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Časopis pro pěstování matematiky, roČ. 103 (1978), Praha 

ON A PROBLEM OF V. PTAK 

IVAN KOREC, Bratislava 

(Received November 30, 1976) 

1. INTRODUCTION AND NOTATION 

If x, y are reals, x < y, then [x, y], (x, y) denote respectively the closed and the 
open interval with the endpoints x, y, (x, y] = (x, y) u {y}. N will always denote the 
set of positive integers, 0 the empty set etc. 

Let The a positive real number or oo. The letters u,v,w will always denote map
pings of the interval (0, T) into (0, T). For every such mapping w(x) and every 
nonnegative integer n define 

wn(x) = x if n = 0 , wn(x) = w(wn-1(x)) if n e N , 

W(x) = w°(x) + w*(x) + w\x) + ..., 

and quite analogously for u, U or v, V instead of w, W. 
The function W(x) is a mapping of (0, T) into (0, oo) u {oo}. By [1], a function 

w(x) is said to be small on (0, T), 0 < T = T, if JV(x) < oo for all x e (0, T'). 
A function w(x) is said to be small if it is small on (0, T). The aim of our paper is to 
give conditions for a function w(x) to be small. V. Ptak suggested to study small 
functions in connection with his results concerning generalizations of the Banach 
fixed-point theorem and the closed graph theorem. 

The main results of this paper are contained in Sections 4 and 5. Sections 2 and 3 
contain some lemmas necessary in the proofs of the results in Sections 4 and 5. 
Section 6 contains examples and counter-examples showing that it is impossible to 
delete some assumptions in the theorems and lemmas of the previous sections. 

All infinite series in the paper consist of nonnegative members and hence their 
sums always exist; of course, they can be equal to oo. Analogously all integrals are 
integrals of nonnegative Lebesgue measurable functions, hence they exist but may 
be equal to oo. Measurability of functions is mentioned in theorems and lemmas if 
necessary but it is not mentioned in their proofs if it is consequence of other as
sumptions, 
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2. INFINITE SERIES 

2.1. Lemma. Let (a0, al9 a2,...) be a decreasing sequence of positive reals9 

let k > 1 and 

f : a n . l n ( a w " " a - + ^ + fc-^-^^<oo. 
«=i an - an+1 

Then ax + a2 + a3 + ... < oo. 

Proof. Denote cn_i = an^.1 — an for all n e N. Then we have an = (cn + c n + 1 + 
+ c n + 2 + ...) + a, where a = lim an; the limit obviously exists and is nonnegative. 

II-* 00 

We prove that it is equal to 0. If a > 0 then 

E i ^n + *^ • ^n — 1 In — < oo . 
»=- c n 

H o w e v e r , l im c n = 0 a n d h e n c e c n < c n _ 1 } i.e. 
I I-+00 

l n C w + fc'Cw-1 > l n ( l + fe) 

for infinitely many neN, which is a contradiction. 
Obviously cn < c0 for almost all n e N; for the sake of simplicity we assume that 

cn < c0 for all n e N. Then we have 

o o > f ; a n . l n C w + fc'Cw-1 = 
n = l c n 

= (c t + c2 + c3 + . . . ) . l n C l + fc-C° + (c2 + c3 + . . . ) . l n C 2 + fc-Cl + 
cx c2 

+ (c3 + c 4 + - ) . In C 3 + fc-C2 + . . . = 
c3 

= c 1 . l n C l + f c - C ° + c 2 . lnf / c ' + fc-C°.C- + fc-CA + 
Cl V Cl C2 / 

+ c In /ci + fc • c o c 2 + fc • C l C3 + fc • C 2 \ + 

\ c. ' c2 ' c3 / 

In lci + fc • co c2 + fc • C A + 

\ C 2 C l / 

c i n / c i + fc • c o c 2 + fc • Ci c 3 + fc . c 2 \ + > 

V C 3 C l C 2 / 

t Cj + K . c 0 -= CІ . ln -i - + c2 . 

+ 

^ 0 . cx . ln k + 1 . c2 . ln fc + 2 . c3 . ln k + ... = (a2 + a3 + a4 + ...) . ln fc . 
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Hence a2 + a3 + a4 + ... <oo and then also ax + a2 + a3 + ... < oo, q.e.d. 

2.2. Lemma. Lef (a,, a2, a3,...) be a decreasing sequence of positive reals, let 
OO 

£ an < oo and 
n = l 

« 2 / « l = « 3 / a 2 = a 4 , a 3 = . . -

Then 
V „ **n ~ a n + l . ^ 

L Qn+1 • < °° • 
n _ 1 a n + l "" a n + 2 

Proof. For an arbitrary non-decreasing sequence b = (bl9 b2, b3,...) of positive 
reals less than 1 and an arbitrary i e N define 

F(b) = 1 + b1 + b1b2 + b!b2b3 + ... , 

G(Ь) = 
1 - b2 

+ M г - -- ъ 2 

- ь 3 

+ ЬiЬ2Ь3 

1 -

• 1 -

-h 
- ь 4 

+ 

FІ(Ъ) -- ^ Ь L Ь J . - , bf, bt, bt,. ••). 

GІ(Ь) -= Gťbj., Ъ2,... ,, bu bi, bi,. ••')• 

Up to a finite number of members, Ff(b) and Gt(b) are geometrical series with the 
quotient bh hence they are convergent. By an easy computation we can verify that 

Fi+1(b)-Fi(b) = b1b2...bi

 b ^ ~ b i 

Gi+1(b) - Gi(b) = blb2... bt. f-
b.{?"17btl • 

(1 - b,).(l - bl+1) 

Hence for all i e N we have 

0 = Gi+1(b) - Gt(b) = 2 . (Fi+1(b) - Ft(b)) . 

Comparing term by term the infinite series Ft(b)9 F(b) we obtain Ff(b) = F(b) for 
all i G N. On the other hand, Ft[b) is greater than the i-th partial sum of F(b) and hence 
lim Ff(b) = F(b). The i-th partial sum of G(b) is less than G((b) and hence lim Gt(b) = 
i->co i->co 

= G(b). (The limit exists but it may be oo.) 
Now we can prove the lemma. Without loss of generality we may assume a1 = 1. 

Denote bn = an+1jan for every n e N. The sequence b = (bl9 b2, b3,...) is non-
decreasing and bn e (0,1) for all neN.lt holds 

an - a„ + 1 , , , 1 - bn = bxb2 ... b.,-! . 
a n + l ~ a n + 2 * "~~ Ьn + Í 
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for all n e N - {l}. Hence it remains to prove that F(b) < oo implies G(b) < oo. 
However, 

• G(b) £ lim Gib) = G,(b) + £ (Gi+l(b) - G,(b)) ^ 
i-->oo . = 1 

g 2 . F.(b) + 12 . (Fl+l(b) - Fj(b)) - 2 . F{b) < oo , q.e.d. 
. = 1 

2.3. Lemma. Let fc > 1, let (al5 a2, a3,...) be a decreasing sequence of positive 
reals, let 

oo 

' £ a n < oo 
n = l 

and let for allneN an+1 - an+2 ^ fc. (an - an+1). Then 

Z°° - fc • (an "~ a n + l ) an + 1 . In — ^ - ^ < oo . 
n = l an+1 - an+2 

Proof. Denote bn = an - an+1 for all neN. Then obviously an = bn + bn + 1 + 
+ bn + 2 + ... for all n e N. Without loss of generality we may assume bt = 1 and 
b n + 1 < 1 for all neN. Then we have 

V „ i ^ f c - K - <*n+i) £ i t - k " b " 
L a »+l • l n " = L an + l • l n T = 

n-1 #n+l ~ an+2 H=1 b n + 1 

= (b2 + b3 + b4 + . . . ) . In - ^ 1 + (b3 + b4 + . . . ) . ln ^ + 
b2 b3 

+ (64 + b 5 + . . . ) . l n - ^ + ...== 

I. 1« k • ^1 . L / i k • &1 . i k • ^2\ 

= b2 . In —— + b3 . [ ln - + ln ) + 
b2 \ b2 b3 ) 

+ bA.(lnl^) + l n ^ + ln^) + ...= 
\ b2 ) b3 b4 / 

- Z b„+i • In (fc-/^+1) = £ bn + 1 . n . ln fc + £ b n + 1 . |ln bn + 1 | £ 
» = 1 n=-l „=-l 

-*'--fe.f:fl.+1+2:n,(&11+.+e-")-
11*1 « - - l 

-•(1 + ln fc) . £ aH+l + £ M . e- < oo . 
»=i » = i 
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We have used the inequality 

6. | ln6| = n.(b + e~B) for all be(0, l ) and neN. 

To verify it, let us distinguish two cases. If In b ^ - n then b . |ln b\ ;= n . b. If 
In b g - n then we have 6 . |ln b\ = |ln fr| . ê '1"*1 g n . e~B, since the function 
x . e~* is decreasing on [1, oo), q.e.d. 

3. OTHER LEMMAS 

3.1. Lemma. Let a,b,ce (0, T), a < b < c, let w(x) < x for all x e [b, c], 
w(c) = b, w(b) = a and fc > 1. 

a) If w(y) — w(x) ;= fc . (y — x) for all x, y e \b, c], x < y then 

Í 
x. dx b 

í 

) b x ~ H*) fe 

b) If w(y) — w(x) ^ — fc . (>> — x)for a// x, y e \b, c], x < y then 

x.dx > b (b - a) + (fc + 1) . (c - b) 

b x — w(x) ~~ fc + 1 6 — a 

Proof, a) Let u(x) = b + fc. (x - c). Then w(x) ^ u(x) for all x e [b, c] and 
hence 

r x. dx > r x.dx = r dx > r__dx__ = b 
Jb x - w(x) - J* x - u(x) J* 1 - u(x)/x J* 1 - u(b)/b fc 

b) Let u(x) = a - fc . (x — b). Then w(x) ^ u(x) for all x 6 [b, c] and hence 

r x.dx > r x.dx = r x.dx . 
Jb x - w(x) "" Jfc x - u(x) Jfr (fc + 1). x - fc. 6 - a ' 

by an easy computation we obtain the required expression, q.e.d. 

3.2. Lemma. Let a,b,ce (0, T), a < b < c, let w(x) < x for a// x e \b, c], fef • 
w(c) = b, w(b) = a and let k be a real. 

a) If fc e (0,1) and w(>>) - w(x) = fc . (>> - x) for all x,ye [b, c], x < y then 

í x. dx c 

b x - w(x) fc 

b) If k > 1 and 0 ^ w(>>) - w(x) £k.(y -x) for all x,ye [b. c], x < y 
then 

í 
c x.dx (c - b) . fc 

— á c + Ь . ln * '-— 

b x - w(x) Ь - a 
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c) If the function w(x)jx is non-increasing on [b9 c] then 

[ 
c x . dx . , c — b 

g b . 
ъ x — w(x) b — a 

Proof, a) Let w(x) = b + k. (x - c). Then w(x) ^ w(x) for all X e [b, c] and 
since w(x)/x is monotone on [b9 c] we have 

r x.dx r* x.dx ^ m a x / ^ ( ^ - l ' ) ) c-(c-frft = 

J d x - w(x) J t x - u(x) \ b - u(b) ' c - «(c) / 

= max I - , c < - . 
\it / ~~ k 

b) Let d = b + (b - a)//c and w(x) = b + k. (x - d) for x e [b, d], "(x) = b 
for x e (d, c]. Then w(x) ^ w(x) for all x e [b, c] and therefore 

r x.dx < r x.dx = rd x . d x r - x .dx < 

J f c x - w(x) "" J & x - w(x) Jb x - w(x) J d x - w(x) """ 

* d + (e-d+ fc.ln^Uc + b.lnMC-b). 
V b - a/ b - a 

c) We have 

r x.dx = r dx = r_dx_ = c - b e d 

Jb x - w(x) Jd 1 - w(x)/x Jb 1 - a/b b - a9 

3.3. Lemma. Lcf w(x) < x for all xe (0, T)9 let k > 1 and w(y) — w(x) ^ 
£ k.(y — x) for all x9 y e (0, T), x < y or w(y) - w(x) ^ -k. (y - x) for all 
x9 ye (0, T), x < y. Let there be b e (0, T) such that the point [b, h] is a limit 
point of the graph of w(x). Then there are a, c e (0, T), a < c such that 

I c x . dx 
= 00 

a x - w(x) 

Proof. Let e.g. w(y) — w(x) ^ k .(y — x) for x < y and let the point [b, b] 
be a limit point of the graph of w(x). It can be easily shown that b — w(x) :g 
£ k . (b - x) for all x e (0, b). Take c = b and a e (0, c). Then 

J в X ~ W(x) Ja 

a . dx 
= 00 (k-l).(b-x) 

If w(j>) — w(x) ̂  — fc. (y — x) for x < y, the proof is similar. We choose a = b 
and c e (&, T). Q.e.d. 
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3.4. Lemma. Let w(x) < x for all xe(0, T), let w(x) be Lebesgue measurable 
on (0, T) nad let no point \b, b], b e (0, T) be a limit point of the graph of w(x). 
Then for all a, c e (0, T), a < c, 

Г x . dx 
< 00 x — w(x) 

Proof. Take a, ce (0, T), a < c. Then there exists a positive number e such that 
w(x) = x — e for all x e [a, c] and hence 

— < < co . Q.e.d. 
J 0 X - w(x) J„ 8 

3.5. Lemma. Let at least one of the functions u(x), v(x) be non-decreasing on 
(0, t), let u(x) = v(x)for every x e (0, t). Let a, b e (0, T), V(b) < oo and lim un(a) = 

n-*oo 

= 0. Then U(a) < oo. 

Proof. Without loss of generality we may assume a ^ b < t. Now we can prove 
un(a) ^ vn(b) by induction. If n = 0 then obviously wrt(a) = a ^ b = t;n(b). For 
H e N we have 

w"(a) = u(w"_1(a)) = X = v(^_1(b)) = vn(b) 

where X = u(vn~1(a)) if w(x) is non-decreasing and X = v(un~1(a)) if v(x) is non-
decreasing. Comparing U(a), V(b) term by term we obtain U(a) ^ V(b) < oo, 
q.e.d. 

4. CRITERIA OF SMALLNESS 

Let t be a fixed element of (0, T); it is suitable to imagine it small. An obvious 
necessary condition for a function w(x) to be small is 

(4.0) lim wn(x) = 0 for every x e (0, T); 
n-*co 

this condition will be called the zero-condition for the function w(x). It is easy to 
see that if a function w(x) satisfies the zero-condition and is small on (0, t) then it 
is small (i.e. small on the whole (0, T)). The problem whether a function w(x) is 
small is usually much more difficult than the problem whether w(x) satisfies the zero-
condition. Therefore it is usually reasonable first to verify (4.0) and only if it holds 
to find out whether w(x) is small. Hence it is suitable to investigate smallness on (0, t). 

We shall also assume 

(4.1) w(x) < x for all x e (0, i] 

in most theorems. The condition (4.1) is obviously very natural even if it is not 
necessary for w(x) to be small (see Example 6.5). Our basic result is the following 
theorem. 
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4.1. Theorem. Let w(x) satisfy (4.1) and (4.0), let there be a real k such that 

(4.2) w(y) - w(x) £k.(y - x) for all x, y e (0, t] , x<y 

or 

(4.3) w(y) - w(x) = fc . (y - x) /or all x,ye(0,i]9 x<y9 

and let 

dx 

Then the function w(x) is small. 

Proof. We may obviously assume |fc| > 1 and prove only W(a) < oo for all 
a e(0, t). Denote an = w"(a) for all n e N u {0}. The sequence (a0, au a2,...) is 
decreasing and its limit is 0. Now let us distinguish two cases. 

If (4.2) holds then using Lemma 3.1a for b = an, c = an«! we obtain 

(4-4) ґ - ^ < » . 
J o x - w( 

oo oo fiӣn-i т л v 

*П<0 - a0 + £ an й a0 + £ fc . -~-^-Ş- = 
»=i и=i J в n x - w(x) 

, r fa x .dx _. , , fř x . a x = a0 + k. — й a0 + k.\ — < oo 
Jox-Җx) Jox-

dx 

w(x) 

Let (4.3) hold. Using Lemma 3.1b we obtain 

J 0 x - w(x) »=i J f l n x - w(x) ~ 
00 > 

£ fl + i , ] n ( a " - д . + i ) + ( - f e + i ) - ( д я - i - flң) 

k + 1 ' ' я в - a„+i 

Now we can use Lemma 2.1. It implies that ax + a2 + a 3 + ... < oo and hence 
W(a) = a0 + ai + a2 + ... < oo, q.e.d. 

Theorem 4.1 shows that (4.4) is a sufficient smallness condition for a rather large 
class of functions w(x). Generally speaking, it is not a necessary condition (see 
Example 6.7). However, (4.4) can turn out to be a necessary and sufficient smallness 
condition if we restrict the class of functions w(x) considered. Some convenient 
restrictions are given in the next three theorems. In their proofs the necessity of (4.4) 
is verified only, the sufficiency being obvious consequence of Theorem 4.1. 

4.2* Theorem. Let w(x) satisfy (4.0) and (4.1), let there be a positive real k such 
that (4.3) holds. Then the function w(x) is small if and only if(4A) holds. 
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Proof. We may obviously assume k < 1. Let w(x) be small. Denote an = wn 1(i) 
for all n e N. By Lemma 3.2 we have 

r_xj.x_.f-r J L ^ _ £ _, _ j.^ <«,. Q.e.d. 
Jo x - w(x) 11=1 Jan+1 x - w(x) n=-l k k 

4.3. Theorem. Lcf w(x) satisfy (4.0) and (4.1) and Zcf the function w(x)/x fee now-
increasing on (0, *]. Then the function w(x) is small if and only if (4.4) ho/ds. 

Proof. Let w(x) be small. Denote an = w""1^) for all neN. Then 

Г x .dx = - p x .dx ž £ a, , -a , ,+ 1 ^ ^ 

Jo x - w(x) »=i J в n + 1 x - w(x) ~л=i an+í - a л + 2 

< oo ; 

the first inequality follows from Lemma 3.2c and the other from Lemma 2.2, q.e.d. 

4.4. Theorem. Let w(x) satisfy (4.0) and (4.1), let w(x) be non-decreasing and let 
there be a real k such that (4.2) holds. Then w(x) is small if and only if (4.4) holds. 

Proof. We may obviously assume fc > 1. Let w(x) be small. Denote an = wn_1(f) 
for all n e N. It holds 

Jo x - w(x) »=i J f l n + 1 x - w(x) »=i \ an+l - an+2 J 

= ian + lan+1.ln
{an~-an^-k<oo. 

»=i »=i an+l - an+2 

The first inequality follows from Lemma 3.2b, the second from W(t) < oo and 
Lemma 2.3. Q.e.d. 

Up to now we have tried to find smallness conditions which were as general as 
possible. Now we are going to give some more easily applicable conditions. We 
begin with a simple theorem for verifying (4.0). 

4.5. Theorem. A continuous function w(x) satisfies the zero-condition if and 
only if w(x) < xfor all x e (0, T). 

Proof. Let w(x) < x for all x e (0, T), and a e (0, T). Denote an = wn(a) for all 
n e N u { 0 } . The decreasing sequence (a0, al9 a2,...) has a limit b __ 0. If b {$ 
positive then w(b) = 6, which contradicts the assumption. Therefore b = 0. 

Conversely, let w(a) __ a for some a e (0, T). We have to find b such that W(b) ** 
= oo. If W(a) = oo take b = a. Otherwise there is n e N such that wn(a) ^ w"+1(a)v 
w"(a) ^ a. Denote c = wrt(a). It holds w(c) __ c, w(a) __ a, and therefore the f t s 
b e [c, a] such that w(b) = b. Then obviously W(b) = oo, q.e.d. 
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Now we shall reformulate Theorems 4.1—4.4 for the functions w(x) which have 
the first derivative on (0, t). The proofs of both reformulated theorems are very 
easy and wg shalKomit them. 

4.6. Theorem. Let w(x) satisfy (4.0) and (4.1), let w'(x) exist for all xe(0, t], 
let there be a real k such that w'(x) ^ k for all x e (0, t] or w'(x) ^ k for all x e 
e (0, t] and let (4.4) hold. Then the function w(x) is small. 

4.7. Theorem. Let k be a positive real, let w(x) satisfy (4.0) and (4.1), let w'(x) 
exist for all x e (0, t] and let at least one of the following conditions hold: 

(i) w'(x) :> fc for all xe (0, t]; 

(ii) w'(x) = w(x)/x for all xe (0, t]; 

(iii) 0 S w'(x) = fc for all x e (0, t]. 

Then the function w(x) is small if and only if (4.4) holds. 

4.8. Corollary. Let a function w(x) satisfy (4.0) and (4A), let r be a real, t < e~c 

and let for all xe (0, t) either 

w(x) = x — x 2 _ r 

or 
w(x) = x - x 2 . | l n x | 1 + r 

or 
w(x) = x - x2 . [In x| . (In [in x | ) 1 + r . 

Then w(x) is small if and only if r > 0. 

Proof. Let e.g. w(x) = x - x2 . |ln x | I + r . Then 

Ay Г x .dx = Г dx = 

J 0 x - w(x) JQ x . | lnx | 1 + r 
ví+r 

|lnř| У 

The last integral converges if and only if r > 0. Now it suffices to use Theorem 4.7. 
The other two cases for w(x) are similar. It is also clear how to continue the sequence 
of formulae for w(x); then the number e" e must be replaced by a smaller number 
depending on the considered formula. Q.e.d. 

4.9. Corollary. Let a function w(x) satisfy (4.0) and (4.1) and let 

w(x) = cx . x + c2 . x2 + c3 . x3 + ... 

for all xe(0, t] where ct are real constants. Then w(x) is small if and only if 
cx < 1. 

The corollary is an immediate consequence of Theorem 4.7. Notice that if w(x) = 
= c0 + cx. x + c2 . x2 + ... then w(x) can satisfy (4.1) only if c0 = 0. 
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5. COMPARATIVE CRITERIA 

In the preceding section we have given a list of small functions. Now we give 
some theorems which enable us to conclude that a given function is small if it is 
related in a certain way to some other small functions. As in Section 4, t denotes 
a fixed element of (0, T). 

5.1. Theorem. Let u(x) satisfy the zero-condition, let at least one of the functions 
u(x), v(x) be non-decreasing on (0, t), let u(x) £ v(x)for every x e (0, t) and let the 
function v(x) be small on (0, t). Then the function u(x) is small. 

Proof. Take an arbitrary xe(0, T). The zero-condition implies that there is n e N 
such that a = un(x)e(0, t). Obviously U(x) < oo if and only if 17(a) < oo. Since 
the function v(x) is small on (0, t) it holds V(a) < oo. Then by Lemma 3.5 (used for 
b = a) we have U(a) < oo, and hence U(x) < oo, q.e.d. 

Another corollary of Lemma 3.5 follows by taking u(x) = v(x) = w(x). 

5.2. Theorem. Let w(x) satisfy the zero-condition and be non-decreasing on 
(0, t]. Then w(x) is small if and only if W(t) < oo. 

If we want to use Theorem 5.1 it is sometimes useful to extend the list of small 
functions by the theorem below. 

5.3. Theorem. Let w(x) satisfy the assumptions of Theorem 4.7, r e (0, 1), let 
u(x) = r . x + (1 — r) . w(x) for all x e (0, t] and let u(x) satisfy the zero-condition. 
Then u(x) is small if and only if w(x) is small. 

Proof. The function u(x) also satisfies the assumptions of Theorem 4.7 and 

dx Г x.dx ^ 1 Г x. 

J o x - u(x) 1 - r J 0 x - w\ <*) 

The integral on the left converges if and only if the integral on the right converges. 
Now it is sufficient to use Theorem 4.7. Q.e.d. 

We give one example how to use Theorem 5.3. 

5.4. Corollary. If w(x) satisfies the zero-condition, r > 0 and 

r r X ~ W(X) rx 

lim mf —— • v^—; > 0 
*-o+ x 2 . | lnx | . ( ln | lnx | ) 1 "" r 

then the function w(x) is small. 
The assumption that at least one of u(x), v(x) is non-decreasing cannot be omitted 

in Theorem 5.1. (See Examples 6.3,6.4.) However, it can be replaced by the continuity 
of v(x). We shall see that from the following theorem. 
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5.5. Theorem. (J. Smital). Let a continuous function w(x) be small and let for all 
xe(09T) 

u(x) = sup {w(y); y e (0, x]} . 

Then the function u(x) is small. 

Proof. Let b e(0, T). There is the least real a0 satisfying w(a0) = w(b). Denote 
an == urt(a0) for all neN. Since w(x) is continuous and small, we have w(x) < x 
for all x e (0, T). Then u(x) < x for all x e (0, T)9 u(x) being continuous. Therefore 
w(x) satisfies the zero-condition. 

Denote by G0 the set of all x e (0, T) such that u(x) is constant in a (sufficiently 
small) neighbourhood of x. Further, denote for all n e N 

Gn = {xe(0,T); urt(x)eG0}9 

A> = [<*» ao] - Go > K = K-i - Gn. 

All sets A0y Al9 Al9... are closed and A 0 2 ^ 2 A 2 2 . . . . We shall show An #= 0 
for all n e N u {0}. If we denote urt(X) = {un(x); xeX} for every X c (0, T) then it 
holds 

(5-1) «"+1(A,) = [a n + 2 ,«„ + 1 ] , 

(5.2) «"(4,)nGo = 0 . 

For n = 0, (5.1) and (5.2) obviously hold. Let they be true for some n; we prove 
them for n + 1. It holds «"+1(4,+1) = «"+1(4, - G.+i) £ [aB+2) a.+1] - G0, 
hence w"+1(A.+1)n G0 = 0. Further, we have w"+2(A,+1) = un+2(An - Gfl+1) = 
= u{u»+\AH - GB+1)) 2 «(«"+1(4.) - «"+1(Gn+1)) = «([aB+2, a.+1] - G0) = 
= [<*»+3> «»+2]- The converse inclusion is obvious: un+2(An+1) c un+2([a1, a0]) = 
= Lfl»+3> a»+2j-

We have proved (5.1) and (5.2). (5.1) implies An #= 0 for all n e N and since Ax 2 
oo oo % 

12 A2 2 A3 2 ... are closed sets we have f) A. + 0- Take c e f) An. It holds wrt(c) = 
n - l «-=i 

= un(c) for all neNu {0}. Therefore C/(c) = JV(c) < oo. Now we use Theorem 
5.2. Since u(x) is obviously non-decreasing and satisfies (4.1), it is small, q.e.d. 

5.6. Corollary. A continuous function w(x) is small if and only if w(x) < x for 
allxe(09T)and W(t) < oo. 

5.7. Corollary. Let ti(x) be a continuous small function and let u(x) ^ v(x) for 
all xe(0, r ) . Then the function u(x) is small. 
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6. EXAMPLES AND REMARKS 

6.1. Example. A function w(x) such that w(x) < x for all x e (0, T) which does 
not satisfy the zero-condition. 

Let w(x) = x/2 for x 6 (0, t], w(x) = (x + t)/2 for x e (f, T). Then obviously 
w(x) < x for all x e (0, T). However, for every a e (f, T) it holds lim w"(a) = t > 0, 

w->oo 

hence w(x) does not satisfy the zero-condition. 

Remark. The just constructed function w(x) is continuous from the left on (0, T). 
From Theorem 4.5 we know that it cannot be continuous. It is easy to see that it 
cannot be even continuous from the right on (0, T). 

6.2. Example. A function w(x) satisfying the zero-condition, w(x) < x for all 
x e (0, T) and W(t) < oo which is not small on (0, t). 

Choose r e (0, t) such that rjt is irrational (e.g. r = tjy/2) and for all x e (0, T) 
define w(x) = rj(rjx + 1) if r/x e N, w(x) = x/2 otherwise. The function w(x) 
obviously satisfies (4.0) and w(x) < x. It holds also W(t) = t + t\2 + f/4 + f/8 + ... 
... < oo. However, W(r) = r + r/2 + r/3 + r/4 + ... = oo, hence w(x) is not 
small on (0, t). 

6.3. Example. Functions u(x), u(x) satisfying the zero-condition and u(x) < 
< v(x) < x for all x e (0, T), such that v(x) is small and U(x) = oo for all x e (0, T). 

Let for all ne N 

u(t\(2n)) = tj(4n + 1) , i<f/(2n)) = f/(4n), 

n(f/(2n - 1)) = r/(2n + 1), v(tf(% - 1)) = tj(2n) 

and for all x e (0, T) such that tjx $ N let 

u(x) = t/(2n + 3), v(x) = f/(2n + 2), 

where n is the integer part of tjx. Then for every x e (0, T) there is m e N such that 
u(x) = f/(2m + 1), v(x) = */(2m) and we have 

U(x) = x + U(u(x)) = x + tj(2m + 1) + r/(2m + 3) + //(2m + 5) + ... = co , 

V(x) = x + V(i>(x)) = x + f/(2m) + */(4m) + tj(Sm) + ... < co . 

Remark. Neither u(x) nor v(x) can be non-decreasing, and t̂ x) cannot be con
tinuous. 

6.4. Example. A small function v(x) and a continuous but not small function u(x) 
satisfying the zero-condition and u(x) g v(x) for all x € (0, T). 

Let for all neN 

u(t\(2n - 1)) « r/(2n + 3), u(r/(2n)) = tj(An + 2), 
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let u(x) = t\5 for all x e (t9 T) and let u(x) be defined by linear interpolation on each 
interval (t\(n + 1), t\n)9 neN. Let for all n e N 

v(t\(2n)) = t\(4n)9 

v(x) = t\(2n + 2) for xe(t\(2n + 1), t\(2n - 1)] - {t\2n} 

and let t?(x) = t\2 for x 6 (t9 T). Then obviously u(x) is continuous and u(x) _i 
^ v(x) < x for all x e (0, T). It is easy to verify that v(x) is small. However, u(x) 
is not small because U(t) = t + t/5 + t\9 + f/13 -f- ... = oo. 

Remark. If we replace the linear interpolation by a finer construction we can reach 
e.g. that u(x) has all derivatives on (0, T). 

6.5. Example. A small function w(x) such that w(x) > x for all but countably 
many xe(0, T). 

Let (f0, tl9 tl9...) be an increasing sequence, t0 = t and lim tn = T. Denote f_„ = 
n-*oo 

oo 

= t\2H for all n € N, Z = (J {f _„, tn} and for all integers n and all x e (0, T) 
n = 0 

w(*) = 'n+i if xe(tn-l9tn), w(x) = tn^1 if ^ = ^. , t . . 

Then for all x e (0, T) — Z we have w(x) > x. In spite of that the function w(x) is 
small: For each x, W(x) converges if and only iff_1 + r_2 + ^_3 + . . .<oo, which 
obviously holds. 

6.6. Example. A function w(x) satisfying (4.0), (4.1) and (4.4) which is not small. 
Let for all xe(0, T) 

w(x) = x/2 if t\x$N,. w(x) = t\(t\x + 1) if t\xeN. 

Then w(x) satisfies (4.0) and (4.1), It also satisfies (4.4) because w(x) can be replaced 
by x\2 in the integral. However, w(x) is not small since W(t) = t + t\2 + t\3 + ... 
. . . = 5 0 0 . 

Remark. The function w(x) just constructed is not continuous. However, a con
tinuous function with all the mentioned properties can be foiind. It could be con
structed a$ an "approximation" of the function w(x). Therefore in Theorem 4.1 the 
conditions (4.2) or (4.3) cannot be replaced by continuity of w(x). 

6.7. Example, A non-decreasing small function w(x) satisfying (4.0) and (4.1) 
which does not satisfy (4.4), 

Denote aH = t\2n for all neN9 and define 

w(x) = aH+t for all xe(a n + 1 , a„] , w(x) = ax for all x > at . 
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Then obviously w(x) satisfies (4.1) and is non-decreasing. Further, w(x) is small 
since W(x) £ x + a1 + a2 + a3 + ... <co, and hence it satisfies (4.0), too. 
However, (4.4) does not hold. Moreover, for every positive k we have 

Í, 
* x . dx 

= 00 
I o x - w(x) 

because the graph of w(x) has a limit point \an9 a„] for some an e (0, k). 

Remark. There is also an increasing continuous small function w(x) satisfying 
(4.0) and (4.1) and not satisfying (4.4). It can be constructed as an "approximation" 
of the function from Example 6.7. Hence we cannot replace (4.3) with a positive k 
by the assumption that w(x) is increasing in Theorem 4.2. Analogously we cannot 
replace the assumption (i) in Theorem 4.7 by the assumption w'(x) > 0. 

6.8. Example. A decreasing sequence (al9 a2, a3, ...) of positive reals such that 
ai + a2 + a3 + ••• < °°> an+i — an+2 = an ~ an+i f ° r all n e N and 

0 0 si n 

£ a „ . l n a»-a«" = 0 0 . 
» = 1 0« + l "" a « + 2 

(Compare with Lemma 2.3.) 
Let c± = 1, cn+1 = cn. eCn, bn = ljcnf an^bn + bn+1 + fcw+2 + ... for all 

n e N. Then 

E a „ . m fl"-fl-^ ^ L . i n ^ f l l ^ ^ i ^ o o . 
» = 1 ^ n + l - an + 2 n=1 Cn cn »«-• 

The other conditions can be easily verified. 
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