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Časopis pro pěstování matematiky, roč. 90 (1965), Praha 

PERIODIC SOLUTIONS OF A NONLINEAR TELEGRAPH EQUATION 

JANA HAVLOVA, Praha 

(Received May 19, 1964) 

We shall prove — under certain assumptions — the existence and uniqueness of 
the solution of an initial value problem for the weakly nonlinear telegraph equation 

utt ~- uxx + 2aut + 2bux + cu = h(t, x) + ef(t, x, u, ut, ux, e) 

(a, b, c being constants, a + 0, e being a small parameter). 

Further, the functions h and / being co-periodic in variable t, it will be shown 
— again under certain additional assumptions — that this equation has a unique 
solution u(t, x) which is co-periodic in t, too. 

We shall consider our problem in a halfplane \t, x] e <0, co) x ( - c o , oo) and 
then we shall show how it is possible to transfer the obtained results to the strip 
<0, oo) x <0,7i> under the boundary conditions 

(0.1) u(t, 0) = u(t, n) = 0 . 

The used method has been taken over from paper [1] by the American mathema­
ticians F. A. FICKEN and B. A. FLEISHMAN. These authors investigated the same 
problem (with b = 0) only for the special case / = — u 3 and they do not mention 
any generalization of their results for the other functions. 

Their method can be used as we shall see only in case of a > 0, b2 + c > 0. We 
have not succeeded in removing these two requirements as to the solution of an initial 
value problem (of course, except a linear case, for which a solution of an initial value 
problem is well known for quite arbitrary a, b, c). As to the periodic solutions we 
are able to eliminate the requirement a > 0 (naturally, it remains a =j= 0), but not 
the other one. For the linear equation 

utt — uxx + %aut + 2bux + cu = h(t, x) 

under the conditions (0.1), we know how to prove by a quite another method the 
existence of a periodic solution without these both requirements — only under the 
assumption a =1= 0. The function h(t, x) must, however, satisfy more strict assumptions. 
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We are just interested in classical solutions. As to generalized solutions, G. PRODI 

has proved in [2] the existence of a unique periodic solution of a more general 
hyperbolic equation, namely of the equation 

n 

utt - Au + h(t, x, ut) = f(t, x, uXl,..., uXn) (x = (x l 9 . . . , xn) , Au = £ uXiX^ 
i = l 

in the class of certain generalized solutions. 

1. INITIAL VALUE PROBLEM 

Let us consider the equation 

(1.1) ' utt — uxx + 2aut + 2bux + cu — 

= h(t, x) + ef(t, x, u, ut, ux, e) , te <0, oo), X G ( - O O , oo) , 

with the initial conditions 

(1.2) w(0, x) = <J(X) , ut(0, x) = T(X) , x e (— oo, oo) , 

where a, b, c, e are constants, a # 0. 

^I t is to find a classical solution of the initial value problem given by (1.1) and 
(1.2) i.e. a function u(t, x) with continuous partial derivatives of the second order on 
<0, oo) x ( - c o , oo) such that (1.1) and (1.2) are fulfilled. By the solution of (1.1) 
and (1.2) we will always mean such a function. 

The substitution 
u(t, x) = ebxv(t, x) 

transforms (1.1) and (1.2) into the equation 

(1.3) vtt — vxx + 2avt + (b2 + c)v = k(t, x) + eg(t, x, v, vt, vx, e) 

with the conditions 

(1.4) v(0, x) = <p(x) , vt(0, x) = il/(x) , 

where 

(1.5) k(t, x) = e~bx h(t, x) , g(t, x, v, vt, vx, e) = e~bxf(t, x, u, ut, ux, e) , 

cp(x) = e~bx a(x) , \j/(x) = e~bx x(x) . 

In the sequel we shall assume that there are fulfilled these conditions: 

(At) The function cp(x) with its derivatives of the first and second order and the 
function \//(x) with its derivative of the first order are bounded and continuous 
for x e ( - o o , oo). 
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(A2) The function k[t, x) with its partial derivative kx(t, x) is bounded and continuous 
in both variables for t e <0, oo), x e ( — oo, oo). 

(A3) The function g(t, x, v, r, s, e) and its partial derivatives gx, gv, gr, gs are con­
tinuous in t, x, v, r and s for 

t e <0, oo), x e ( - oo, oo), VE ( - c o , oo), r e ( - c o , oo), s e ( — oo, oo) , 

e e < - e 0 , e0> (e0 > 0 ) . 

Further, for any Q = 0 there exist constants K(Q), C(Q) such that for max (|v|, 
\r\, \s\) = Q it holds 

|g|, |gx|, \gv\, | 4 |gs| = K(Q) 

and the functions g, gx, gv, gr, gs are Lipschitzian in v, r, s with Lipschitz 
constant C(Q). 

For any function v(t, x) with continuous derivatives vt, vx, vtx, vxx on <0, oo) x 
x (—oo, oo) define the operator 0: 

(1.6) 0\v) (cp, \\f, k) (t, x) = \e~at L ( x + t) + <p(x - t) + 

+ T+t \j0(d±(t2 -(x- z)2f) (fa) + a cp(z)) + ^o(d\t2-(x-z)2f) ^ z ) n ^ + 

+ [ [+t~* Jo(d\(t - Z)2 -(x- z)2Y) e°»[k(Z, z) + 
J 0 Jx - t + » 

+ eg(S, z, v(&, z), vt(&, z), vx(9, z), e)] dz dsX , 

where J0 is the Bessel function of order zero and d = — a2 + b2 + c. (We do not 
, express the dependence of &>(v) (cp, \j/, k) on s and g, because we do not need it and 
if no confusion can be arised, we shall write briefly 0>(v) instead of 0>(v) (cp, \J/, fc).) 

The function &>(v) is continuous in t and x and has continuous derivatives [^(t>)]„ 
[^(u)]x5 [^OO].*. [^(^)]XJC (we can verify this easily by differentiating &>(v) and 
applying to J0 and its derivatives the following property of the Bessel function Jn 

of order n (see [3]): 

lunJJ&-J-
4-o Z" n!2' 

Moreover, it may be seen that there exists a continuous derivative [^(f)],,. Thus, it 
is a simple calculation to see that if v (having continuous derivatives v„ vx, vtx, vxx) 
is a solution of the equation 

(1.7) v = 0(v) 
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then v satisfies the equation (1.3) and the conditions (1.4). Conversely, if v is a solution 
of (1.3) satisfying (1.4), then (1.7) is satisfied, too. (We obtain this by the known 
Riemann method,) It means that the equation (1.3) with the conditions (1.4) and the 
equation (1.7) are equivalent to each other (in the meaning just described). 

From now, let the constants a and b2 + c be positive. 
Denote <£ the space of all functions v(t, x) which are with their derivatives vt, vx, 

vtx, vxx bounded and continuous on <0, oo) x ( — oo, oo). The space ^ with the norm 
defined by 

HI = SUP (K'» x% \vt(t> x% \vx{U x)\, \vtx(t, x)\, \vxx(t, x)\) 
fe(0,oo) 

xe( — oo, oo ) 

is the complete normed linear space. 
As it will be seen later, for a > 0 and b2 + c > 0, the function 0(v) and its deriva­

tives are bounded for any v e <€. Thereby 0 maps # into c€. 
We shall now try for any suitably chosen Q > 0 to find e, 0 < e g e0, such that 

for all e, |e| < e, there exists a unique solution ve <€ of the equation (1.7) with the 
norm ||v|| :g Q. According to the considerations above this is as well a unique solution 
of the initial value problem (1.3), (1.4) with ||v|| fg Q and the function u(t, x) = 
= ebxv(t, x) is a unique solution of the problem (1.1), (1.2) with the property 
h'bxu\\ _ Q. 

We shall make use of the fixed point theorem in the following form: 

Lemma 1. Lei* the operator 0 map a complete normed linear space ̂  into itself 
and let it hold: 

(i) for \v\ g Q(Q being any positive number) there is \0(v)\ ^ Q\ 

(ii) 0 is a contraction operator for \v\ ^ Q, i.e. there exists a constant y, 0 < y < 1, 
such that for any vh \\vi\\ _- Q(i = 1, 2), there is 

Wvi) - ^2)1 = y\h - "2II. 

Then there exists a unique ve^ such that v = 0(v), \\v\\ g Q. (Compare the more 
general form in [4].) 

To find when both assumptions of this lemma are satisfied we need estimates 
of 0(v) an4 its derivatives and to this we must know some estimates of the Bessel 
function. 

By [3] we have: 

Jo® = -m. m = -^ - u$, \m\ = |J *""*' 
(where J„ is the Bessel function of order n). In our integrals there is £ = d*((t — 9)2 — 
— (x - Z)2)*, where (t - 9)2 - (x - z)2 § 0, t - 9 ^ 0 so that we get immediately 
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for J0 and its derivatives (we do not write now the argument £ = dH(t — $\2 — 
- (x - zff): 

(1.8) | J 0 | _ 1 , 

= J'0d 
дjç, 
дx 

= 

\дj0 

\öt 
= 

jx-z) 

J'0d 

di((t - gf - ( x - zff 

t -S 

Jxd x— Z 

dЩt _ $)2 _ ^ _ .42)1 
-/.d 

d * ( ( ( _ ð )2 _ ( x _ 2 ) - ) ł 

t - a 

š ^ | x - z | , 

d*((ť _ 9)2 - (x - z)2)± - : « - « . 

ð2J0 

dídx 

lð2J0 

j'd2 ( t ~ ď ) ( x - z j _ rf2 (t-9)(x-z) 
1

 d((í _ 9)2 _ (x _ z)2) * d\(t - Sf - (x - zff 

J2d
2 

Õx2 
- J\ d2 

Jxd 

(t - 5) (x - z) 

d((t - $f -(x- zf) 

(* ~ zf 
d((t - Sf -(x- zf) 

1 

<±.(t-0)\x-z\, 

(t - 9f 
+ Jtd

2 

< 

d\(t - $)2 -(x- zff 

í ( i + í(,-.>.) 

+ Jгd
2 

dқ(t - af -(x- zff 

(x - zf 

d((t-9f-(x-zf) 

for d ^ 0. If we write |d| instead of d on the right in (1.8) and multiply these right-
hand sides by el

diK('-d>2-(*-*>2)* w e get estimates for d < 0. 

Let us take v e <& with ||_ || g Q. Substituting x + C for z in the integrals in (1.6) 
and making use of the estimates (1.8) we obtain for d __ 0: 

\0>(v) (t, x)\ ^ e-« sup \q>(x)\ + 

+ ì°-{Ĺ J0(d*(ŕ - Çг)») tøþ + 0 + aф + 0) + 

+ _____V + Í) 
Єt 

dC + \j0(d*((t - Sf - C2)4) ŕ\Щ, x + C) + 
-ř + _ 

+ eg(ð, x + C, v(99 x + C), ЫS> x + C), vp, x + C), в)]| dC dâ} ѓ 

й e~at(ì + ař) sup \<p(x)\ + e~flří sup \ф(x)\ + 
X x 

+ [sup \k(t, x)\ + |£ | _(<?)] Гe-«<'-s)(í - S) dð . 
x Jo 
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Similarly, for d < 0 we have: 

\&>(v)(t,x)\ g «.-<«-I-*D'(1 + at) sup \cp(x)\ + e-(°-l'l*l>'(sup \i/,(x)\ + 

+ [sup \k(t, x)\ + |e| K(Q)] fV(-->-*»('-»>(í - ») dS . 
* Jo 

By quite similar calculations one may obtain estimates for the derivatives of 0>(v). 
Denoting 

H | 2 = sup (\<?(x)\,\<?'(x%\9"(x§, 
xe(~ 00,00) 

||*||. = sup (|<K*)|,|*'(*)|), 
xe( — 00,00) 

ffcl1 = sup (|fc(t, x)|, |fex(t, *)|) , 
( 6 < 0 , 0 0 ) 

xe(— 00,00) 

we can state finally: 

(1.9) sup {\0>(v)\, | [ ^ ) ] , | , \[0>(v)%\, \[&(v)U | T O ] « | } = 
X S E(t) [P3(0 ||?||2 + P2(t) l^llr + P3(0 M 1 ] + 

+ \e\K(o)CE(t - 9)Q3(t - $)d9, 

where E(*) = e~at for J ^ 0, F(r) = e-<«-!<**!)' for d < 0 and P3(t), Q3(t) are poly­
nomials in t of degree 3 and P2(r) is a polynomial in t of degree 2. There are poly­
nomials with positive coefficients. The absolute member of Q3 depends linearly on Q 
and all other coefficients of these polynomials do not depend on Q. 

Because of a > 0 and b2 + c > 0 there exist positive constants L2, L3, al9 cc2 

(depending only on a and b2 + c) such that it is 

(1.10) • \\0>(v)\\ S L3 |H|2 + L2IMI1 H= -t3||fc|r + H «((?) («,(? + «2) 

for all d. 
Hence we see that the norm ||^(t>)|| is bounded and our assertion above that 0> 

maps # into ^ is true. 
Further, we take interest in the norm ||^(tfi) — &(pi)\ for two elements vl9 v2 e % 

with the norm ||I;J|| ^ Q (i = 1, 2). To this we make use of the Lipschitzian property 
of the function g and their derivatives. By the same way as above we get (writing 
for a while v ^ vx - v2,6 = 0>(vt) - &(v2)): 

(1.11) sup ( |4 |e,|, \K\, IM> IM) = N c*0?) f V ~ )̂ *3(< - S). 
x Jo 
. sup (ftS, z)|, | » A z)|, |tJx(S, z)|, |«5<;t(3, z)|, | ^ ( 3 , z)|) dS , 
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where Ct(o) = max (C(Q)9 K(Q)) and R3(t) is a polynomial in t of degree 3 with posi­
tive coefficients. These coefficients, except the absolute member, do not depend on Q. 
The absolute member of R3 is equal to the absolute member of Q3. 

Again there exists a constant a3 > 0 (a3 depends only on a and b2 + c and there 
is a3 > a2) such that it is 

(1.12) l^(v i ) - &(v2)\\ S \e\ Ciio) (*tQ + a3) ||vi - v2|| 

for all d. 

Consequently, & will be the contraction operator for any e satisfying the inequality 

|e| < el9 where 

(1.13) et = min ( e09 }. 

Further, the operator & has to transform the set of functions v with ||v|| = Q into 
itself, i.e. we require the fulfilling of 

(1.14) L , | H | 2 + L2||tfr||. + LjlJfeU1 + |e| K(e) (a l C + a2) S Q • 

Now, for an arbitrary Q for which there is 

(1.15) L3|M|2 + LJI^I^ + L3||fc||1 < Q 

put 

g - [L3|H|2 + L2|^|l. + L3|fc||ip 
e = mm | el9 

K(Q) (octQ + a3) 

Then for |s| < e both conditions of Lemma 1 will be fulfilled. 

Thus, according to Lemma 1 and returning again to our original problem the 

following theorem is proved: 

Theorem 1. Under the assumptions (Aj), (A2), (A3) for any Q satisfying (1.15) 
there exists e9 0 < e ^ e0, such that for all e with \e\ < e the equation ( l . l) under 
the initial conditions (1.2) has a unique solution u(t9 x) with \\e~bxu\\ _̂  Q. 

From our estimates it also can be derived immediately 

Theorem 2. Let Q = 0 be given and let et > 0 be defined by (1.13). Let un (t9x) 
(n = 1,2,...), |e"bxwn|| ^ Q, be the solution of the equation (l.i)with the right-
hand side hn + ef, |e| < el9 under the initial conditions given by functions an9 xn. 
Let the functions cpn9 il/n, kn and g be defined by (1.5) and let for kn and g the 
conditions (A2) and (A3), respectively, be fulfilled. 

If there exist functions q>, i// and k such that for n -• oo it holds: \\(pn — <p||2 ~+ 0, 

l^n "" ^11 ~* 0> || ̂  "" ^ l 1 ""* ^? t^len fhere exists a function u(t9 x) = lim un(t9 x) 
ft-+oo 
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while the convergence is uniform with respect to t and derivatives of un converge 
(uniformly in t) to corresponding derivatives of u. (If b = 0, the convergence is 
uniform with respect to x, too.) The function u is a solution of (\.\)with the right-
hand side h + ef and with the initial conditions a, z, where 

<T(X) = lim <jn(x) , T(X) = lim T„(X) , h(t, x) — lim hn(t, x) ; 
n-*oo n->oo n-*co 

it is the unique solution with the property \e~bxu\ _ Q. 

Proof. Let us put again un(t, x) = ebx vn(t, x). The function vn(t, x) is a solution 
of (1.3) with the right-hand side kn + eg under the initial conditions cpn, ij/n. Then by 
(1.10) and (1.12) we have for any natural m, n: 

\\vm - I7.H = L3\\cpm - (pn\\2 + L2||i>w - ^ , | | t + L3||fcm - fc^1 + 

+ |e|C1(^)(a1o + a 3 ) | | i 7 m - i ; n | j . 

In virtue of (1.13) for |e| < ex there is 

1 -\S\C1(Q)(CC1Q + <X3)>0 

so that we can write 

Ik - *•! = 

[L,\\cpm - cpn\\2 + L2||</vm - tfrj, + L3||fcm - fc.11] . 
1 -\B\Cl(Q){0L1Q-¥fl2) 

Here the right-hand side tends to zero as m, n -* oo, because of cpn, \l/n and kn are 
fundamental sequences. It means that vn also form a fundamental sequence and 
with respect to a completeness of the space # this sequence is convergent in the 
norm of # . Denote v = lim vn. 

n-»oo 

We easily verify that v is a solution of the equation (1.3) with the right-hand side 
fc + eg and with the initial conditions <p, \j/. We show that v is a solution of the equa­
tion v = &(v) (<p, ij/, fc) which is equivalent to this problem. Indeed, write 

v - 0\v) (cp, ij,,k) = v-vn+ [0>(vn) (cpn, •>,,, kn) - 0(v) (<p, ^, fc)] . 

Hence 

\\v - &(v) (<p, *, k)\\ = \\v - v„\\ + \\&(vn) (<p„, K kn) - 0>(v) (<p, xj,, k)\\ < 

= L3\\<Pn - Hi + L2\\ifrn - tfrf. + L3\\kn - k\y + 

+ [1 + |e| C.fe) (<xlQ + a3)] \\v„ - v\\ . 

The limit of the last expressions for n -*• oo equals zero which implies 
v = &>(v) (<p, xp, k). 

Since |t>.,|| ^ Q for all n = 1 ,2, . . . there is |t>|| _: Q, too. By (1.13) the function v 
is a unique solution of the problem (1.3), (1.4) with ||t>|| _̂  Q. 
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Now, the function u(t, x) = ebx v(t, x) is the sought limit of un and it has the required 
properties. This completes the proof. 

(We did not prove the convergence of untt but it is a consequence of the convergence 
of the un and its other derivatives.) 

Remark 1. To prove the existence of a unique solution u, \\e~~bxu\\ ^ Q, of (1.1) 
and (1.2) on <0, T> x (-co, oo), where 0 < T < -f oo, we do not need to require 
a > 0 and b2 + c > 0. It is seen from (1.9) and (1.11) holding for any a, b, c that 
for any T > 0 there is possible to write the estimates (1.10) and (1.12) with suitable 
constants. It yields that for any T > 0 and suitably chosen Q there exists s, 0 < e _" e0, 
such that for any e, |e| < e, there exists a unique solution u of (1.1) and (1.2) with 
\\e~bx4 S Q-

Similarly, Theorem 2 also can be formulated for any a, b, c if we consider the 
solutions un on <0, T> x ( —oo, oo), 0 < T < +co. 

2. PERIODIC SOLUTIONS ON <0, oo) X (~oo, oo) 

In this section we shall investigate periodic solutions of the equation (1.1). First, 
we shall prove the theorem which will be useful to us. 

We continue to suppose a > 0, b2 + c > 0. 

Theorem 3. Let the conditions (A2), (A3) be fulfilled. Then there exists e*, 0 < 
< s* S e0, such that for any two solutions uh \e~bxu{\ _" Q (i ~ *> 2), Q _• 0, 0f 
the equation (1.1), where |e| < s*, it holds: the function u = ut — u2 with all its 
derivatives converges to zero as t -* oo. If b = 0 this convergence is uniform with 
respect to x and with respect to all initial conditions which are bounded (with their 
derivatives) by the same constant. 

Proof. Denote 

<Pt(x) = vt(x, 0) , \l/i(x) = vit(x, 0) (i = 1, 2) , v(t, x) = vx(t9 x) - v2(t, x) , 

where vt(t, x) = e"bxUi(t, x) (i = 1, 2). 
There exists a constant A > 0 (A S o) such that 

!H|2 = A, 1^1, SA. 
If we again use the estimates of section 1 we have, denoting 

v(t) = sup (|p|, |P,|, |px|, |p,x|, |P„1): 

v(t) = E(t) P3(t) \\(pt - cp2\\2 + E(t) P2(t) 1^. - il,2\\t + 

+ |e| C,(e) (* E(t - 9)R3(t - 9) v(9) d9 £ 

= 2AE(t) P3(t) + 2A E(t) P2(t) + \s\ C}(Q) f E(t - 9) R3(* - 9) v(9) d9 . 
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Evidently, there exist constants B > 0, p > 0 such that 

(2.1) ^ v(t) S Be-*1 + eB f V'(f-*> g(S) dS 

(B, /? depend on A, g and of course on a and b2 + c, too). 

Applying this estimate to the integral in (2.1) and iterating this proceeding we 
obtain after k iterations (putting St = t): 

(2.2) v(t)^Be~ptY ^ ^ + 
»=o nl 

+ sk^Bk+1 P P... p + ,
e-«'-9^>t5(d fc+2)d^+2d^+1...d92 g 

Jo Jo Jo 

n=o n\ \pj 

Taking e* = min (e0, /?/B) and letting n -> oo in (2.2) we have for any e with 
|ej < e*: 

(2.3) v(t) £ Be<-fi+eB)t. 

The right-hand side in (2.3) tends to zero as t -> oo and so it also holds for v(t). 
This also implies immediately the convergence to zero of vtt for t -> oo. Hence, for 
u(t, x) = ux(t, x) — u2(t, x) = ebxv(t, x) it follows readily the assertion of Theorem 3. 
(The uniformity of the convergence of u(t, x) and its derivatives for t -> oo is obvious.) 

Now, we are able to prove the theorem about the existence of a periodic solution 
of the equation (1.1). 

Let there be a 4- 0 (otherwise a arbitrary), b2 + c > 0. 

Theorem 4. Lef the functions h and f be co-periodic in t and let the conditions 
(A2) and (A3) be satisfied. Let us have Q >L3 \\k\\x. Then there exists e, 0 < e g e0, 
such that for all e, |ej < e, the equation (1.1) has a unique co-periodic (in t) 
solution u(t, x) with ||e~b*w!| S Q-

Proof. First, let us suppose a > 0. Then by Theorem 1 it is possible to choose e, 
0 < e ^ e0, such that for all |e| < e there exist a unique solution u(t, x) of the equa­
tion (1.1) with ||e~ft*u|| ^ Q which satisfies the initial conditions 

M(0, X) = 0 , w/0, x) = 0 . 

The function v(t, x) = e~hxu(t, x) fulfil the equation (1.3) (where fc and g are <y-
periodic in t) with the same initial conditions and ||v|| ^ Q. 

Denote 

<Pn(x) = v(nco, x) , \l/n(x) = vt(nco, x) , vn(t, x) = v(t + nco, x). 
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The function vn(t, x) does solve the equation (1.3), too, and satisfies the initial condi­
tions given by the functions cpn and \j/n. According to ||v| g Q there exists constant 
A > 0 such that \\<pH\\2 <; A, \\il/n\\t <L A for all n = 1, 2,... 

If we take |e| < g, where g = min (e, e*) (g* being from Theorem 3) then by 
Theorem 3 the function vn(t, x) — v(t, x) with its derivatives converges to zero as 
t -> oo and this convergence is uniform with respect to x and to n. 

Hence we have: to any rj > 0 there exists tn _• 0 so that for t j> tn and for all x 
and n there is 

\vn(t, x) - v(t, x)\ S n . 

For mco = tn, t J> 0 it holds \vn(t + mco, x) — v(t + mco, x)\ S V- Taking pco ^ 
_ **> Qw _ *,> P > q we obtain for all x and f = 0: 

|vp(/:, x) - vq(t, x)\ = \vp-q(t + qco, x) - v(* + qco, x)\ S V • 

It means that vn forms the fundamental sequence, uniformly in t and x. Hence there 
exists the function v(t, x) = lim vn(t, x). This function is bounded and continuous 

II-+00 

in t and x. Further, 

v(0, x) = lim v„(0, x) = lim v(nco, x) = lim cpn(x) 
II->OO n-+oo f!-+oo 

so that the function cp(x) = lim cpn(x) also exists and is bounded and continuous in x. 
n-*oo 

By the same way we get finally that the functions vn(t, x) converge to v(t, x) in the 
norm of <%, it is ||v|| _ Q, there exist the function \j/(x) = lim ^„(x); moreover, 

«-+oo 

ll̂ n — ^ | i - * 0 a s n - > o o and also \cpn — <p||2 -+ 0 as n -» oo. 
Even as in the proof of Theorem 2 it can be shown that the function v satisfies the 

equation (1.3) under the initial conditions cp, i/L 
The periodicity of the function v is clear: 

v(t + co, x) = lim vn(t + co, x) = lim vn+1(t, x) = v(t, x) . 
n->oo n-*oo 

Since we have |e| < g the solution of (1.3) with the norm bounded by Q is uniquely 
determined by the initial conditions. This implies, by Theorem 3, that v is the unique 
co-periodic solution of (1.3) with ||v|| g Q. 

Further, these considerations yield that the function u(t, x) = ebx v(t, x) is the 
unique co-periodic solution of the equation (1.1) with the property ||e""bxw| S Q-
(The initial conditions for this solution are given by cr(x) = ebx cp(x), t(x) = 
= eb* <P(x).) 

Secondly, suppose a < 0. 
Let us continue the functions h and / f o r all f e(— oo, oo), x e ( —oo, oo) as 

co-periodic in t. The equation (1.1) is transformed by the substitution t = —rj 
into the equation 

(2.4) unn - uxx + 2aun + 2bux + cu - ft(rj, x) + ef(rj, x, u, un, ux, e), 
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where 

u(r\, x) = u(t, x), % , x) = h(t, x), f (rj, x, u, un, ux9 e) = f(t9 x, u, ut, ux, e), a = -a . 

Since a > 0 we'can prove as above the existence of e, 0 < e ^ e0, such that for 
all |e| < e there exists a unique co-periodic solution u(rj, x) of the equation (2.4) 
with ||e~b*u|| ^ Q on <0, oo) x (-co, co). Continuing u for all r\e( — oo, oo) as 
co-periodic in rj, we see that the continued function u represents the unique co-
periodic (in rj) solution of (2.4) for all tje(—co, oo) and xe(— oo, oo), such that 
it is with its derivatives bounded by o. 

Thus, returning to the function 

u(t, x) = u(t\, x) = u( — t, x) 

we have that u(t, x) for t _- 0 is the unique co-periodic solution of (1.1) with 
||e~"b*u|| :g Q which completes the proof. 

3. MIXED PROBLEM AND PERIODIC SOLUTIONS ON <0, oo) x <0, n} 

We have done all our considerations for t e <0, oo) and x e (— oo, oo). Now, let us 
investigate the mixed problem given by (1.1), (1.2) and by the boundary conditions 

(3.1) u(t, 0) = u(t, n) = 0 , t e <0, oo) , 

while the functions h, f, a and T are defined for t e <0, oo), x e <0,7i>, only. 
Transform again (1.1) and (1.2) into (1.3) and (1.4) (the boundary conditions 

remain unchanged) and formulate these conditions: 

(Bj) The functions q> and \j/ have on <0,7i> continuous derivatives of the second and 
of the first order, respectively, and 

(3.2) cp(0) = cp(n) = q>''(0) = <p'{n) = 0 , ^(0) = ^(n) = 0 . 

(B2) The function k(t9 x) and its derivative kx(t9 x) are continuous in both variables 
on <0, oo) x <0, TI> and it holds 

(3.3) k(t9 0) = k(t9 n) = 0 (ts <0, oo)) . 

(B3) The function g(t9 x9 v9 r, s, e) and its derivatives gx9 gv, gr, gs are continuous in 
t9 x9 v9 r, s for 

te(09 oo), XG<0 , 7t>, v9 r, se (-co, oo) , e e < - e 0 , e0> (e0 > 0) 

and to any Q ^ 0 there exist constants K(Q), C(Q) such that for max (|i?|, |r|, |s|) ^ 
^ Q it holds 

\g\9 \gx\9 \gv\9 \gr\9 \gs\ S K(Q) 

and g> gx, Qv> 0» 98 are Lipschitzian in v9 r, s with Lipschitz constant C(Q). 
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Further, let 

(3.4) g(t, 0, 0, 0, s, e) = g(t, n, 0, 0, s, e) = 0 

( r e<0 , oo), SG ( - c o , oo), e G < - e 0 , e0>). 

We shall continue the functions q>, i// for all x e ( — oo, oo) and the function k for 
all t = 0, xe(— oo, oo) as odd and 27i-periodic functions in x and the function g 
will be continued for all t ^ 0, x + 7in (n = 0, + 1 , +2 , . . . ) , v, r, se(— oo, oo), 
ee <— e0, e0> and for all t ^> 0, x = nn, v = r = 0, s e ( - c o , oo), eG <—e0, e0> 
by this way: 

g(t, -x, -v, - r , s, e) = ~a(f, x, v, r, s, e) = g(t, x + 2~, v, r, s, e) . 

(By means of (1.5) the continuation of the original functions o, T, h and / is given, 
too.) 

According to (Bx), (B2), (B3) these continued functions fulfil the conditions (At), 
(A2), (A3) in their definition domain. 

Suppose again a > 0, b2 + c > 0. 
By the same way as in section 1 we get that the operator 0 maps now ^ into (€, 

too, and the equation v = 0*(v) has for any suitable Q and e a unique solution v(t, x) 
with Ivll :g g. Due to the way of a continuation of (p, xj/, k and g the functions 
— v(t, —x) and v(t, x + 2?r) are also the solutions of v = ^(v) which in connection 
with the uniqueness of the solution gives 

v(t, —x) = —v(t, x) = v(t, x + 2n) (t _- 0, x e ( — oo, oo)) 

i.e. the function v is odd and 27i-periodic in x and thus v satisfies the conditions 

v(t, 0) = v(t, n) = 0 (t ^ 0) . 

Then the function u(t, x) = ebx v(t, x) satisfies (3.1), too. Hence, this function u gives 
for t G <0, oo), x G <0,7c> the solution of our mixed problem. 

Thereby we obtain this result: 

Theorem V. Let the conditions (B t), (B2) and (B3) be fulfilled. Then for any 
suitably chosen Q (being found as in Theorem l) there exists e, 0 < e ^ e0, such 
that for all e with |ej < e the equation ( l . l) under the conditions (1.2) and (3.1) 
has a unique solution u(t,x) with ||e~d*w|| :g £. 

Proof: It remains only to show that the function u is actually a unique solution of 
the given problem with the property ||e~fc*w| <̂  Q i.e. that it does not depend on the 
way of a continuing of the functions a, x, h and / 

In the case of the existence of two different solutions ut, u2 with lle"*"^! S Q 
(i = 1, 2) we have for the function u = ux — w2 the equation 

(3.5) utt — uxx + 2aut + 2bux + cu = 

= e[/(r, x, ul9 ult, ulx, e) - f(t, x, u2, u2t, u2xi e)] 
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under the conditions 

u(0, x) = 0, ut(0, x) = 0, u(t, 0) = u(t, n) = 0 . 

Applying the mdkn value theorem to the right-hand side in (3.5) and making use of 
the theorem from [5] about uniqueness of a solution of the mixed problem for linear 
equations we obtain that u is identically zero. Hence, the uniqueness of a solution of 
our problem is proved. 

Even so as in sections 1 and 2 we may derive Theorems 2', 3' and 4' analogous to 
Theorems 2, 3 and 4. Let us formulate only Theorem 4' containing the main result 
and omit the formulation of two other Theorems. / 

Let us have a =# 0, b2 + c > 0. 

Theorem 4'. Let the functions h and f be co-periodic in t and let the condition 
(B2) and (B3) be satisfied. Let Q be suitably chosen (see Th. 4). Then there exists 
e, 0 < e S e0, such that for all e with \e\ < e the equation (l.i) with the condi­
tions (3.1) has a unique co-periodic solution u(t, x) satisfying the inequality 
\\e-bxu(t,x)\\ ^ . 

Remark 2. Let us briefly treat the special case when the linear equation 

(3.6) utt — uxx + 2aut + 2bux + cu = h(t, x), t e <0, oo) , xe <0,7i> , 

is given, again with the conditions (1.2) and (3.1). 
Let a and x have continuous derivatives of the second and the first order, respec­

tively, and let h and its derivative hx(t, x) be continuous in t and x, while (3.2) and 
(3.3) holds. Continuing a, x and h as above, the solution of the problem (3.6), (1.2) 
and (3.1) is given by (for arbitrary a, b, c): 

^ + (3.7) u(t, x) = ie-at+bxL(x + t) e~
b(x+t) + o(x - t) *"**-'> 

+ f X+tfj0(d\t2 - (x - z)2f) e~»*(x(z) + a <r(z)) + 

t i w-(-m,- , x , ) i i „ 
dt J 

+ f' f*+'~*J0(^((' - $)2 - (* - zff) <?*~hz h($, z) dz d»\ . 
JoJx-*+a J 

The necessary and sufficient condition for the co-periodicity of a solution u(t, x) 
of (3.6) and (3.1) reads: 

(3.8) u(0, x) - u(co, x) = 0 , w,(0, x) - ut(co, x) = 0 . 

Making use in (3.8) of the expression (3.7) of u we obtain functional equations for 
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initial conditions cr, T such that the function u(t, x), uniquely given by them, is 
co-periodic in t. If we seek <r, x in the form 

00 00 

o(x\ = ebx £ ak sin kx , x(x) = ebx £ bk sin fcx , 
* = i j t = i 

(ak, bk being Fourier coefficients of a and T, respectively) we obtain the following 
result: 

Let the function h(t, x) be continuous and have the continuous derivative of the 
third order with respect to x. Further, let 

h(t, 0) = h(t, n) = 0 , hxx(t, 0) = hxx(t, n) = 0 

and h be co-periodic in t. Then if there is a =j= 0, b2 + c =j= — k2 for all k = 
= 1,2,..., the problem (3.6) and (3.1) has a unique co-periodic solution u(t, x). 

If b2 + c = — fc2) for some k0 and if h(t, x) has continuous derivative of the first 
order, only, it may be possible to find (by the same way) a necessary condition that 
the problem (3.6) and (3.1) have co-periodic solutions. Denoting 

/*o> /»x + co —d 

H(io, x)= \ J0{d%(o - 9)2 - (x - z)2Y) h($, z) dz d9 
J 0 J jc-ca + d 

this condition is 

a C2lt C2rt 

— Hx(co, x) cos k0x dx + H(co, x) sin k0x dx = 0 . 
^o J o Jo 

If h(t, x) has continuous derivative of the third order this condition becomes sufficient, 
too, and then there exist infinitely many co-periodic solutions of (3.6) and (3.1). 
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Výtah 

PERIODICKÁ ŘEŠENÍ NELINEÁRNÍ TELEGRAFNÍ ROVNICE 

JANA HAVLOVÁ, Praha 

Článek se zabývá nelineární telegrafní rovnicí 

(1.1) utt — uxx + 2aut + 2bux + cu = h(t, x) + sf(ty x, u, uř, ux, s) 

(a, b, c — konstanty, a #= 0, e — malý parametr). 
V části 1 se předpokládá a > 0, b2 + c > 0. Dokazuje se věta o existenci a jed­

noznačnosti řešení rovnice (1.1) pro te <0, oo), x e ( - c o , co) při počátečních pod­
mínkách -

(1.2) u(0, x) = <T(X) , u,(0, x) = T(X) 

(věta 1). 

Dále je odvozena věta o spojité závislosti řešení problému (1.1), (1.2) na počáteč­
ních podmínkách oř, T a na funkci h (věta 2). 

Hlavní výsledek části 2 je formulován ve větě 4, která dává při a + 0, b2 + c > 0 
existenci a jednoznačnost co-periodického (v t) řešení rovnice (1.1) pro f e<0, oo), 
x 6 (~oo, co) za předpokladu ct)-periodičnosti (v t) funkcí haf Důkaz této věty 
spočívá na chování omezených řešení rovnice (1.1) při t -• oo, které je obsahem věty 3 
(odvozené opět pro a > 0, b2 + c > 0). 

V části 3 se vyšetřuje smíšená úloha pro t e <0, co), x e <0,7i>, daná rovnicí (1.1), 
počátečními podmínkami (1.2) a okrajovými podmínkami 

(3.1) u(t,0) = u(t, n) = 0 

a zkoumá se existence periodického řešení rovnice (1.1) při podmínkách (3.1). Lze 
odvodit věty obdobné větám 1—4 (formulovány jsou jen věty V a 4'). 

Pe3ioMe 

nEPHOAHHECKHE PEIHEHHil HEJIHHEHHOrO 
TEJIErPA<DHOrO yPABHEHHH 

.HHÁ TABJIOBA (Jana Havlová), npara 

CraTbJí 3aHHMaeTC5i HejiHHeiiHMM Tejierpa<j)HMM ypaBHemieM 

(1.1) utt — uxx + 2aut + 2bux + cu = h(t, x) + e/(ř, u, uř, ux, s) 

(a, b, c — nocTOflHHbie, e — Majibiíí napaMeTp). 
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В параграфе 1 предполагается а > О, Ъ2 + с > 0. Доказывается теорема 
о существовании и единственности решения уравнения (1.1) для *е<0, со), 
х е (— со, со) при начальных условиях 

(1.2) н(0, х) = а(х)у и,(0, х) = т(х) 

(Теорема 1). 

Далее приводится теорема о непрерывной зависимости решения проблемы 
(1.1), (1.2) от начальных условий а, т и от функции к (Теорема 2). 

Главный результат параграфа 2 содержит Теорема 4, которая утверждает 
при а Ф 0, Ь2 + с > 0 существование и единственность со периодического 
(в I) решения уравнения (1.1) для ^е <0, со), хе(— со, со) при предположении 
ш-периодичности (в *>) функций к и /. Доказательство этой теоремы основано 
на поведении ограниченных решений уравнения (1.1) при I -> со, о котором 
говорит Теорема 3 (выведенная опять для а > 0, Ъ2 + с > 0). 

В параграфе 3 исследуется смешанная задача для I е <0, со), х е <0,7г>, 
данная уравнением (1.1), начальными условиями (1.2) и краевыми условиями 

(3.1) и(и 0) = и(г, тг) = 0, 

и рассматривается существование периодического решения уравнения (1.1) при 
условиях (3.1). Можно доказать теоремы, аналогичные Теоремам 1—4 (сфор­
мулированы только Теоремы V и 4'). 
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