a .b) . a = a 9 

(a.b).b = (b.a).a9 

a .(b .c) = b . (a . c) 

for every elements a9 b9 c of A. 

Lemma 1. Let A = (A9 F) and B = (B9 G) be algebras. Any surjective (semi-)-
weak homomorphism ft: A -> B can be expressed in the form ft = g . i9 where 

61 



g: (A, F) -> (B, F) is a (usual) homomorphism and i: (B, F) -> (B, G) is a bijective 
(semi-)weak homomorphism; i is the identity map on B. 

For the proof, see e.g. Lemma 2.2 and 2.4 in [5] or [10], p. 223. 

Remark. Lemma 1 shows that investigations of (semi-)weak homomorphisms 
can be limited to usual homomorphisms and (semi-)weak homomorphisms of the 
form i: (B, F) -> (B, G). 

Lemma 2. Every implication algebra A contains a constant 1 satisfying 

a . a = 1 , 

1 . a = a , 

a.l = 1 
for each ae A. 

For the proof, see e.g. Theorem 1 in [ l ] . 

Lemma 3. The free implication algebra with two free generators x, y has exactly 
six elements, namely 

x,y,l,x.y,y. x, (x . y) . y . 

Lemma 3 can be easily proved by using the axioms from Definition and by Lemma 
2. For full details, see Theorem 2 in [1], 

Theorem. The only surjective (semi-)weak homomorphisms of implication 
algebras are usual homomorphisms. 

Proof. By Lemma 1, it suffices to prove the assertion only for bijective (semi-)weak 
homomorphisms of A onto A. Let A be an implication algebra with at least two 
elements and h: A -> A a bijective (semi-)weak homomorphism. Evidently, h(i) = 1. 
By Lemma 3, there are only six binary terms in A, i.e. there exist only six pos­
sibilities how to map the binary operation, namely 

x . y -> x , 

x.y -+ y , 

x.y-> 1 , 

x . y -> y . x , 

x . y -> (x . y) . y , 

x . y -> x . y . 

(1) Try the case x . y -> x. Then h(x . y) = h(x), i.e., for the choice y = 1 we 
obtain h(x) = h(x . 1) = h(i) = 1. Since h is bijective, this implies card A = 1, 
which is a contradiction. 

(2) In the case x . y -> y, put x = y. We obtain (by Lemma 2) h(i) = h(x . x) = 
= h(x), also card A = 1, a contradiction. 
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(3) The case x . y -» 1 is clearly contradictory. 

(4) Suppose x . y -> y . x. For the choice y = 1 we have 

1 = fc(i) =- h(x . 1) = h(l) . h(x) = 1 . h(x) = /.(*), 

which is also a contradiction. 
(5) Suppose x . y -+ (x . y) . y and put x = 1. We obtain 

h(y) = h(l . y) = (h(i). h(y)) . % ) = (l . h(y)) . h(y) = h(y) . h(y) = 1 , 

again card A = 1, a contradiction. 
The last possibility x . y -> x . y gives the usual homomorphism. 
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Souhrn 

SLAB£ HOMOMORFISMY IMPLIKATIVNfCH ALGEBER 

IVAN CHAJDA 

Je dokazano, 2e jedinymi surjektivnimi (polo-)slabymi homomorfismy na implikativnich 
algebrach jsou homomorfismy. 

Pe3K>Me 

CJIABblE rOMOMOPOH3MbI HMmiHKATHBHblX AJITEBEP 

IVAN CHAJDA 

IloKa3aHo, HTO cypT>eKTHBHbie (nojiy-)cJia6tie roMOMOp(J)H3Mbi B HMiuiHKaTHBHbix ajrre6pax 
coBna,ziaioT c roMOMOp<j)H3MaMH. 
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