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Casopis pro p&stovini matematiky, rot. 90 (1965), Praha

PERIODIC SOLUTIONS OF A NONLINEAR TELEGRAPH EQUATION

JANA HAavLOVA, Praha

(Received May 19, 1964)

We shall prove — under certain assumptions — the existence and uniqueness of
the solution of an initial value problem for the weakly nonlinear telegraph equation

Uy — Uy, + 2au, + 2bu, + cu = h(t, x) + &f(t, x, u, u,, uy, €)

(a, b, ¢ being constants, a # 0, ¢ being a small parameter).

Further, the functions h and f being w-periodic in variable ¢, it will be shown
— again under certain additional assumptions — that this equatlon has a unique
solution u(t, x) which is w-periodic in ¢, too.

We shall consider our problem in a halfplane [t, x] € <0, ) x (— o0, ) and
then we shall show how it is possible to transfer the obtained results to the strip
0, ©) x <0, =) under the boundary conditions

(0.1) ut, 0) = u(t, 7) = 0.

The used method has been taken over from paper [1] by the American mathema-
ticians F. A. FICKEN and B. A. FLEISHMAN. These authors investigated the same
problem (with b = 0) only for the special case f = — u3 and they do not mention
any generalization of their results for the other functions.

Their method can be used as we shall see only in case of a > 0, b% + ¢ > 0. We
have not succeeded in removing these two requirements as to the solution of an initial
value problem (of course, except a linear case, for which a solution of an initial value
problem is well known for quite arbitrary a, b, c). As to the periodic solutions we
are able to eliminate the requirement a > 0 (naturally, it remains a # 0), but not
the other one. For the linear equation

Uy — Uy + 2au, + 2bu, + cu = h(t, x)

under the conditions {0.1), we know how to prove by a quite another method the
existence of a periodic solution without these both requirements — only under the
assumption a # 0. The function h(t, x) must, however, satisfy more strict assumptions.
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We are just interested in classical solutions. As to generalized solutions, G. PRoODI
has proved in [2] the existence of a unique periodic solution of a more general
hyperbolic equation, namely of the equation

n
Uy — Au + h(t, x,u) = f(t, X, upy, .ouy) (X =(x1,..,%,), du=3Y u.,)
i=1

in the class of certain generalized solutions.

1. INITIAL VALUE PROBLEM

Let us consider the equation

(1 - U, — Uy, + 2au, + 2bu, + cu =
= h(t, x) + ef(t, x, u, u,, u,, &), t€<0, ), xe(—o00, ®),

with the initial conditions
(1.2) u(0, x) = o(x), ul0,x)=1(x), xe(—o0,00),

where a, b, c, € are constants, a + 0.

Y1t is to find a classical solution of the initial value problem given by (1.1) and
(1.2) i.e. a function u(t, x) with continuous partial derivatives of the second order on
{0, ) x (—o0, oo) such that (1.1) and (1.2) are fulfilled. By the solution of (1.1)
and (1.2) we will always mean such a function.
The substitution
u(t, x) = e*u(t, x)

transforms (1.1) and (1.2) into the equation

(1.3) Uy — Ve + 2av, + (b + ¢) v = (1, x) + g(t, x, v, v,, v, £)
with the conditions »

(1.4) (0, x) = ¢(x), v/0, x) = Y(x),

where

(1.5)  Kk(t,x) = e " h(t,x), g(t, x,0v,0, 0,8 = e > f(t,x,u, u, uy¢),
o(x) = e " o(x), Y(x) = e "*1(x). |
In the sequel we shall assume that there are fulfilled these conditions:

(A,) The function ¢(x) with its derivatives of the first and second order and the
function y(x) with its derivative of the first order are bounded and continuous
for x € (— o0, ).
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(A,) The function k(¢, x) with its partial derivative k,(t, x) is bounded and continuous
in both variables for t € €0, ), x € (— o0, ©).

(A;) The function g(t, x, v, r, 5, €) and its partial derivatives g, g, g,, g, are con-
tinuous in t, x, v, r and s for

te (0, ), xe (-0, ), ve(—ow, ©), re(—ow, ©), se(—ow, ©),
ee{—¢&y &y (g >0).

Further, for any ¢ > 0 there exist constants K(g), C(g) such that for max (lv|,
lrl, Isl) < git holds

g.)> la:): |95 = k(o)

and the functions g, g.. g,, 9, gs are Lipschitzian in v, r, s with Lipschitz
constant C(g).

lal: lg:

For any function v(t, x) with continuous derivatives v, v,, vy, Vs, 0N <0, 00) X
x (— o0, o) define the operator Z:

(1.6) P(v) (o, ¥, k) (t, x) = 3¢~ {(p(x + 1)+ o(x — 1) +

[ [ e 2P e+ o)+ DAL I o

x—t ot

+ f (: _[ T @ = 9 = (5 = 2)) [KS, ) +

x=t+3
+ £g(9, z, (9, z), v(9, z), v(9, z), &)] dz dS} ,

where J, is the Bessel function of order zero and d = —a? + b* + c. (We do not
.express the dependence of Z(v) (¢, ¥, k) on & and g, because we do not need it and
if no confusion can be arised, we shall write briefly #(v) instead of Z(v) (¢, ¥, k).)

The function Z(v) is continuous in ¢ and x and has continuous derivatives [#(v)],,
[Z(v)], [2(v)]exs [Z(v)]sx (We can verify this easily by differentiating #(v) and
applying to J, and its derivatives the following property of the Bessel function J,
of order n (see [3]):

g0 &" nt2n)’

limié)= 1 >

Moreover, it may be seen that there exists a continuous derivative [#(v)],,. Thus, it
is a simple calculation to see that if v (having continuous derivatives v,, vy, Uy, Vyy)
is a solution of the equation

(1.7) v = P(v)
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then v satisfies the equation (1.3) and the conditions (1.4). Conversely, if v is a solution
of (1.3) satisfying (1.4), then (1.7) is satisfied, too. (We obtain this by the known
Riemann method.) It means that the equation (1.3) with the conditions (1.4) and the
equation (1.7) are equivalent to each other (in the meaning just described).

From now, let the constants a and b% + ¢ be positive.

Denote € the space of all functions (¢, x) which are with their derivatives v,, v,,

Usx» Uy bounded and continuous on <0, ) x (— o0, 00). The space € with the norm
defined by

Io] = sup (]v(t x)|, [odt, x)|, Joult, x)|, o2, ) lvxx(t x)l)

xe( oo oo)

is the complete normed linear space.

As it will be seen later, for a > 0 and b? + ¢ > 0, the function 9(0) and its deriva-
tives are bounded for any v € €. Thereby 22 maps ¥ into €.

We shall now try for any suitably chosen ¢ > 0 to find & 0 < & < g, such that
for all ¢, |sl < &, there exists a unique solution v € € of the equation (1.7) with the
norm |v| < . According to the considerations above this is as well a unique solution
of the initial value problem (1.3), (1.4) with ||[v| < ¢ and the function u(t, x) =
= e’*y(t, x) is a unique solution of the problem (1.1), (1.2) with the property
le™u] < o

We shall make use of the fixed point theorem in the following form:

Lemma 1. Let the operator # map a complete normed linear space € into itself
and let it hold:

(i) for |v] < e (¢ being any positive number) there is | 2(v)| < o;

(ii) 2 is a contraction operator for |[v|| < o, i.e. there exists a constant y,0 <y < 1,
such that for any v;, |v,|| < o(i = 1, 2), there is

|2(01) = ()] = vlor = 02 -

Then there exists a unique v € € such that v = P(v), |[v|| £ ¢. (Compare the more
general form in [4].)

To find when both assumptions of this lemma are satisfied we need estimates
of #(v) and its derivatives and to this we must know some estimates of the Bessel
function.

By [3] we have:

Jo(&) = =44(8),  JiQ) = 1(6) J(8), |0 = _2|_f—,|1:| el mel

(where J, is the Bessel function of order n). In our integrals there is ¢ = d*((t — 9)* —
— (x = 2)?)%, where (t — 9)* — (x — z)? 2 0, — § = 050 that we get immediately
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for J, and its derivatives (we do not write now the argument ¢ = d*((t — 9)? —

- (x = 2)%)?):

(1.8) |Jo| =1,
Dol _Npa———x=2 | _|q Xz s9 o,
ox B =9 —(x — 2 (=9 —(x—2P¢ | 2
aJ, , t— 3 1 t—38 d
R e e P e e )
02J, _ | (t—99(x-z2) & (t—9(x—2) -
dtox d((t — 9?2 = (x — 2)?) d¥((t — 9)* — (x — 2)?)*
o (t=9(x-2 a ‘s
T -G F e TR
P | (=P T
I I e Fpu I e
_ 1 2 (x - z)z
B e e T S e

g40+§@_@§

2
for d 2 0. If we write |d| instead of d on the right in (1.8) and multiply these right-
hand sides by el1(t=9?=-23¥ e oot estimates for d < 0.
Let us take v € € with |[v] < . Substituting x + { for z in the integrals in (1.6)

and making use of the estimates (1.8) we obtain for d = 0:

|2(v) (¢, x)| < e sup |o(x)] +

t
+ %e“‘" {j
-1

L AJo(dH(r — 7))
ot

J(,(d*('t2 =) W(x + 0) + ag(x + {)) +

ofc+ 00+ [[ [ ol - 9P =9 e Tutox + )+

+e9(9, x + £, 0(8, x + ), v(9, x + ), v (9, x + (), e)]| d¢ d9} £

< e7*(1 + at)sup |o(x)| + e™*tsup |y(x)| +

+ [sup (9] + |l K@) | D~ 9)ds.
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Similarly, for d < 0 we have:

‘g;(v) (t, Jf)l < e—(a~|a%|)r(1 + at) sup l“’(x)l + e—a=1a¥Dey sup |n//(x)| +

t
o [t 9] + o K(@)] [ 71400 - 5) 09,
x 0

By quite similar calculations one may obtain estimates for the derivatives of Z(v).
Denoting

lolz = _sup (o(x)]. o)} [’

Wl = _sep (WGl WG

||t = teil(l)l,)w)([k(t, X)), [kt x)])

xe(—o0,00)

we can state finally:

(19) sup {|2(0)], |[2()]d, [[2)]: |20 [[2(0)] sy <
< E(t) [Ps(1) [le]|l2 + Paft) Il + Ps(e) [K]'] +

+ || X(0) f Bt — 8) 0x(t — 9)d8,

where E(t) = e for d 2 0, E(t) = e=@ 193t for 4 < 0 and P,(1), Q4(t) are poly-
nomials in ¢ of degree 3 and P,(¢) is a polynomial in ¢ of degree 2. There are poly-
nomials with positive coefficients. The absolute member of Q5 depends linearly on ¢
and all other coefficients of these polynomials do not depend on g.

Because of @ > 0 and b? + ¢ > 0 there exist positive constants L,, L3, oy, &,
(depending only on a and b* + c) such that itis

(110) 2O = Laflolz + Lawls + Lo]k]* + |o] K(o) (10 + ;)

for all d.

Hence we see that the norm |#(v)| is bounded and our assertion above that &
maps € into ¥ is true.

Further, we take interest in the norm ||#(v;) — 2(v,)| for two elements vy, v, € €
with the norm Hv," < ¢ (i = 1, 2). To this we make use of the Lipschitzian property
of the function g and their derivatives. By the same way as above we get (writing
for a while # = v, — v,, 0 = P(vy) — P(v,)):

(111)  sup (|9, [0, [Be]s [Bex]s [0ex]) = J¢] Cule) .[ tE(t — 9)Ry(t - 9).

-sup (%3, 2)|. [o4(8, 2)]. [2:(S. 2)]. [p:e(3. 2], [o(9: 2)) 49,
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where C;(¢) = max (C(e), K(g)) and Rj(t) is a polynomial in ¢ of degree 3 with posi-
tive coefficients. These coefficients, except the absolute member, do not depend on g.
The absolute member of R; is equal to the absolute member of Q5.

Again there exists a constant a; > 0 («; depends only on a and b* + ¢ and there
is a3 > a,) such that it is

(1.12) |2(v,) — 2(v,)| < |e| Ci(e) (a0 + o3) log — 2|

for all d.
Consequently, & will be the contraction operator for any ¢ satisfying the inequality

Iel < &, where

(1.13) ¢, = min (eo, _—}—_—)

Cy(0) (10 + 3)

Further, the operator # has to transform the set of functions v with ||v]| < ¢ into
itself, i.e. we require the fulfilling of

(1.14) LyJlof, + Lalw]s + Lslk]* + |¢] K(o) (210 + ) S e

Now, for an arbitrary ¢ for which there is

(1.15) Lselz + Lal¥]: + Ls[[K]* <o

put

- min, €= bl ol + LK)
K(Q) (“1@ + “3)

Then for ]e[ < & both conditions of Lemma 1 will be fulfilled.

Thus, according to Lemma 1 and returning again to our original problem the
following theorem is proved:

Theorem 1. Under the assumptions (A,), (A,), (A3) for any ¢ satisfying (1.15)
there exists & 0 < & < &, such that for all ¢ with |¢| < & the equation (1.1) under
the initial conditions (1.2) has a unique solution u(t, x) with |[e=*u| < o.

From our estimates it also can be derived immediately

Theorem 2. Let ¢ = 0 be given and let &, > O be defined by (1.13). Let u, (t,x)
(n=1,2,...), |e="u,| = o, be the solution of the equation (1.1) with the right-
hand side h, + &f, Isl < &, under the initial conditions given by functions o, 1,.
Let the functions ¢,, ¥, k, and g be defined by (1 5) and let for k, and g the
conditions (A,) and (A,), respectively, be fulfilled.

If there exist functions @, ¥ and k such that for n —» oo it holds: |, — ¢|, = 0,
[, — ¥|s =0, ||k, — K||* = O, then there exists a function u(t, x) = lim u,(t, x)

n— oo
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while the convergence is uniform with respect to t and derivatives of u, converge
(uniformly in t) 1o corresponding derivatives of u. (If b = 0, the convergence is
uniform with respect to x, too) The function u is a solution of (1.1) with the rzght-
hand side h + ¢f and with the initial conditions o, t, where

o(x) = limo,(x), t(x) =limz,(x), h(t,x)=1lim h,t, x);

n—oo n— oo n—o

it is the unique solution with the property |le~"*u|| < o.

Proof. Let us put again u,(t, x) = €"*v,(t, x). The function v,(t, x) is a solution
of (1.3) withthe right-hand side k, + &g under the initial conditions ¢,, {,. Then by
(1.10) and (1.12) we have for any natural m, n:

va - vnn =< L3"(pm - q’,.“; + LZ”‘/’M — 11/,'“1 + LSHkm _ kn“l +
+ |¢] €1(0) (a0 + a3) o — ] -

In virtue of (1.13) for |¢| < &, there is

1 bl IEI CI(Q) ((ZLQ + a3) > 0
so that we can write
lom = va]| <

1
<
1 = || Cile) (110 + a2)

Here the right-hand side tends to zero as m, n — oo, because of ¢,, , and k, are
fundamental sequences. It means that v, also form a fundamental sequence and
with respect to a completeness of the space € this sequence is convergent in the
norm of €. Denote v = lim v,.

n—oo
We easily verify that v is a solution of the equation (1.3) with the right-hand side
k + &g and with the initial conditions ¢, . We show that v is a solution of the equa-

tion v = Z(v) (@, ¥, k) which is equivalent to this problem. Indeed, write
v — Pv) (0, ¥, k) = v — v, + [P(v,) (0 ¥ ki) — P(v) (0, ¥, K)] -

[LSM(pm - (pn”2 + LZH'/Im - l»bnul + LBlIkm - kn"l] .

Hence

lo = 2() (9, ¥, K)| = |lo = va]| + [|2(00) (@0 ¥ k) = 2(0) (0, ¥, k)| <
s L3||¢u - (0"2 + Lz"ll’u - 'H|1 + L,"k,, - k!l‘
+ [1 + [e] Cy0) (mse + 3)] [lon < o] -

The limit of the last expressions for n — oo equals zero which implies
v = 2(v) (o, ¥, k).

Since ||v,|. < ¢ forall n = 1,2, ... there is [[v]| < ¢, too. By (1.13) the function v
is a unique solution of the problem (1.3), (1.4) with |v| < o.
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L]
Now, the function u(t, x) = e**v(t, x)is the sought limit of u, and it has the required
properties. This completes the proof.
(We did not prove the convergence of u,,, but it is a consequence of the convergence
of the u, and its other derivatives.)

Remark 1. To prove the existence of a unique solution u, |[e™*u| < o, of (1.1)
and (1.2) on <0, T) x (—oc0, o), where 0 < T < + o0, we do not need to require
a > 0and b*> + ¢ > 0. It is seen from (1.9) and (1.11) holding for any a, b, c that
for any T > O there is possible to write the estimates (1.10) and (1.12) with suitable
constants. It yields that for any T > 0 and suitably chosen g there exists £,0 < & < &,
such that for any ¢, Is] < &, there exists a unique solution u of (1.1) and (1.2) with
Je=>u] < o

Similarly, Theorem 2 also can be formulated for any a, b, ¢ if we consider the
solutions u, on €0, T x (—o00, ), 0 < T < + c0.

2. PERIODIC SOLUTIONS ON (0, ©) X (— 0, )

In this section we shall investigate periodic solutions of the equation (1.1). First,
we shall prove the theorem which will be useful to us.
We continue to suppose a > 0, b + ¢ > 0.

Theorem 3. Let the conditions (A,), (A;) be fulfilled. Then there exists e*, 0 <
< &* < &, such that for any two solutions u;, |e="u;|| < o (i =1, 2), 020, of
the equation (1.1), where lel < &*, it holds: the function u = u; — u, with all its
derivatives converges to zero as t — . If b = 0 this convergence is uniform with
respect to x and with respect to all initial conditions which are bounded (with their
derivatives) by the same constant.

Proof. Denote
efx) = v{x,0), Yix) =0v,(x,0) (i=12), o(t,x)=0,(t,x) — vy(t, %),

where v(t, x) = e ut, x) (i = 1, 2).
There exists a constant A > 0 (A < o) such that

lod =4, i< 4.

If we again use the estimates of section 1 we have, denoting
(1) = sup ([of, [oi. [ou] e, [ous]):
5(t) < E(2) Ps(1) |05 — @22 + E(t) Py(8) ¥y — ¥2]1 +
+ e (o) f E(t — 9) Rt — ) (9) 8
0

IIA

< 24 B(1) Py(t) + 24 E(i) Py(1) + l¢] C,(0) f E(t — 9) Roft — 9) %(9)d3 .
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L]
Evidently, there exist constants B > 0, 8 > 0 such that

t
@.1) (i) < Be” + eB f P9 5(9) d
0

B, B depend on A, ¢ and of course on a and b? + c, too).
( P

Applying this estimate to the integral in (2.1) and iterating this proceeding we
obtain after k iterations (putting 9, = )

k n
(22) (t) < Be Pty (eBr)y’ +
n=0 n!
3 92 S5 +1
+ e"“B"“I j J e =92 (9, Y d9,,,d9,,, ... dI, <
- 0 0 V]

k n k+1
S BeHty (eB)" + 20 (F—li> .
n! B

n=0

Taking &* = min (g, #/B) and letting n — oo in (2.2) we have for any ¢ with
le] < e*:

(2.3) #(1) < Be(~F+em)

The right-hand side in (2.3) tends to zero as t » oo and so it also holds for #(f).
This also implies immediately the convergence to zero of v,, for t - co. Hence, for
u(t, x) = uy(t, x) — uy(t, x) = e*(t, x) it follows readily the assertion of Theorem 3.
(The uniformity of the convergence of u(t, x) and its derivatives for t — oo is obvious.)
Now, we are able to prove the theorem about the existence of a periodic solution
of the equation (1.1).
Let there be a # 0 (otherwise a arbitrary), b> + ¢ > 0.

Theorem 4. Let the functions h and f be w-periodic in t and let the conditions
(A,) and (A,) be satisfied. Let us have ¢ > L, ||k||*. Then there exists ¢, 0 < & < &,
such that for all e, |a| < g, the equation (1.1) has a unique w-periodic (in t)
solution u(t, x) with |e=*"il| < o.

Proof. First, let us suppose a > 0. Then by Theorem 1 it is possible to choose &,
0 < & < &, such that for all |¢| < & there exist a unique solution u(t, x) of the equa-
tion (1.1) with ||e™*u| < ¢ which satisfies the initial conditions

‘ u(0,x) =0, uf0,x)=0.

The function o(t, x) = e~**u(t, x) fulfil the equation (1.3) (where k and g are -
periodic in f) with the same initial conditions and [v| < o.
Denote

@a(x) = v(nw, x), Y(x) = v(nw, x), vt x) =1t + no,x).
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The function v,(t, x) does solve the equation (1.3), too, and satisfies the initial condi-
" tions given by the functions ¢, and ¥,. According to ||v]| < ¢ there exists constant
A > 0 such that ”ga,,"z < A, III//,,”I < Aforalln=1,2,.

If we take [e| < &, where & = mm (€ &*) (e* being from Theorem 3) then by
Theorem 3 the function v,(t, x) — 1(t, x) with its derivatives converges to zero as
t — oo and this convergence is uniform with respect to x and to n.

Hence we have: to any n > 0 there exists #, > 0 so that for ¢ = ¢, and for all x
and n there is

oa(t, x) = o(t, x)| < 7.

For mw = t,, t 2 0 it holds [v,,(t + mo, x) — v(t + mo, x)l < 5. Taking pw =

2 t,, qw = t,, p > q we obtain for all x and ¢ = 0:
lv t,x) = o1, x)l = lvp—q(t + g, x) — ot + qo, x)l =n.

It means that v, forms the fundamental sequence, uniformly in ¢ and x. Hence there
exists the function (¢, x) = lim v,(t, x). This function is bounded and continuous

n— o0

in t and x. Further,
(0, x) = lim v,(0, x) = lim v(nw, x) = lim @,(x)

so that the function ¢(x) = lim ¢,(x) also exists and is bounded and continuous in x.
n— o

By the same way we get finally that the functions v,(t, x) converge to o(t, x) in the
norm of &, it is ||| < o, there exist the function y(x) = lim y,(x); moreover,

n—o
[¥s — ¥]. > 0asn— oo and also ||@, — @[, > 0as n — co.
Even as in the proof of Theorem 2 it can be shown that the function # satisfies the
equation (1.3) under the initial conditions ¢, .

The periodicity of the function ¥ is clear:
ot + o, x) = lim v,(t + o, x) = lim v,4,(t, x) = 9(t, x) .
n—>o n—+o

Since we have lsl < ¢ the solution of ( 1.3) with the norm bounded by g is uniquely
determined by the initial conditions. This implies, by Theorem 3, that ¥ is the unique
w-periodic solution of (1.3) with ||5]] < e.

Further, these considerations yield that the function #@(t, x) = " #(t, x) is the
unique w-periodic solution of the equation (1.1) with the property [e™**u| < o.
(The initial conditions for this solution are given by o(x) = €™ ¢(x), 7(x) =
= " Y(x).)

Secondly, suppose a < 0.

Let us continue the functions h and f for all te(—oo0, o), x €(—00, ) as
w-periodic in t. The equation (1.1) is transformed by the substitution t = —7¢
into the equation

(24) @y, — . + 284, + 2bd, + ct = h(n, x) + &f (n, x, @, 4,, 4y, ),
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where
i(n, x) = u(t, x), h(n, x) = h(t, x), f (n, x, @, f,, i, €) = f(t, x, u,u,,u,, ), d= —a.

Since 4 > 0 we can prove as above the existence of g, 0 < ¢ < &, such that for
all Isl < ¢ there exists a unique w-periodic solution #(n, x) of the equation (2.4)
with [le™®4| < ¢ on (0, ) x (— o0, ). Continuing # for all 7€ (—oo, o) as

A

w-periodic in #n, we see that the continued function # represents the unique w-
periodic (in 1) solution of (2.4) for all ne(— o0, ) and x € (— o0, o), such that
it is with its derivatives bounded by g.
Thus, returning to the function
u(t, x) = a(n, x) = a(—t, x)

we have that u(t, x) for t > 0 is the unique w-periodic solution of (1.1) with
le>*u| < ¢ which completes the proof.

3. MIXED PROBLEM AND PERIODIC SOLUTIONS ON {0, «0) x {0, n)

We have done all our considerations for t € 0, 00) and x € (— 00, o). Now, let us
investigate the mixed problem given by (1.1), (1.2) and by the boundary conditions

(3.1) u(t,0) = u(t,n) =0, te0, ),

while the functions h, f, ¢ and 7 are defined for t € <0, ), x € 0, ), only.

Transform again (1.1) and (1.2) into (1.3) and (1.4) (the boundary conditions
remain unchanged) and formulate these conditions:

(B;) The functions ¢ and ¥ have on <0, n) continuous derivatives of the second and
of the first order, respectively, and

(32) ?(0) = o(m) = ¢"(0) = ¢"(m) = 0, Y(0) = Y(m) = 0.

(B2) The function k(t, x) and its derivative k,(t, x) are continuous in both variables
on {0, ) x <0, 7) and it holds

(33) k(t,0) = k(t,n) = 0 (t€0, )).

(Bs) The function g(t, X, v, r, 5, €) and its derivatives g, g,, g,» g, are continuous in
t,x,v,r,s for

te €0, o0), xe(O,ﬁz), v, 1, s€(—00, ), e€{— &,y (g >0)

and toany ¢ 2 O there exist constants K(g), C(g) such that for max (o, |r|, |s|) =
< o it holds |

|91, |94)- |92l lg:)» |9:] = K(e)

and g, gx» 9o 9r 9s are Lipschitzian in v, r, s with Lipschitz constant C(g).
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Further, let
(34) g(t’ 0) 0’ 0’ S, 8) = 9(1, m, 0; 0, S, 5) =0
(te <0, ®), se(—o0, ), e€{—&, &) .

We shall continue the functions ¢, y for all x € (— 00, o) and the function k for
allt 2 0, xe(—o0, o) as odd and 2=n-periodic functions in x and the function g
will be continued for all t 20, x + 7n (n =0, +1, +£2,...), 0,1, s€(— 0, ),
e€{—gy,8&y and for all t20, x =nn, v=r =0, se(—o0, ®), € {—¢&, &)
by this way:

g(t, =x, —v, —r,s5,8) = —g(t,x,v,7,5,€) = g(t, x + 2n, v, 7,5, ¢) .

(By means of (1.5) the continuation of the original functions o, t, h and f is given,
too.)

According to (B,), (B2), (Bs) these continued functions fulfil the conditions (A,),
(A2), (A3) in their definition domain.

Suppose again a > 0, b* + ¢ > 0.

By the same way as in section 1 we get that the operator # maps now % into €,
too, and the equation v = 2(v) has for any suitable ¢ and ¢ a unique solution v(¢, x)
with ||o]| £ ¢. Due to the way of a continuation of ¢, ¥, k and g the functions
—v(t, —x) and u(t, x + 2x) are also the solutions of v = #(v) whlch in connection
with the uniqueness of the solution gives

o(t, =x) = —v(t,x) = o(t, x + 2n) (t 2 0, xe(— o0, o0))
i.e. the function v is odd and 2=n-periodic in x and thus v satisfies the conditions
u(t,0) =v(t,m) =0 (t=0).

Then the function u(t, x) = €* v(t, x) satisfies (3.1), too. Hence, this function u gives
for 1€ <0, ), x € 0, n) the solution of our mixed problem.
Thereby we obtain this result:

Theorem 1'. Let the conditions (B,), (B,) and (Bs) be fulfilled. Then for any
suitably chosen @ (being found as in Theorem 1) there exists &, 0 < & < &, such
that for all ¢ with lal < & the equation (1.1) under the conditions (1.2) and (3.1)
has a unique solution u(t, x) with |e~*u| < o.

Proof: It remains only to show that the function u is actually a unique solution of
the given problem with the property ||e™**u| < ¢ i.e. that it does not depend on the
way of a continuing of the functions o, 7, h and f.

In the case of the existence of two different solutions uy, u, with [e™u,| < ¢
(i = 1, 2) we have for the function u = u, — u, the equation

(3.5) Uy — Uy, + 2au, + 2bu, + cu =

= E[f(t’ Xy Ugy Uges Uyyxs 6) - f(l, X, Up, Uny, Unys 3)]
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under the conditions
u(0,x) =0, u(0,x)=0, u(t,0)=u(t,n)=0.

Applying the méan value theorem to the right-hand side in (3.5) and making use of
the theorem from [5] about uniqueness of a solution of the mixed problem for linear
equations we obtain that u is identically zero. Hence, the uniqueness of a solution of
our problem is proved.

Even so as in sections 1 and 2 we may derive Theorems 2’, 3’ and 4’ analogous to
Theorems 2, 3 and 4. Let us formulate only Theorem 4’ containing the main result
and omit the formulation of two other Theorems. /

Letus have a = 0, b> + ¢ > 0.

Theorem 4'. Let the functions h and f be w-periodic in t and let the condition
(B,) and (B,) be satisfied. Let ¢ be suitably chosen (see Th. 4). Then there exists
e, 0 < & < &y, such that for all & with |e| < ¢ the equation (1.1) with the condi-
tions (3.1) has a unique w-periodic solution u(t,x) satisfying the inequality
e~ u(t, x)|| < e

Remark 2. Let us briefly treat the special case when the linear equation
(3.6)  wy — Uy + 2au, + 2bu, + cu = h(t,x), t€<0,©), xe{0,n),

is given, again with the conditions (1.2) and (3.1).

Let ¢ and 7 have continuous derivatives of the second and the first order, respec-
tively, and let h and its derivative h.(t, x) be continuous in ¢ and x, while (3.2) and
(3.3) holds. Continuing ¢, T and h as above, the solution of the problem (3.6), (1.2)
and (3.1) is given by (for arbitrary a, b, ¢):

(3.7 u(t, x) = %e_atﬂ*{a(x + 1) 7D 4 og(x — 1) e 4

n f "”[Jo(d*(r’ — (x = 22)) e (x(z) + ao(2)) +

4 o = (x = 2)°))
P e a(z)] dz +

I fx+:+:10{dt((t — )2 — (x — 2))) e ¥ 1(9, 2) dz d 9}.

The necessary and sufficient condition for the w-periodicity of a solution u(t, x)
of (3.6) and (3.1) reads:

(3.8) u(0, x) — u(w, x) =0, u,(0,x) — ufw,x)=0.

v

Making use in (3.8) of the expression (3.7) of u we obtain functional equations for
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initial conditions o, T such that the function u(t, x), uniquely given by them, is
w-periodic in t. If we seek o, t in the form

00 oo}
o(x) = e Y apsinkx, 1t(x) = €Y b, sinkx,
k=1 k=1

(ax> by being Fourier coefficients of o and 7, respectively) we obtain the following
result:

Let the function h(t, x) be continuous and have the continuous derivative of the
third order with respect to x. Further, let

h(t,0) = h(t, 1) = 0, hy(t, 0) = hy(t,7) = 0

and h be w-periodic in t. Then if there is a + 0, b*> + ¢ + —k? for all k =
=1,2,..., the problem (3.6) and (3.1) has a unique w-periodic solution u(t, x).

If b* + ¢ = —kZ for some k, and if h(t, x) has continuous derivative of the first
order, only, it may be possible to find (by the same way) a necessary condition that
the problem (3.6) and (3.1) have w-periodic solutions. Denoting

H{w, x) = J : j T @ (@ = 9 — (x — 2)#) (9, z) dz d9

x—o+3

this condition is

2n 2n '
f—‘[ H (o, x) cos kox dx + J. H(w, x) sin kgx dx = 0.

0J0 0

If h(t, x) has continuous derivative of the third order this condition becomes sufficient,
too, and then there exist infinitely many w-periodic solutions of (3.6) and (3.1).
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Vytah

PERIODICKA RESENI NELINEARNI TELEGRAFNI ROVNICE

-

JANA HAvLOVA, Praha

Cldnek se zabyvd nelinedrni telegrafni rovnici
(1.1) Uy — Ugy + 2au, + 2bu, + cu = h(t,x) + f(t, x, u, u,, u,, €

(a, b, ¢ — konstanty, a % 0, ¢ — maly parametr).

V &isti 1 se predpoklddd a > 0, b?> + ¢ > 0. Dokazuje se véta o existenci a jed-
nozna&nosti fefeni rovnice (1.1) pro t€ <0, o), x € (— 0, ) p¥i po&dtetnich pod-
minkdch .

(1.2) u(0, x) = a(x), uf0,x) = (x)

(veta 1).

Didle je odvozena véta o spojité zdvislosti feSeni problému (1.1), (1.2) na po&dted-
nich podminkdch o, t a na funkci h (véta 2).

Hlavni vysledek &dsti 2 je formulovdn ve v&té 4, kterd ddvd pfia + 0, b2 + ¢ > 0
existenci a jednoznacnost w-periodického (v t) feSeni rovnice (1.1) pro t € <0, o),
x €(—o0, ) za pfedpokladu w-perioditnosti (v t) funkci h a f. Dikaz této véty
spo&ivd na chovdni omezenych feleni rovnice (1.1) pfi t — oo, které je obsahem véty 3
(odvozené opét pro a > 0, b* + ¢ > 0).

V &dsti 3 se vySetfuje smiSend tloha pro t € <0, ©), x € €0, ), dand rovnici (1.1),
pod&dtednimi podminkami (1.2) a okrajovymi podminkami
(3.1) u(t,0) = u(t,m) = 0

a zkoumd se existence periodického feleni rovnice (1.1) pfi podminkdch (3.1). Lze
odvodit véty obdobné vétém 1—4 (formulovdny jsou jen vity 1’ a 4').

Pe3omMme

NEPUOAUYECKHWE PEIIEHUS HEJIUMHEWHOIO
TEJET'PA®HOI'O YPABHEHUA

SIHA TABJIOBA (Jana Havlova), Tlpara

CraThs 3aHHMAETCS HEJIMHEHHBIM TeJlerpadHbIM ypaBHEHHEM
(1.1) Uy — Uy, + 2au, + 2bu, + cu = h(t, x) + &f(t, u, u,, u,, €)

(a, b, ¢ — mocTOsIHHBIE, &£ — MaJIBIil IAPaMeTp).
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B maparpage 1 npeamonaraercs a > 0, b* + ¢ > 0. Jloka3biBaeTcsi TeopeMa
O CYLIECTBOBAHMM M EJUHCTBEHHOCTH peureHus ypasHehus (1.1) mis t € <0, o),
x € (— 00, 00) MPH HAYaJBHBIX YCTOBHSX

(1.2) u(0, x) = o(x), u,0,x) = 7(x)
(Teopema 1).

[amnee NMpUBOOUTCS TeOopeMa O HEMpPEPBIBHOW 3aBUCHMMOCTH PELUCHHS MPOOJeMbI
(1.1), (1.2) or HavanbHBIX ycoBHH 6, T 4 OT dynkuuu h (Teopema 2).

I'maBHBIH pe3ynabTaT maparpada 2 comepxut Teopema 4, koTopas yTBEpKIaeT
npu a + 0, b? + ¢ > 0 CylIeCTBOBAHHE M €JUHCTBEHHOCTh (- TIEPHOAUYECKOTO
(B t) pewenus ypasaenus (1.1) pns t € 0, ), x € (— 00, 00) NpH NPEANONOKEHHHL
w-nepHoAUIHOCTH (B 1) bynxumit h u f. JIoka3aTeabCTBO 3TON TEOPEMBI OCHOBAHO
Ha [OBEJCHHH OrPAHHYCHHBIX peuieHuil ypahenus (1.1) mpu t — 00, 0 KOTOPOM
rosoput Teopema 3 (BbiBeneHHast onsTh Wis a > 0, b + ¢ > 0).

B maparpadge 3 wucciemyercs cmemannas 3amada s te€ {0, oo), x €0, n),
JlaHHAsl ypaBHEHHEM (1.1), HaYaJIbHBIMK yciioBusiMA (1.2) ¥ KpaeBBIMU yCIOBHSMH

(3.1) u(t,0) = u(t,m) = 0,

M PACCMAaTPUBAETCA CYLIECTBOBAHME NEPHONMYECKOrO pellenns ypasHenns (1.1) npn
yeroBusix (3.1). MoxHo mokasaTh TeopeMsi, aHaiorudusie Teopemam 1—4 (cdop-
MyupoBaHbl ToNbKo Teopemsl 1 u 4').
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