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Homology theory in the alternative set theory I.

Algebraic preliminaries

Jaroslav Guričan

Abstract. The notion of free group is defined, a relatively wide collection of groups which
enable infinite set summation (called commutative π-group), is introduced. Commu-
tative π-groups are studied from the set-theoretical point of view and from the point of
view of free groups. Commutativity of the operator which is a special kind of inverse limit
and factorization, is proved. Tensor product is defined, commutativity of direct product
(also a free group construction and tensor product) with the special kind of inverse limit
is proved. Some important examples of tensor product are computed.

Keywords: alternative set theory, commutative π-group, free group, inverse system of Sd-
classes and Sd-maps, prolongation, set-definable, tensor product, total homomorphism

Classification: 55N99, 20F99, 18G99

0. Introduction.

The main goal of this paper is to give the algebraic foundations for creating at
least first parts of homology theory in the Alternative set theory (AST), in spite
of the fact that this theory has been developed from the opposite side. First we
tried to create some algebraic topology in the AST. At the same time we believed
that our results would be good at least for Sd-groups of coefficients starting from
indiscernibility relation (i.e. π-equivalence with some additional properties). Each
step of the construction of a homology theory which was of interest from the al-
gebraic point of view was checked just from this point of view. At the same time
we were looking for the special properties of groups, homomorphisms, operators
of direct products, free group, tensor product etc. which have appeared in this
process. A certain meaningful part of homology with Sd-groups of coefficients has
been created. Then we tried to extend our results to the more general groups of
coefficients. In this paper, just this step has been made.
The homology theory in the AST based on these algebraic foundations will be

discussed in the next papers.
Throughout the paper we use usual principles and notations of the AST (see [V]).

1. Free groups, commutative π-groups.

By Z we denote the set-definable class of all integers, + is the usual addition
on Z (which is also an Sd operation). If it does not lead to any misunderstanding,
we can use the sign + also for operations in other groups.
By k, l,m, n (if necessary, with subscripts) we shall denote finite natural numbers,

by α, β, γ, δ, µ, ν (also if necessary with subscripts) we shall denote natural numbers
(or integers), possible infinite.
By [x1, x2, . . . , xn] we shall denote an ordered n-tuple of elements x1, x2, . . . , xn.
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Definition 1.1. Let X be a class. Then the class

F(X) = {f ; Fnc (f)& dom(f) ⊆ X& rng (f) ⊆ Z− {0}}

with the following operation ⊕:

dom (f ⊕ g) = {x ∈ dom (f) ∪ dom (g); x ∈ dom (f) ∩ dom(g)⇒⇒⇒ f(x) 6= −g(x)}

and

(f ⊕ g)(x) =











f(x) + g(x) if x ∈ dom (f) ∩ dom (g)& f(x) 6= −g(x)

f(x) if x ∈ dom (f) \ dom (g)

g(x) if x ∈ dom (g) \ dom (f),

is a commutative group. We shall call it the commutative free group freely generated
by the (class)X. (Its zero element is the empty set ∅.)

It is easy to see that if X is an Sd-class, then F(X) and also ⊕ are Sd-classes.
Because in all our considerations we shall use only commutative groups, we shall
omit this attribute.
According to the fact that for every x ∈ X the function gx = {[1, x]} ∈ F(X)

there is the natural copy of X in F(X) and therefore we shall frequently consider
X to be a subclass of F(X).
In the common circumstances it is usual to do only finite sums of elements of

a given group. The serious problems appear if one wants to sum infinite sets (classes)
of elements of a given group. These problems could be solved by means of topology.
The first step is to show that we can speak about some kinds of infinite sums in the
AST. That is why we introduce a special kind of the inverse system and its limit.

Definition 1.2. An inverse system of Sd-classes and Sd-maps (Sd-IS in short) is
a codable system {Gn,Hmn ,m ≥ n} which consists of a codable class of classes
{Gn; n ∈ FN} in which each of Gn is a set-definable class and a codable class of
set-definable maps Hmn : Gm −→ Gn for every pair m ≥ n such that

(a) each of Hnn is the identity on Gn,
(b) for m ≥ n ≥ k Hmk = H

n
k ◦H

m
n : Gm −→ Gk.

An inverse limit of an Sd-IS {Gn,Hmn ,m ≥ n} is a class G such that there are
maps Hn : G −→ Gn such that

(1) for m ≥ n Hn = Hmn ◦Hm,
(2) for each sequence x0, x1, . . . such that xn ∈ Gn and for every m ≥ n xn =
Hmn (xm) there is just one element x ∈ G such that for each n xn =Hn(x),

(3) there is Sd-map H
′

n such that Hn =H
′

n ↾ G for each n.

Notation:A group (G,+) is said to be an Sd-group iff the class G and also the
operation + are set-definable. If all classes Gn are enriched by group operations
+n such that (Gn,+n) are Sd-groups and moreover H

m
n are homomorphisms, then

{Gn,H
m
n ,m ≥ n} is said to be an Sd-IS of groups. A group structure induced

from this Sd-IS of groups can be in a common way introduced on its inverse limit.
Therefore this inverse limit can be considered to be a group.
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Definition 1.3. A group (G,+) is said to be a commutative π-group, if it is an
inverse limit of some Sd-IS of commutative groups.

Example 1.4. Let + be an Sd-operation, Gn be such set-definable classes that
(Gn,+∩G3n) is a commutative Sd-group and Gn+1 is a subgroup ofGn for each n.
Let us put G =

⋂

{Gn; n ∈ FN}. Then (G,+ ∩G3) is a commutative π-group.
Indeed, all homomorphisms required by Definition 1.2 can be chosen as appro-

priate inclusions.

Example 1.5. Let X be a π-class. Then F(X) is a commutative π-group.
Indeed, because X is an intersection of a decreasing sequence Xn of set-definable

classes, then the sequence (F(Xn),⊕) and (F(X),⊕) can be considered to be the
case of Example 1.4.

Theorem 1.6. Let (G,+) be a commutative π-group, let u be a set. Let f :
u −→−→−→ Z and g : u −→−→−→ G be set maps. Then it is possible to define correctly
an expression Σ{f(x) · g(x); x ∈ u} in such a way that it assigns the uniquely
determined element of G. Moreover, because v = rng (g) ⊆ G, we can consider
the inclusion ι : v −→−→−→ G. If we consider the function h : v −→−→−→ Z given by

h = {[α, x]; x ∈ v&α = Σ{f(y); y ∈ g−1′′ {x}}}, then

Σ{f(x) · g(x); x ∈ u} = Σ{h(y) · ι(y); y ∈ v}.

Proof: Let (Gn,+n),H
m
n ,Hn and H

′

n be such as it is required by 1.2 and the
above notation. First of all we prove that an expression α · g(x) can be correctly
defined for given α ∈ Z and x ∈ u. Let α ≥ 0. A recursive prescription

Mn
x(0) = en (the zero element of (Gn,+n)),M

n
x(β + 1) =M

n
x(β) +n x

can be written by a set formula. By means of the axiom of induction we can easily
prove that there is the Sd-function Mn(−,−) : N ×Gn −→−→−→ Gn which fulfils this
prescription.
To be more precise, we shall write at least the relevant set formula (we shall omit

this step in the next similar proofs):

Mn = {[z, α, x]; z ∈ Gn&α ∈ N& x ∈ Gn&(∃∃∃ h)(Fnc (h)&h : α+1−→−→−→ Gn&

&h(0) = en&(∀∀∀ β ∈ α)(h(β + 1) = h(β) +n x)& z = h(α))}.

By means of induction, it is also easy to prove that for every m ≥ n it holds that

Mn(α,H
′

n(g(x))) = H
m
n (M

m(α,H
′

m(g(x))))

and therefore there is just one element y ∈ G such that

Hn(y) =M
n(α,H

′

n(g(x))).

We put α · g(x) = y. Let α < 0. Then we put α · g(x) = −((−α) · g(x)).



78 J.Guričan

Now let u = {x1, x2, . . . , xα} be a set ordering of the set u.
Denote Mn = {[z, α, x]; [z, α, x] ∈Mn ∨ [−z,−α, x] ∈Mn}. Mn is the extension

of Mn to Z×Gn. A recursive prescription

Sn(0) = en, S
n(β + 1) = Sn(β) +n M

n(f(xβ+1),H
′

n(g(xβ+1)))

can be written by a set formula and therefore there is the set function sn : α+1 −→−→−→
Gn which fulfils this prescription. Again it is easy to prove by means of induction
that for every m ≥ n, β ≤ α it holds that

Hmn (s
m(β)) = sn(β)

and therefore there is just one element y ∈ G such that for each n

Hn(y) = s
n(α).

We put Σ{f(x) · g(x); x ∈ u} = y.
The last thing we need to prove is that the above construction is indepen-

dent on the set ordering of the set u. Let us fix some ordering of u : u =
{x1, x2, . . . xβ , . . . xγ , . . . , xα}. We prove that if we change some two elements, i.e. if
we make some transposition, the sum will not change. So let u = {x1, x2, . . . xγ , . . .
xβ , . . . , xα} be another ordering of u. Let s

n be the function which we get from the
first ordering, let sn be the function which we get from the second one. By means
of induction it can be easily proved that

sn(δ) = sn(δ) if δ < β,

sn(δ) = sn(δ) +n M
n(f(xβ),H

′

n(g(xβ)))−n M
n(f(xγ),H

′

n(g(xγ))) if β ≤ δ < γ

sn(δ) = sn(δ) if γ ≤ δ ≤ α.

So sn(α) = sn(α) is the special case of these formulas.
Finally, for every two set orderings of u there is a set sequence of transpositions

such that the second ordering is the composition of the original one with these
transpositions in a given order. Thus, the desired independence is proved.
The second assertion can be now proved by induction. �

Let us make an agreement for summation through the empty set. If u = ∅, then
we put Σ{f(x) · g(x); x ∈ u} = e (the zero element of (G,+)).
And another agreement: let u ⊆ G, i.e. we can use the inclusion ι : u −→−→−→ G.

Let f : u −→−→−→ Z be a function. We shall write

Σ{f(x) · x; x ∈ u} instead of Σ{f(x) · ι(x); x ∈ u}.

Definition 1.7. Let (A,+) and (B,⊕) be commutative π-groups. Let H : A −→−→−→
B be a map. H is said to be a total homomorphism iff for each elementΣ{f(x)·x; x ∈
dom (f)} in (A,+) (here f is a function f : dom(f) −→−→−→ Z with dom(f) ⊆ A) it
holds that

H(Σ{f(x) · x; x ∈ dom (f)}) = Σ{f(x) ·H(x); x ∈ dom (f)}.

Clearly, if H is a homomorphism which is a restriction of some Sd-map H
′

, then
it is a total homomorphism.
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Theorem 1.8. Let (G,+) be a commutative π-group. Let X be a π-class and
F : X −→−→−→ G be such map which is a restriction of some Sd-map F to X. Then

there is a unique total homomorphism F
′

: F(X) −→−→−→ G such that for each x ∈ X

F
′

(gx) = F(x) (remember the note after 1.1).

Proof: Let f ∈ F(X), let u = dom (f), i.e. u ⊆ X. Then F ↾ u is a set map,
F ↾ u : u −→−→−→ G, f : u −→−→−→ Z. It follows from 1.6 that the expression Σ{f(x) ·
(F ↾ u)(x); x ∈ u} has a sense and it assigns a uniquely determined element y ∈ G.

We put F
′

(f) = y. After a simple analysis of the proof of 1.6, we can see that this
map is a total homomorphism. Moreover, for each x ∈ X it holds that

F
′

(gx) = F
′

({[1, x]}) = Σ{1 ·F(x); x ∈ {x}} = F(x)

�

Remark: The homomorphism F
′

is said to be a linear extension of the map F :
X −→−→−→ G to the free group freely generated by X.
We can prove a certain analogy of this theorem for an arbitrary class X, but in

this case we can not assert that F
′

is a total homomorphism. This is because if X
is not a π-class, then (F(X),⊕) need not be a commutative π-group.
Let X be a π-class. Then (F(X),⊕) is a commutative π-group. Let f ∈ F(X).

Then x ∈ dom (f)⇒⇒⇒ gx = {[1, x]} ∈ F(X) and it is clear that for α ∈ Z α · gx =
{[α, x]}. Then f = Σ{f(x) · gx; x ∈ dom(f)}.
There are some theorems which can be important from the set-theoretical point

of view.

Theorem 1.9. Let (G,+) be a commutative π-group which is an inverse limit
of an Sd-IS {(Gn,+n),Hmn ,m ≥ n} of groups such that at least one of the Sd-

extensions H
′

n of one projection Hn can be chosen as an injection. Then G and +
are revealed classes.

Proof: First of all let us note that if Hn is an injection, then according to Hn =
Hmn ◦ Hm, all Hm for m ≥ n are also injections. For our proof, it is enough to
prove the revealness of the operation +, then the revealness of G follows from the
equation x+ e = x.
Let x1, x2, . . . be a sequence of pairwise distinct elements of the operation +,

i.e. xi = [ai, bi, ai + bi]. Then for each n the sequence

{xni = [Hn(ai),Hn(bi),Hn(ai) +Hn(bi)]; i ∈ FN}

is a sequence in +n. Because +n is set-definable, there is its prolongation to {xnβ ;

β ∈ αn} such that for each β ∈ αn xnβ = [y
n
β , z

n
β , u

n
β ] ∈ +n, i.e. u

n
β = y

n
β +n z

n
β . And

according to the fact that for i ∈ FN,m ≥ n, it holds:

(∗) [Hmn (y
m
i ),H

m
n (z

m
i ),H

m
n (y

m
i +m zmi )] = [y

n
i , z

n
i , u

n
i ]

these equalities hold up to some infinite natural number. It means that there is
α ∈ N-FN such that:

(1) for each n {xnβ ; β ∈ α} is a set of elements of +n,

(2) equations of type (∗) hold for m ≥ n and each ι ∈ α.
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Now let n be the number for which H
′

n is an injection. Then {x
n
β ; β ∈ α} is

an infinite set and moreover, according to (1) and (2), H
′

n
−1′′ {xnβ ; β ∈ α} ⊆ + .

But because H
′

n is an Sd-map, H
′

n
−1′′{xnβ ; β ∈ α} is a set which contains all

x1, x2, . . . . �

Let us note that we do not know whether such (G,+) has to be a π-class or not.

(Because many of H
′

n need not be surjections.)
We can also notice that if we omit the assumption about injectivity of at least

one H
′

n, the proof could be repeated up to the assertion that some {x
n
β ; β ∈ α}

is an infinite set. In this case we can only state that there is some element of G
which seems to be a natural continuator (limit) of the sequence x1, x2, . . . .This
theorem also suggests that the assumption that there is an injective Sd-extension

of at least one projection H
′

n yields that for infinitely many Hn their Sd-extension
can be chosen to be injective. This fact can be really proved.

Theorem 1.10. Let {Gn,Hmn ,m ≥ n} be such Sd-IS of groups that there is n
such that for m ≥ n Hmn are isomorphisms. Then an inverse limit of this Sd-IS of
groups can be chosen to be an Sd-group. Moreover, if (G,+) is an inverse limit of

this Sd-IS of groups and for infinitely many n H
′

n is injective, then (G,+) is an
Sd-group.

Proof: Let x0, x1, . . . , xi ∈ Gi be such a sequence that for every k ≥ l Hkl (xk)
= xl. Then for n ≥ i it holds that xi = H

n
i (xn) and for i ≥ n it holds that

xi = (H
i
n)

−1(xn). It means that we can choose (Gn,+n) to be an inverse limit of
this Sd-IS of groups. To prove this, we put

Hk = (H
k
n)

−1, if k ≥ n,

and

Hk =H
n
k , if k < n.

Now let (G,+) be an inverse limit of this Sd-IS of groups and infinitely many

of H
′

n are injections. It follows from the above consideration that Hn secures

bijectivity between (G,+) and (Gn,+n). ByHn = H
′

n ↾ G and the set-definability

of H
′

n (without loss of generality, we can assume that H
′

n is injective) we have

G = {x; H
′

n(x) ∈ Gn} and hence G is an Sd-class. It is clear that also + is an
Sd-class. �

Theorem 1.11. Let {(Gn,+n),Hmn ,m ≥ n} be an Sd-IS of groups such that for
every m ≥ n,Hmn are injective. Suppose that there is an Sd-group (G,+) which is
its inverse limit. Then there is n such that for m ≥ n Hmn are isomorphisms.

Proof: Homomorphisms Hn, required by 1.2, are Sd-classes (a restriction of an
Sd-map to an Sd-class be an Sd-map) in this case.
First we prove that if one Hn is an isomorphism, then all Hm for m ≥ n are

isomorphisms, too. Indeed, if Hm is not injective, then neither Hn = H
m
n ◦ Hm
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is, which is a contradiction. For next, suppose that Hm is not surjective, i.e.
there is x ∈ Gm such that for no y ∈ G it holds that Hm(y) = x. But because
Hn is surjective, there is z ∈ G such that Hn(z) = Hmn (x). Then according to
Hn = H

m
n ◦ Hm it holds that H

m
n (Hm(z)) = H

m
n (x). But Hm(z) 6= x and it is

a contradiction with the injectivity of Hmn .
Now we shall prove that at least one of Hn is an isomorphism. We shall do it by

contradiction. There are three possibilities there:

(a) almost all of Hn are not injective
(b) almost all of Hn are not surjective
(c) infinitely many of Hn are not injective, infinitely many of Hn are not sur-
jective

(“almost all” means that “there is m such that for every n ≥ m ”).
The case (c) follows from each of (a) and (b), because if (G,+) is an inverse limit
of given Sd-IS. then it is an inverse limit of any of its cofinal “subsystem”.
(a) We can assume that all Hn are not injective. It means that for every n there
are xn 6= yn ∈ G such that Hn(xn) = Hn(yn). If we prolong this statement, we
can see that there are elements x, y ∈ G, x 6= y (G is an Sd-class!) such that for
every n, Hn(x) = Hn(y). But this is a contradiction, because in this case for the
sequence x0 = H0(x), x1 = H1(x), . . . there are two elements x, y ∈ G such that
Hn(x) = xn = Hn(y) for each n.
(b) Let all Hn be not surjective. It means that for each n there exists an element
xn ∈ Gn which is not in the image of Hn. By means of this, we get the following
sequences:

H00(x0)

H10(x1), H11(x1)

H20(x2), H21(x2), H22(x2)
...

...
...

Hn0 (xn), H
n
1 (xn), H

n
2 (xn), . . . , Hnn(xn)

...
...

...
...

Of course, as xn is not in the image of Hn, none of the elements H
n
i (xn) is in the

image of Hi (this follows from injectivity of H
n
i and the equality Hi = H

n
i ◦Hn).

After prolongation of a given triangle up to some row (with superscripts) α ∈ N-FN,
we obtain a row β ∈ α-FN, in which (for µ ≥ κ ≥ ν) it holds that

Hµν (H
β
µ(xβ)) = H

β
ν (xβ)

and none of H
β
µ(xβ) is in the image of Hµ and each of H

β
µ(xβ) is an element of Gµ.

But this means that for the sequence Hβ0 (xβ),H
β
1 (xβ), . . . ,H

β
n(xβ), . . . there is

no element x ∈ G such that for each n it holds that Hn(x) = xn. And this is
a contradiction with 1.2. �

Theorem 1.12 (P. Zlatoš). Let {(Gn,+n),Hmn ,m ≥ n} be an Sd-IS of groups
such that for every m ≥ n Hmn are injective. Then its inverse limit (G,+) can be
chosen in such a way that G and + are π-classes.
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Proof: Let us denote G =
⋂

{H
n′′

0 Gn; n ∈ FN}. It is clear that G is a π-class

and moreover, it is a subgroup of G0. Therefore + = (+0) ∩G
3 is also a π-class

and (G,+) is a group. We state that this is an inverse limit of the given Sd-IS.

To prove this, it is enough to take H
′

n = (H
n
0 )

−1 (this is correct because each

Hn0 is an injection). It is clear from the definition of G and + that each H
′

n is
a homomorphism which maps G into Gn and also that all formulas required by 1.2
hold. �

Remark: As it was mentioned in the proof of the Theorem 1.11, sentences “for
all” and “for infinitely many” (naturally used in the right situation) have the same
consequences (see e.g the formulation of 1.10–1.12).
Also it is clear that 1.9–1.12 can be reformulated for all Sd-IS’s (without require-

ments on its algebraic structure). Perhaps they could throw a new insight to the
well-known facts about π-classes (each inclusion is an injection).

2. Homomorphisms of Sd-IS.

In this section we are going to develop the technique being later useful at least
for the comparison of our homology theory with some classical ones (Čech’s and
Vietoris’s).

Theorem 2.1. Let {Gn,Hmn ,m ≥ n} be an Sd-IS of groups. Then there is its
inverse limit.

Proof: We use usual construction of the inverse limit. According to the axiom
of prolongation, for each sequence x0, x1, . . . such that if m ≥ n, then xn ∈ Gn
and xn = H

m
n (xm), there is a function g : α −→−→−→ V (α ∈ N) such that g(n) = xn.

According to the axiom of choice, we can consider a class G such that for every
sequence described above there is just one function of the kind described, and
conversely.
Now let f ,g ∈ G. Then the sequence f(0) +0 g(0), f(1) +1 g(1), . . . , f(n) +n

g(n), . . . has all required properties and therefore there is just one h ∈ G such that
h(n) ∈ G such that h(n) = f(n)+n g(n). We put f + g = h. It is clear that (G,+)

is the group. For each n let H
′

n = {[x, y]; Fnc (y)& x = y(n)}. It is clear that

H
′

n is set-definable and that H
′

n ↾ G is the homomorphism H
′

n ↾ G : (G,+) −→−→−→

(Gn,+n). Let g ∈ G. As for Hn = H
′

n ↾ G it holds that Hn(g) = g(n) and
Hm(g) = g(m) and for m ≥ n Hmn (g(m)) = g(n), we have Hn = H

m
n ◦Hm. �

Theorem 2.2. Let {Gn,Hmn ,m ≥ n} be an Sd-IS. Let for each n,Gn be the
nonempty class. Then its inverse limit is nonempty.

Proof: We can prolong the Sd-IS {Gn,Hmn ,m ≥ n} to {Gν ,H
µ
ν , µ ≥ ν} where

(a) and (b) of 1.2 are fulfilled for all µ, ν, κ ∈ α ∈ N-FN and also for ν ∈ α Gν 6= ∅
(for appropriate α). Let x ∈ Gα−1. The sequence

Hα−10 (x),Hα−11 (x),Hα−12 (x), . . . ,Hα−1n (x), . . .

fulfils the condition (2) of 1.2 and therefore the inverse limit is nonempty. �

Agreement: Instead of the Sd-IS {Gn,Hmn ,m ≥ n}, we shall write the Sd-IS (G,H).
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Definition 2.3. Let (X,P), (Y,Q) be two Sd-IS. A map Φ : (X,P) −→−→−→ (Y,Q)
consists of an order preserving function ϕ : FN−→−→−→ FN, and for each n, an Sd-map
ϕn : Xϕ(n) −→−→−→ Yn such that for m ≥ n the following diagram

Xϕ(n)

P
ϕ(m)
ϕ(n)

←−−−− Xϕ(m)




y

ϕn





y

ϕm

Yn
Qm

n←−−−− Ym

is commutative. If both (X,P) and (Y,Q) are Sd-IS of groups, we require in
addition ϕn to be homomorphisms.
Let Φ : (X,P) −→−→−→ (Y,Q) be a map between two Sd-IS. Let X∞ with the maps

{Pn; n ∈ FN} and Y∞ with the maps {Qn; n ∈ FN} be the inverse limits of these
Sd-IS. Then we can define a limit map of Φ, in sign ϕ∞ (or, if necessary, Φ∞) as
follows:
For x ∈ X∞, put yn = ϕn(Pϕ(n)(x)). For m ≥ n, it follows from the above

commutative diagram that

yn = ϕn(P
ϕ(m)
ϕ(n)

◦Pϕ(m)(x)) = Q
m
n (ϕm(Pϕ(m)(x))) = Q

m
n (ym).

Therefore for the sequence y0, y1, . . . there is just one y ∈ Y∞ such that yn = Qn(y).
We put ϕ∞(x) = y.
Again it is clear that if (X,P) and (Y,Q) are two Sd-IS of groups, then the limit

ϕ∞ of the map Φ : (X,P) −→−→−→ (Y,Q) is a homomorphism.
Let Φ : (X,P) −→−→−→ (Y,Q) and Ψ : (Y,Q) −→−→−→ (Z,T) be two maps of the Sd-IS,

their composition Ψ◦Φ consists of the ψ◦ϕ : FN−→−→−→ FN and the maps ψn ◦ϕψ(n).

Lemma 2.4. Let Φ : (X,P) −→−→−→ (Y,Q) be a map of two Sd-IS, n ∈ FN. Then
commutativity holds in the diagram

Xϕ(n)
Pϕ(n)
←−−−− X∞





y

ϕn





y

ϕ∞

Yn
Qn

←−−−− Y∞ .

Proof: This follows immediately from the definition. �

Lemma 2.5. Let Φ : (X,P) −→−→−→ (Y,Q) and Ψ : (Y,Q) −→−→−→ (Z,T) be two maps
of the Sd-IS. Then (Ψ ◦ Φ)∞ = ψ∞ ◦ ϕ∞.

Proof: This follows readily from the fact that ϕ∞(x) is defined by mapping the
“coordinates” (i.e. Pϕ(n)(x)) of x by means of the coordinate functions ϕn and the
fact that the composition Ψ ◦ Φ was defined by composing “coordinate” functions.

�
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Definition 2.6. An Sd-chain of groups is a codable class C = {Gν ,Hν} where
(Gν ,+ν) are Sd-groups and Hν : (Gν ,+ν)−→−→−→ (Gν−1,+ν−1) are homomorphisms
which are Sd-maps. Here ν runs over N.

If we omit the requirements of set-definability in the previous definition then we
talk about a chain of groups.

Definition 2.7. An inverse system of Sd-chains of groups (C,Π) is a function

which attaches to each n ∈ FN an Sd-chain of groups Ck = {
kGν ,

kHν} and for
every k ≥ l and Sd-homomorphism Πkl : Ck −→−→−→ Cl of these Sd-chains of groups

(it means that Πkl = {
νΠkl ;

νΠkl :
kGν −→−→−→ lGν & ν ∈ N} and all νΠkl are Sd-maps

and homomorphisms and lHν ◦ νΠkl =
ν−1Πkl ◦

kHν) such that

(a) for each k, Πkk is the appropriate identity (i.e. each
νΠkk is identity),

(b) for k ≥ l ≥ m, Πkm = Π
l
m ◦Π

k
l (again coordinatewise as in (a)).

Then, for any fixed ν {nGν , νΠmn ,m ≥ n} form an Sd-IS of groups. Its limit
group is denoted by ∞Gν . Again for fixed ν, the homomorphism {nHν , n ∈ FN}
together with the identity map of FN form a map Hν : {nGν , νΠmn ,m ≥ n} −→−→−→
{nGν−1,

ν−1Πmn ,m ≥ n}. The limit ofH
ν is denoted by ∞Hν :

∞Gν −→−→−→ ∞Gν−1 .
The chain of groups (which need not be Sd-groups) C∞ = {∞Gν ,∞Hν , ν} so
obtained is called the inverse limit of the system (C,Π).

Definition 2.8. A chain of groups {Gν ,Hν} is said to be exact iff for each ν
Im Hν+1 = Ker Hν .

Theorem 2.9. Let (C,Π) be an inverse system of Sd-chains of groups such that
each Ck is an exact chain of groups. Then C∞ is an exact chain of groups.

Proof: The composition Hν−1 ◦Hν (mapping {nGν , νΠmn ,m ≥ n} into {
nGν−2,

ν−2Πmn ,m ≥ n}) consists of the identity map of FN and the maps
nHν−1◦

nHν = 0.
Hence the inverse limit of Hν−1 ◦ Hν is zero. By 2.5, this is the composition
∞Hν−1 ◦

∞Hν . So Im
∞Hν+1 ⊆ Ker

∞Hν .
Conversely, let g ∈ ∞Gν and

∞Hν(g) = 0. Let {νΠn, n ∈ FN} be the projec-

tions νΠn :
∞Gν −→−→−→ nGν and {νΠ

′

n, n ∈ FN} its Sd-extensions, as it is required

in 1.2. Let gn =
νΠ

′

n(g) be the “coordinate” of g in
nGν . Since

∞Hν(g) = 0, it

follows nHν(gn) = 0 for each n. Since Cn is exact, Xn =
nH−1

ν+1(gn) is a nonempty

Sd-class which is the subclass of nGν+1 . From the relation
lHν+1 ◦

ν+1Πkl =
νΠkl ◦

kHν+1 it follows that
ν+1Πkl mapsXk intoXl (k ≥ l). Indeed, let x ∈ Xk. It means

that kHν+1(x) = gk. Hence
lHν+1 ◦

ν+1Πkl (x) =
νΠkl ◦

kHν+1(x) =
νΠkl (gk) = gl,

so that ν+1Πkl (x) ∈ Xl. According to this fact it follows that (X,
ν+1Π ↾ X) is an

Sd-IS which has by 2.2 a nonempty inverse limit, say X∞. It is easily seen that
X∞ ⊆ ∞Gν+1 and

∞Hν+1 maps X∞ into {g}. �

Definition 2.10. Let (G,Π) be Sd-IS of groups. Suppose that for each n, Hn
is a subgroup of Gn which is an Sd-group, and suppose that for each k ≥ l, Πkl
maps Hk into Hl. Let P

k
l : Hk −→−→−→ Hl be a map defined by Π

k
l . Clearly (H, P )

is an Sd-IS of groups. It is called a system of Sd-subgroups of (G,Π). For each n

define Kn = Gn/Hn, and for each k ≥ l, define Σkl : Kk −→−→−→ Kl to be the map
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induced by Πkl . Then (K,Σ) is Sd-IS of groups called the system of factor groups
of (G,Π) by (H, P ). The inclusion map Φ : (H, P ) −→−→−→ (G,Π) and the natural
map Ψ : (G,Π) −→−→−→ (K,Σ) are defined in the obvious way. According to the
definition, each element of the limit group H∞ of (H, P ) is an element of G∞, and
ϕ∞ : H∞ −→−→−→ G∞ is the inclusion.

Theorem 2.11. Let (G,Π), (H, P ) and (K,Σ) be Sd-IS of groups, subgroups and
factor groups, respectively. Then ψ∞ : G∞ −→−→−→ K∞ induces an isomorphism
G∞ /H∞

∼=K∞ .

Proof: For each n, let adjoin an infinite class (indexed by N) of trivial groups and
maps to

Hn
ϕn

−−→ Gn
ψn

−−→ Kn

so as to obtain an Sd-chain of groups Cn

. . . −→ 0 −→ Hn
ϕn

−−→ Gn
ψn

−−→ Kn −→ 0 −→ . . .

It is clear thatCn is an exact Sd-chain of groups. For each k ≥ l, adjoin to P kl ,Π
k
l

and Σkl , an infinite class of trivial maps so as to obtain a map T
k
l : Ck −→−→−→ Cl.

Then (C, T ) is an inverse system of Sd-chains of groups which are all exact. It is
also clear that the limit chain of groups C∞ consists of

. . . −→ 0 −→ H∞

ϕ∞

−−→ G∞

ψ∞

−−→ K∞ −→ 0 −→ . . .

By 2.9 C∞ is an exact chain of groups. It follows that ψ∞ must be onto and its
kernel is H∞ . �

Later, the following corollary will be essential for us.

Corollary 2.12. Let for each n, Gn+1 be a subgroup of Gn, let Π
k
l : Gk −→−→−→ Gl

be the inclusion restricted to Gk (in this case it is a homomorphism) and let (G,Π)
be Sd-IS of groups. Let (H, P ) be a system of Sd-subgroups of (G,Π) and let (K,Σ)
be a system of factor groups of (G,Π) by (H, P ). Then

(

⋂

{Gn; n ∈ FN}
)

/
(

⋂

{Hn; n ∈ FN}
)

∼= K∞ .

We state that
⋂

{Gn; n ∈ FN} ∼= G∞ and also
⋂

{Hn; n ∈ FN} ∼= H∞ .

For x ∈ G∞, let {Πn; n ∈ FN} be the projections of G∞ into Gn. As Π
k
l is

an inclusion and according to the definition we have Πl(x) = Π
k
l ◦ Πk(x), hence

Πk(x) = Πl(x) and, moreover, Πn(x) is the element of
⋂

{Gn; n ∈ FN}. Therefore
the map ϕ : G∞ −→−→−→

⋂

{Gn; n ∈ FN} defined by the equality ϕ(x) = Π0(x) is
a bijection and also a homomorphism. It is also the prof of

⋂

{Hn; n ∈ FN} ∼= H∞ .
Now according to 2.11, we have

(

⋂

{Gn; n ∈ FN}
)

/
(

⋂

{Hn; n ∈ FN}
)

∼=G∞ H∞
∼= K∞ .

The part of this paragraph beginning by 2.3 up to 2.11 is a relevant reformulation
of some definitions and results of [E-S, Chapter VIII].
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3. Tensor product.

This part is very important for our construction of a homology theory, because
it will allow us to concentrate our effort to Z as a group of coefficients and then to
transfer many results to some other groups of coefficients.

Theorem 3.1. Let (A,+) and (B,⊕) be commutative π-groups. Then (A × B,
+×⊕) (the operation +×⊕ on A×B is defined coordinatewise) is a commutative
π-group.

Proof: Let{(An,+n),Hmn ,m ≥ n} and {(Bn,⊕n), Hm
n ,m ≥ n} be two cor-

responding Sd-IS of groups, let Hn,H
′

n, H n, H
′

n be the corresponding projec-
tions. Take a codable class {(An × Bn,+n × ⊕n),H

m
n × Hm

n ,m ≥ n} where
Hmn × Hm

n : (Am × Bm,+m × ⊕m) −→−→−→ (An × Bn,+n × ⊕n) are defined coor-
dinatewise, i.e.

Hmn ×H
m
n ([a, b]) = [H

m
n (a), H

m
n (b)].

All the classes An ×Bn,+n × ⊕n,Hmn ×H
m
n are set-definable, hence our codable

class is an Sd-IS of groups.
The maps Hn × H n : A × B −→−→−→ An × Bn are homomorphisms and they are

the restrictions of the Sd-maps H
′

n ×H
′

n and, moreover, they satisfy all required
equations.
Let [a0, b0], [a1, b1], . . . be such a sequence that [an, bn] ∈ An×Bn and form ≥ n,

[an, bn] = H
m
n ×H

m
n ([am, bm]). Hence a0, a1, . . . and b0, b1, . . . are such sequences

that for m ≥ n, an = H
m
n (am) and bn = Hm

n (bm). Therefore there is just one
a ∈ A and just one b ∈ B such that Hn(a) = an and H n(b) = bn. So that
Hmn ×H

m
n ([a,b]) = [an, bn] and there is no other pair [a

′,b′] with this property.
So A×B is an inverse limit of {(An ×Bn,+n ×⊕n),H

m
n ×H

m
n ,m ≥ n}. �

Remark: If some of the pairs (Hmn , H
m
n ) and (H

′

n, H
′

n) are the pairs of injective

maps, then Hmn ×H
m
n and H

′

n ×H
′

n would be so, too.

Definition 3.2. Let (A,+) be a commutative π-group such that there is an Sd-
IS of groups {(An,+),Hmn ,m ≥ n} such that (A,+) is its inverse limit and all

H
′

n are injective. Then we shall call (A,+) a commutative π-group with injective
projections (a commutative π-group with i.p. in short) and {(An,+),H

m
n ,m ≥ n}

its injective representation, H
′

n injective Sd-projections.

Theorem 3.3. Let (A,+) be a commutative π-group with i.p. Then F(A) is
a commutative π-group with i.p.

Proof: For (A,+) take an Sd-IS as in 3.1. Take a codable class {(F(An),⊕n),
Pmn ,m ≥ n} where P

m
n is defined for m ≥ n as follows:

Let f ∈ F(Am), i.e. f = Σ{f(x) · gx; x ∈ dom (f)}. Then we put

Pmn (f) = Σ{f(x) · gHm
n (x)
; x ∈ dom (f)}.

Because Hmn ↾ dom(f) : dom(f) −→−→−→ An is a set function, Pmn (f) is a well defined
element of F(An), Pmn is a homomorphism and because F(Am) and F(An) are
Sd-groups, Pmn is an Sd-map.
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An easy computation yields to the fact that for m ≥ k ≥ n it holds Pmn =

Pkn ◦P
m
k . Hence our system is an Sd-IS of groups.

The maps P
′

n are defined in a similar way as P
m
n :

Let X = dom(H
′

n), u ⊆ X and f : u−→−→−→ Z− {0}. Then

P
′

n(f) = Σ{f(x) · gH′

n
(x); x ∈ dom (f)}.

It is clear that P
′

n is an injective Sd-map and P
′

n ↾ F(A) : F(A) −→−→−→ F(An) is
a homomorphism.
Now let f0, f1, . . . be such a sequence that fn ∈ F(An) and, for m ≥ n, P

m
n (fm)

= fn. Let x ∈ dom(fn). According to the definition of Pmn , form ≥ n there must be
at least one element y ∈ dom (fm) such that Hmn (y) = x. We state that there is just
one such element. On the contrary, let y′ be a second element with these properties.
Now for k ≥ m there are elements xk, andx

′

k such thatH
k
m(xk) = y,H

k
m(x

′

k) = y
′ in

dom (fk) and therefore the sequences H
m
0 (y),H

m
1 (y), . . . , x, . . . , y, xm+1, xm+2, . . .

and Hm0 (y
′),Hm1 (y

′), . . . , x, . . . , y′, x′m+1, x
′

m+2, . . . are distinct and therefore there
are the distinct elements a,b ∈ A which correspond to these two sequences by the
projections Hn.
These considerations yield the function

f = Σ{f0(x) · gH′

0
−1(x)

; x ∈ dom (f0)} ∈ F(A).

We have P
′

n(f) = fn. So F(A) is an inverse limit of Sd-IS of groups {(F(An),⊕n),
Pmn ,m ≥ n}. �

If (G,⊕) is a commutative π-group with i.p., then according to 1.8, G and ⊕ are
revealed classes. Combining 3.1 and 3.3 yields

Corollary 3.4. Let (A,+) and (B,⊕) be commutative π-groups with i.p. Then
F(A × B) is a commutative π-group with i.p. which is an inverse limit of
{F(An ×Bn),Pmn × P

m
n ,m ≥ n}.

(Pmn is defined similarly as P
m
n in the proof of 3.3, but in terms of H

m
n instead of

Hmn .)

Definition 3.5. Let (A,+) and (B,⊞) be commutative groups. Let a ∈ A,b ∈
B,a = a1 + a2,b = b1 ⊞ b2. Let R(A,B) be the minimal symmetric relation on
F(A×B) such that it holds that

[a,b] R(A,B) ([a1,b]⊕ [a2,b]) and [a,b] R(A,B) ([a,b1]⊕ [a,b2]).

Now we put

xR(A,B)y ≡ (∃∃∃ α ∈ N) (∃∃∃ f) (Fnc (f)& dom (f) = α+1& rng (f) ⊆ F(A×B)&

& f(0) = x& f(α) = y&(∀∀∀ β ∈ α) (f(β)R(A,B)f(β + 1))).

The relation R(A,B) is an equivalence relation on F(A,B). If A,B are set-
definable groups, then also R(A,B) is a set-definable relation. Now we put

A⊗B = F(A,B)/R(A,B)

and we call A⊗B the tensor product of A and B.
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Theorem 3.6. Let A and B be commutative π-groups with i.p. Let a,b ∈
F(A × B),a = Σ{f(aj , a j)[aj , a j ]; j ∈ J},b = Σ{g(bk, b k)[bk, b k]; k ∈ K}. We
put

aD(A,B)b ≡(∀∀∀ j ∈ J)(∀∀∀ k ∈ K)(∃∃∃ afj , a
s
j , a

f
j , a

s
j , b

f
k
, bsk, b

f
k
, bsk)

(((

asj ⊆ A& Fnc (a
f
j )& a

f
j : a

s
j −→−→−→ Z− {0}& . . . & bsk ⊆ B&

& Fnc (b
f
k)& b

f
k : b

s
k −→−→−→ Z− {0}& aj = Σ{a

f
j (x) · x; x ∈ a

s
j}&

& . . . & bk = Σ{b
f
k
(x) · x; x ∈ bsk}&

&Σ{Σ{f(aj, a j) · a
f
j (y)[x, y]; [x, y] ∈ a

s
j × a

s
j}; j ∈ J} =

= Σ{Σ{g(bk, b k) · b
f
k(x) · b

f
k(y)[x, y]; [x, y] ∈ b

s
k × b

s
k}; k ∈ K}

)))

.

(The meaning of this formula is similar to that one in the classical definition of the
tensor product. The unique difference is that we use an operation of the infinite set
summation in F(A×B) instead of a binary operation in this formula.)
If aD(A,B)b, then aR(A,B)b.

Proof: According to 3.4 F(A×B) is a commutative π-group with i.p. Let F
′

0 be
its 0-th injective Sd-projection. Let x ⊆ A × B and let f : x −→−→−→ Z − {0}. Then
according to the proof of 1.6 we can see that

Σ{f(y) · y; y ∈ x} = F
′

0
−1(Σ{f(y) ·F

′

0(y); y ∈ x})

because F
′

0 is an injection. Hence the infinite summation in F(A × B) described
in 1.6 is the restriction of an Sd-operation. The rest of the proof can be made by
means of induction. �

Example 3.7. Z⊗ Z ∼= Z.

Proof: Let f ∈ F(Z × Z). Then f = Σ{f(γ)[αγ , βγ ]; γ ∈ α} for an appropriate
α ∈ N. Then f R(Z,Z)Σ{[1, f(γ) · αγ · βγ ]; γ ∈ α}.
Now we shall define H : Z ⊗ Z −→−→−→ Z as follows. Let f be as above. Then put

H([f ]) = Σ{f(γ) ·αγ · βγ ; γ ∈ α}. (Here [f ] assigns the equivalence class in R(Z,Z)
relevant to f .)
Obviously this map is surjective and it preserves the operation. Also it is clear

that it is correctly defined, injective and it is a homomorphism. �

Next, let (A,+) and (B,⊕) be commutative π-groups with i.p. Let {(An,+n),
Hmn ,m ≥ n} and {(Bn,⊕n), H

m
n ,m ≥ n} respectively be their injective represen-

tation and let H
′

n and H
′

n respectively be injective Sd-projections.
Take a codable class {An ⊗ Bn,Qmn ,m ≥ n} where Qmn are defined for m ≥ n

as follows:
Let f ∈ F(Am ×Bm). Then

Qmn ([f ]R(Am,Bm)) = [P
m
n × P

m
n (f)]R(An,Bn).
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As F(A×Bn),P
m
n , P

m
n , R(An,Bn) are set-definable classes, thenQ

m
n are Sd-classes,

too.
It is clear that Qmn are correctly defined maps and homomorphisms. Also it is

clear that for m ≥ k ≥ n Qmn = Q
k
n ◦Q

m
k . Hence {An ⊗ Bn,Q

m
n ,m ≥ n} is an

Sd-IS of groups.

Let us consider the following map Q
′

n:

Q
′

n(f) = [P
′

n × P
′

n(f)]R(An,Bn).

Each of Q
′

n is an Sd-map and Qn = Q
′

n ↾ F(A × B) are homorphisms satisfying
Qn = Q

m
n ◦Qm and stable underR(A,B) (i.e. if f R(A,B)g, thenQn(f) = Qn(g)).

Instead of R(An,Bn) and R(A,B) we shall write Rn and R, respectively.
Let [f0]R0, , [f1]R1, . . . be such a sequence that Q

m
n ([fm]Rm) = [fn]Rn. First of

all we prove that there is f ∈ F(A×B) such that Qn(f) = [fn]Rn.
For we can prolong the sequence f0, f1, . . . to f0, f1, . . . , fα, α ∈ N-FN which is

a set. For each n it holds that

[f0]R0 = Q
n
0 ([fn]Rn), [f1]R1 = Q

n
1 ([fn]Rn), . . . , [fn−1]Rn−1 =

= Qn−1([fn]Rn), [fn]Rn = Q
n
n([fn]Rn).

We can also prolong all the countable codable systems which could be prolonged—
({An; n ∈ FN}, {Bn; n ∈ FN}, {Hmn ; m ≥ n, m, n ∈ FN}, {H

m
n ; m ≥ n, m, n ∈

FN}, {H
′

n; n ∈ FN}, {H
′

n; n ∈ FN}—and at the same time also {P
m
n ; m ≥

n}, {Pmn ; m ≥ n}, {Qmn ; m ≥ n}, {P
′

n; n ∈ FN}, {P
′

n; n ∈ FN}, {Q
′

n; n ∈
FN}) to the appropriate Sd∗ systems which fulfil all required properties—appropriate
maps are identities, appropriate are injections, they fulfil equations of the kind (b)
of 1.2, etc.—up to some infinite α. By this procedure, we can obtain an infinite
β ∈ α such that

[f0]R0 = Q
β
0 ([fβ ]Rβ), . . . , [fn]Rn = Q

β
n([fβ ]Rβ), . . . , [fβ ]Rβ = Q

β
β
([fβ ]Rβ).

We have fβ ∈ F(Aβ × Bβ). The sequence P
β
0 × P

β
0(fβ),P

β
1 × P

β
1(fβ), . . . is such

that Pmn × P
m
n (P

β
m × P

β
m(fβ)) = P

β
n × P

β
n(fβ) and hence there is f ∈ F(A × B)

which corresponds to this sequence by projections. So we have

P
′

m × P
′

m(f) = P
β
m × P

β
m(fβ) and hence

Q
′

m(f) = Q
β
m([fβ ]Rβ) = [fm]Rm (for every m).

In this moment, we can represent this result, as {Qn, n ∈ FN} is a “map” onto the
Sd-IS {An ⊕ Bn,Qmn ,m ≥ n} and that it is a “homomorphism”. Later, we shall
give its more precise and correct representation.
Moreover, this “map” is injective in the following sense:

not (f R g)⇒⇒⇒ (∃∃∃ n ∈ FN) (Qn(f) 6= Qn(g).
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For let f ,g ∈ F(A × B) be such that (∀∀∀ n)(Q
′

n(f) = Q
′

n(g)). Let hn : αn +

1 −→−→−→ F(An × Bn) be a function which satisfies hn(0) = P
′

n × P
′

n(f),hn(αn) =

P
′

n × P
′

n(g) and (∀∀∀ β ∈ αn)(hn(β)Rn hn(β + 1)). Let us prolong this sequence
and all what is necessary. We get γ ∈ N-FN such that hγ : αγ +1−→−→−→ F(Aγ ×Bγ)

is a function which fulfils hγ(0) = P
′

γ × P
′

γ(f),hγ(αγ) = P
′

γ × P
′

γ(g) and (∀∀∀ β ∈
αγ)(hγ(β)Rγ hγ(β + 1)).
Now we can proceed in a similar way as in previous considerations. Put a =

{x; (∃∃∃ β ∈ αγ + 1)(x ∈ dom (hγ(β)), or x is necessary to secure some of the
relations hγ(β)Rγhγ(β + 1)}. This a is a set, because Rγ is an Sd∗ class. Let

x ∈ a. Then h = (H
′

0 × H
′

0)
−1(Hγ0 × H

γ
0)(x) ∈ A × B is uniquely determined,

because of injectivity of H
′

n ×H
′

n for each n. Next, putting

a = (H
′

0 ×H
′

0)
−1′′H

γ
0 ×H

γ′′
0 a, we obtain that

a = (H
′

n ×H
′

n)
−1′′Hγn ×H

γ′′
n a for each n.

Therefore there is ν ∈ γ-FN such that

a = (H
′

ν ×H
′

ν)
−1′′Hγν ×H

γ′′
ν a

and hence the function h ν : αγ + 1 −→−→−→ F(Aν ×Bν) defined by

h ν(β) = P
γ
ν × P

γ
ν(hγ(β))

fulfils h ν(0) = P
′

ν × P
′

ν(f), h ν(αγ) = P
′

ν × P
′

ν(g) and (∀∀∀ β ∈ αγ)(h ν(β)Rν
h ν(β + 1)). But as we can invert the set H

γ
ν × H

γ′′
ν a to a, we can invert the all

function h ν and also all what is necessary to secure the relations h ν(β)Rνh ν(β+1).
By means of this, we obtain h : αγ+1 −→−→−→ F(A×B) such that h(0) = f ,h(αγ) = g
and (∀∀∀ β ∈ αγ)(h(β)Rh(β + 1)). This function h secures that f Rg.
According to the axiom of choice, we can choose a selector from the relation R

on the class F(A × B) (i.e. we choose one function from each class of the equiv-
alence R). Denote this selector by G. The class G can be enriched by the group
structure induced from F(A×B) and R. (this means that in fact G is (isomorphic
to) F(A×B)/R or that G = A⊗B.)
The above considerations yield

Theorem 3.8. Let (A,+) and (B,⊕) be commutative π-groups with i.p. Then G
is an inverse limit of the Sd-IS of groups {An ⊗ Bn,Qmn ,m ≥ n} and hence it is
a commutative π-group.

Proof: The required projections and their extensions are induced by Qn and Q
′

n

from the above considerations. �

Example 3.9. Let G be a commutative π-group with i.p. Then Z⊗G ∼=G.

Proof: This fact is a special case of the next example. �
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Example 3.10. Let G be a commutative π-group with i.p., let X be a π-class.
Put

GX = {Fnc (f)& dom(f) = u ⊆ X& f : u−→−→−→ G-{0}}

together with the operation induced from the groupG in the same way as it is done
in 1.1. Then F(X)⊗G ∼= GX.

Proof: According to the assumptions, the group F(F(X)×G) is a commutative
π-group. Therefore, if f ∈ F(F(X) × G), then there are lγ ∈ F(X),gγ ∈ G
such that f = Σ{f(γ) · [lγ , gγ ]; γ ∈ ε}. The universal class V can be enumerated
by an Sd-bijection by N,V = {x0, x1, . . . }. Because lγ ∈ F(X), we can write
lγ = Σ{β

γ
δ
· xδ ; δ ∈ vγ}. Here vγ is an appropriate subset of N.

Instead of R(F(X),G) we shall write ≡. Then we have

f ≡Σ{f(γ) · [Σ{βγ
δ
· xδ ; δ ∈ vγ}, gγ]; γ ∈ ε} ≡

≡Σ{f(γ) · (Σ{βγ
δ
· [xδ , gγ ]; δ ∈ vγ}); γ ∈ ε} ≡

≡Σ{[xδ,Σ{f(γ) · β
γ
δ
· gγ ; γ ∈ ε}]; δ ∈ ∪{vγ ; γ ∈ ε}}.

The last relation is fulfilled, if the element

F = Σ{[xδ,Σ{f(γ) · β
γ
δ
· gγ ; γ ∈ ε}]; δ ∈ ∪{vγ ; γ ∈ ε}}

is correct, i.e. if it is an element of F(F(X) ×G). For this, it is enough to show
that {[xδ,Σ{f(γ) · β

γ
δ
· gγ ; γ ∈ ε}]; δ ∈ ∪{vγ ; γ ∈ ε}} is a set. (Indeed, we have

h : u −→−→−→ Z, the constant function h(x) = 1, so that if the domain of h is a set,
then h is also a set, hence the assumptions of 1.6 are fulfilled.)
So we must prove that {[xδ,Σ{f(γ) · β

γ
δ
· gγ ; γ ∈ ε}]; δ ∈ ∪{vγ ; γ ∈ ε}} is a set.

Let H
′

n be the injective Sd-extension of the projection of Hn : G−→−→−→ Gn. Then

Σ{f(γ) · βγ
δ
· gγ ; γ ∈ ε} =H

′

n
−1(Σ{f(γ) · βγ

δ
·H

′

n(gγ); γ ∈ ε}) and therefore

{[xδ,Σ{f(γ) · β
γ
δ
· gγ ; γ ∈ ε}]; δ ∈ ∪{vγ ; γ ∈ ε}} =

= {[xδ,H
′

n
−1(Σ{f(γ) · βγ

δ
·H

′

n(gγ); γ ∈ ε})]; δ ∈ ∪{vγ ; γ ∈ ε}}

is an Sd-class, its domain is a set. Hence this class is a set as well.
Now we can define a mapH : F(X)⊗G−→−→−→ GX as follows: (Sign [f ] has a similar

meaning as in 3.7)

H([f ]) = {[Σ{f(γ) · βγ
δ
· gγ ; γ ∈ ε}, xδ]; δ ∈ ∪{vγ ; γ ∈ ε}&

&Σ{f(γ) · βγ
δ
· gγ ; γ ∈ ε} 6= 0}.

According to the assumption that G is a commutative π-group with i.p., all pro-

jections Hn can be extended by some injective Sd-map H
′

n. As we have seen, the
(infinite set) summation in G can be made by means of this Sd-map. Therefore

H([f ]) is really an element ofGX. The surjectivity ofH is trivial and we can also see
that the relation ≡ is chosen just in such a way that this map is a homomorphism,
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correctly defined (i.e. this definition is independent on the choice of an element
of [f ]), and injective. �

Now let us consider H−1 (the inverse of H from the above proof). This is an
effective selector from the relation≡ on the class F(F(X)×G), which is a restriction
of some Sd-class. This means that H−1 (and also H) is a total homomorphism.

From this moment, we shall mean by F(X) ⊗G the class H−1′′GX (for a π-
class X and a commutative π-group with i.p. G, of course).

Theorem 3.11. Let (A,Oa), (B,Ob), (C,Oc) and (D,Od) be commutative π-
groups with i.p. with the injective representations {(Xn,Oxn),

xHmn ,m ≥ n} and the

injective Sd-projections xH
′

n for x ∈ {a, b, c, d}. Let F : A −→−→−→ C and G : B−→−→−→ D

be homomorphisms which are restrictions of some Sd-maps F
′

and G
′

to the class
A and B respectively. Then there are total homomorphisms

F×G : A×B −→−→−→ C×D

PF×G : F(A×B) −→−→−→ F(C×D) and finally

F⊗G : A⊗B −→−→−→ C⊗D

which are induced by F and G.

Proof: The first homomorphism is described in the proof of 3.1. As F and G
are total homomorphisms then F × G is so, too. We can define the second one
as follows: let f ∈ F(A × B), i.e. f = Σ{f([a, b]) · g[a,b]; [a, b] ∈ dom(f)}. Then

we put PF×G(f) = Σ{f([a, b]) · g[F′(a),G′ (b)]; [a, b] ∈ dom (f)}. Again it is clear

that it is a total homomorphism. For the last one let f ∈ F(A × B). Then
PF×G(f) is an element of F(C × D) and it is clear that hR(A,B)h

′ implies
PF×G(h)R(C,D)PF×G(h

′). Hence we can put F⊗G([f ]R(A,B)) = [PF×G(f)]
R(C,D) and it is a total homomorphism. (In the second and the third statement,
we use the assumption of injectivity of the Sd-projections under which F(A × B)
is a commutative π-group.) �

Theorem 3.12. Under the assumptions similar to those in 3.9, we have

(a) (F⊗G) ◦ (K⊗ L) = (F ◦K)⊗ (G ◦ L),
(b) (F+ F )⊗G = F⊗G+ F ⊗G and F⊗ (G+G) = F⊗G+ F⊗G.

Proof: The meaning and the proof of these statements are clear. �

In the construction of homology theory we shall use groups of the kind F(X)
for certain π-classes X which are the commutative π-groups with i.p. (see 1.5). By
results of this paragraph, we can use the commutative π-groups with i.p. as the
groups of coefficients.
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