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Normal structure and weakly normal structure

of Orlicz spaces

Shutao Chen, Yanzheng Duan

Abstract. Every Orlicz space equipped with Orlicz norm has weak sum property, therefore,
it has weakly normal structure and fixed point property. A criterion of sum property also
of normal structure for such spaces is given as well, which shows that every Orlicz space
has isonormal structure.
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Introduction.

T. Landes [4] shows that, under certain conditions, an Orlicz sequence space
with Luxemburg norm has normal or weakly normal structure iff it is separable.
For Orlicz spaces with Orlicz norm, we will discover that the results are much
different.
We begin with some notations. A sequence (xn) of a Banach space X is called

limit affine, if the limit λ(x) := limn ‖xn − x‖ > 0 exists for every x ∈ conv(xn),
and λ is an affine function on conv(xn). (xn) is called growing, if λ(xn) ≤ λ(xn+1)
for all n ∈ N . X is said to have sum property, if it contains no growing limit affine
sequence. X is said to have weak sum property, if it contains no growing weakly
converging limit affine sequence. X is said to have normal structure, if it contains
no limit affine sequence (xn) with λ(xn) = λ(xn+1) > 0 for all n ∈ N . X is said
to have weakly normal structure, if it contains no weakly converging limit affine
sequence (xn) with λ(xn) = λ(xn+1) > 0 for all n ∈ N . X is said to have isonormal
structure, if it is isomorphic to a Banach space with normal structure. X is said to
have fixed point property if every nonexpansive selfmapping on a weakly compact
convex subset of X has a fixed point.
It is well known that sum property ⇒ normal structure and that weak sum

property ⇒ weakly normal structure ⇒ fixed point property.
Throughout this paper, we always denote by (G,Σ, µ) a complete, nonatomic,

finite measure space. We sayM : R → R+ to be an N -function, if it is a continuous,
convex, even function satisfying M(u) = 0, iff u = 0 and M(u)/u → 0 (resp. ∞)
as u → 0 (resp. ∞). If M(u) is an N -function, then we denote by p(u) its right-
hand derivative and by N(v) the conjugate N -function of M(u), i.e., N(v) :=
maxu{uv − M(u)}.
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Let M be an N -function. For every µ-measurable function x : G → R we define
̺M (x) =

∫
G M(x(t)) dµ, and

(1)

LM ={x : ̺M (βx) < ∞ for some β > 0},

EM ={x : ̺M (βx) < ∞ for all β > 0},

‖x‖ =‖x‖M = inf
k>0
[1 + ̺M (kx)]/k, x ∈ LM .

Then the Orlicz space (LM , ‖ · ‖) and its subspace (EM , ‖ · ‖) are Banach spaces.

Main results.

Lemma 1. Suppose xn ∈ LM , ‖xn‖ ≤ K, n ∈ N and xn(t) → x(t) in measure as
n → ∞, then x ∈ LM .

Proof: Since ‖xn/K‖ ≤ 1, by [1], ̺M (xn/K) ≤ ‖xn/K‖ ≤ 1, n ∈ N . Without loss
of generality, we may assume xn(t) µ-a.e. on G (pass a subsequence, if necessary),
then, by Fatou’s lemma, ̺M (x/K) ≤ lim infn̺M

(xn/K) ≤ 1, i.e., x ∈ LM . �

Lemma 2. If xn → 0 weakly in LM and xn(t)→ y(t) in measure, then y = 0.

Proof: Again, we may assume xn(t) → y(t) µ-a.e. on G. Let F = {t ∈ G; y(t)
6= 0}. If µF > 0, then there exists E ∈ Σ with µE < µF and xn(t) → y(t) uni-
formly on G \ E. Define v(t) = signy(t)χF\E(t), then v ∈ LM∗ and 〈v, xn〉 =∫
F\E v(t)xn(t) dµ →

∫
F\E |y(t)| dµ > 0 contradicting the hypothesis xn → 0

weakly. �

We say that an interval [a, b] is a structural affine interval of the N -function M ,
if M is affine on [a, b] and it is neither affine on [a − ε, b] nor on [a, b + ε] for any
ε > 0.

Theorem 1. For any N -function M , LM has weak sum property, therefore, it has

weakly normal structure.

Theorem 2. The following are equivalent,

(i) LM has sum property,

(ii) LM has normal structure,

(iii) there exist a > 0, C > 1 such that for any structural affine interval [u, v] of
M with u ≥ a, we have v/u ≤ C.

Proof of Theorems 1 and 2: For any limit affine sequence (xn) in LM with
xi 6= xj whenever i 6= j, by [1], the “inf” in (1) is attainable for all x 6= 0. Therefore,
for all i 6= j, we may find kij > 0 such that

(2) ‖xi − xj‖ = [1 + ̺M (kij(xi − xj))]/kij .

First we show that there exists a subsequence N1 of N such that for any j ∈
N1, {kij}i∈N1 is bounded. Indeed, if {kij}i is bounded for all j ∈ N , then we let
N1 = N . Otherwise, there exist some m ∈ N and a subsequence I of N such that
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kim → ∞ as i(∈ I) → ∞. Hence, for any σ > 0, if we define Gi = {t ∈ G :
|xi(t)− xm(t)| > σ}, then by (2), we have

‖xi − xm‖ > ̺M (|xi − xm|kim)/kim ≥ [M(σkim)/kim]µGi .

Since λ(xm) < ∞ and M(u)/u → ∞ as u → ∞, we must have µGi → 0 as
i(∈ I)→ ∞. This shows that {xi}i∈I converges to xm in measure. We may assume
that I does not contain m. We claim that N1 = I satisfies our requirement. In
fact, if kij → ∞ as i(∈ I1)→ ∞ for some j ∈ I and some subsequence I, of I, then
in the same way we can show that xi → xj in measure as i(∈ I1) → ∞. This is
impossible since xj 6= xm.
By the diagonal method, we can find a subsequence N2 of N1 such that kij →

kj < ∞ as i(∈ N2)→ ∞ for each j ∈ N1. We claim that kj → ∞ as j(∈ N2)→ ∞.
In fact, if this is not true, then N2 contains a subsequence N3 such that kj → k < ∞
as j(∈ N3)→ ∞. By (1) and (2), for all n, i, j ∈ N3, n 6= i, j,

(3)

‖xn − xi‖+ ‖xn − xj‖ − ‖2xn − xi − xj‖ ≥

≥ [1 + ̺M (kni(xn − xi))]/kni + [1 + ̺M (knj(xn − xj))]/knj−

− [1 + ̺M ((2xn − xi − xj)kniknj/(kni + knj))](kni + knj)/kniknj =

=

∫
G
[M((xn(t)− xi(t))kni)/kni +M((xn(t)− xj(t))knj)/knj−

− M((2xn(t)− xi(t)− xj(t))kniknj/(kni + knj))(kni + knj)/kniknj ] dµ.

Denote the last integrand in (3) by fnij(t), then by the convexity of M, fnij(t) ≥ 0
for all t ∈ G. Since λ is affine on conv(xk), let n → ∞, by (3),

∫
G fnij(t) dµ

→ 0, therefore, fnij(t) → 0 in measure. By the diagonal method, we can choose
a subsequence N4 of N3 such that fnij(t)→ 0 µ-a.e. on G as n(∈ N4)→ ∞ for all
i, j ∈ N3.
For each t ∈ G, choose a subsequence {nτ = nτ (t)} of N4 such that

(∗) |v(t)| = lim inf
n∈N4

|xn(t)|, lim
τ

xnτ (t) = v(t),

then by Fatou’s lemma, |v(t)| < ∞ µ-a.e. on G (one may prove this analogously as
in Lemma 1). Let τ → ∞, by the continuity of M ,

(4)

0 = lim
τ

fnτij(t) =

=M((v(t) − xi(t))ki)/ki +M((v(t) − xj(t))kj)/kj−

− M((2v(t)− xi(t)− xj(t))kikj/(ki + kj))(ki + kj)/kikj

µ-a.e. on G. Since for µ-a.e. t ∈ G, (4) holds for all i, j ∈ N3, by replacing j by nτ

in (4) and taking τ → ∞, for each t ∈ G, we have

(5)
M((v(t)− xi(t))ki)/ki =

=M((v(t)− xi(t))kik/(ki + k))(ki + k)/kik
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µ-a.e. on G. Since 0 < k/(ki + k) < 1, and u 6= 0, 0 < α < 1 implies M(αu) <
αM(u), for all t ∈ G satisfying v(t) 6= xi(t), we have

M((v(t)− xi(t))kik/(ki + k))(ki + k)/kik < M((v(t)− xi(t))ki)/ki .

Since this inequality contradicts (5), we have xi(t) = v(t) µ-a.e. on G for all i ∈ N3,
which contradicts the assumption xi 6= xj whenever i 6= j.
Now, we prove (iii)⇒ (i) in Theorem 2. If LM does not have sum property, then

there exists a growing limit affine sequence. Without loss of generality, we may
assume that every two points in the sequence are different. By the above discussion,
it contains a subsequence (xn) satisfying kij → kj < ∞ as i → ∞ and kj → ∞ as
j → ∞, where kij satisfies (2), i, j ∈ N . Since M(u)/u → ∞ as u → ∞, for the

constant a > 0 in (iii), we can find b > a such that M(12 (a+ b)) < 1
2 [M(a)+M(b)].

Since M is convex, by (iii)

(6) M(αu+ (1 − α)v) < αM(u) + (1− α)M(v)

for all 0 < α < 1 and all u ≤ a, v ≥ b or u ≥ a, v ≥ Cu. If we define v(t) as in (∗),
then by (4) and (6), for µ-a.e. t ∈ G, if ki|v(t)−xi(t)| ≤ a, then kj |v(t)−xj(t)| ≤ b;
if ki|v(t)− xi(t)| > a, then kj |v(t)− xj(t)| ≤ Cki|v(t)− xi(t)|. Therefore, for µ-a.e.
t ∈ G,

(7) kj |v(t)− xj(t)| ≤ max{b, Cki|v(t)− xi(t)|} := ui(t).

By (2) and Fatou’s lemma, we have

(8) λ(xj) ≥ [1 + ̺M (kj(v − xj))]/kj ≥ ‖v − xj‖.

Thus, v − xj ∈ LM , therefore, ui ∈ LM . Since λ > 0, we have lim inf ‖v − xj‖ :=
τ > 0. It follows from (7) that

kj = ‖kj(v − xj)‖/‖v − xj‖ ≤ ‖ui‖/‖v − xj‖.

Let j → ∞, we get a contradiction ∞ ≤ ‖ui‖/τ < ∞.
Next, we turn to Theorem 1. If LM does not have weak sum property, then

by (3), there exists a weakly converging (to zero) limit affine sequence (xn) with
‖xn‖ → 1 and λ(xn) → 1. By the first part of the proof, passing a subsequence
if necessary, we may assume kij → kj < ∞ as i → ∞ and kj → ∞ as j → ∞,
where kij satisfies (2). It follows from (8) that xj → v in measure (similarly verified
as in the first part of the proof). Therefore, by Lemma 2, v = 0. We may also
assume xj → 0 µ-a.e. on G. We prove the theorem by showing limλ(xj) ≥ 4/3
contradicting the assumption λ(xj)→ 1.
For each j ∈ N , we choose a set Gj ∈ Σ such that xj is bounded on Gj and

[1 + ̺M (kjxjχGj
)]/kj > [1 + ̺M (kjxj)]/kj − 1/kj ,
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then by (1) and (8),

λ(xj) = [1 + ̺M (kjxj)]/kj =

= [1 + ̺M (kjxjχGj
)]/kj + [1 + ̺M (kjxjχG\Gj

)]/kj − 1/kj >

> [1 + ̺M (kjxj)]/kj − 1/kj + ‖xjχG\Gj
‖ − 1/kj ≥

≥ ‖xj‖+ ‖xjχG\Gj
‖ − 2/kj ,

i.e.

‖xjχG\Gj
‖ < λ(xj)− ‖xj‖+ 2/kj .(9)

It follows that

(10) ‖xjχGj
‖ ≥ ‖xj‖ − ‖xjχG\Gj

‖ > 2‖xj‖ − λ(xj)− 2/kj .

Since xj is bounded on Gj , there exists δ = δ(j) > 0 such that

(11) ‖xjχE‖ < 1/kj whenever E ⊂ Gj and µE < δ.

Since xi → 0 µ-a.e. on G, there exists F ∈ Σ with µF < δ such that xi → 0
uniformly on G \ F . Hence, there exists I = I(j) ∈ N such that for all i > I, we
have

(12) ‖xiχG\F ‖ < 1/kj .

It follows that

(13) ‖xiχF ‖ ≥ ‖xi‖ − ‖xiχG\F ‖ > ‖xi‖ − 1/kj .

Hence, by (1), (2), (9)–(13),

‖xi − xj‖ = [1 + ̺M (kij(xi − xj)χG\(Gj\F ))]/kij+

+ [1 + ̺M (kij(xi − xj)χGj\F )]/kij − 1/kij ≥

≥ ‖(xi − xj)χG\(Gj\F )‖+ ‖(xi − xj)χGj\F ‖ − 1/kij ≥

≥ ‖xiχG\(Gj\F )‖ − ‖xjχG\(Gj\F )‖+

+ ‖xjχGj\F ‖ − ‖xiχGj\F ‖ − 1/kij =

= ‖xiχG\(Gj\F )‖ − ‖xjχG\Gj
+ xjχGj\F ‖+

+ ‖xjχGj
− xjχGj\F ‖ − ‖xiχGj\F ‖ − 1/kij >

> (‖xi‖ − 1/kj)− (λ(xj)− ‖xj‖+ 2/kj + 1/kj)+

+ (2‖xj‖ − λ(xj)− 2/kj − 1/kj)− 1/kj − 1/kij =

= ‖xi‖+ 3‖xj‖ − 2λ(xj)− 8/kj − 1/kij .
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Let i → ∞, we have

λ(xj) ≥ 1 + 3‖xj‖ − 2λ(xj)− 9/kj .

Let j → ∞, then limλ(xj) ≥ 4/3.
Finally, we prove (ii)⇒ (iii) in Theorem 2. If (iii) does not hold, then there exist

the sequences {uj}, {vj} such that M(u1)µG > 1, uj+1 > 2juj , vj > 2juj and p(u)
is constant on [uj , vj ], j ∈ N . By the first two assumptions, we can choose disjoint
sets gj ∈ Σ such that µG \ Uj∈NGj > 0 and

(14) 2−j = ujp(uj)µGj = [M(uj) +N(p(uj))]µGj

(the last equality holds by the special case of Young’s inequality). Hence, we can
find u0 large enough so that there is G0 satisfying

Σj∈NN(p(uj))µGj +N(p(u0))µG0 = 1.(15)

Define

v = Σj≥0p(uj)χGj
,

xn = u0χG0 +Σj∈NvjχGj
+Σj>nujχGj ,

then by (15), ̺N (v) = 1, therefore, v ∈ L∗
M and ‖v‖ = 1 (cf. [1]).

First we show that xn ∈ EM for any n ∈ N . Given arbitrary K > 1, choose
J > n such that 2j > K, then vj > 2juj > Kuj > uj for all j > J . Therefore

Σj>JM(Kuj)µGj = Σj>J [Kujp(Kuj)− N(p(Kuj))]µGj <

< Σj>JKujp(Kuj)µGj = Σj>JKujp(uj)µGj = KΣj>J2
−j < ∞ .

This implies ̺M (Kxn) < ∞. Since K > 1 is arbitrary, we have xn ∈ EM .
Let kn = ‖xn‖ and yn = xn/kn, then yn ∈ EM and ‖yn‖ = 1. By (1) and (15),

‖yn‖ ≥ 〈v, yn〉 = [u0p(u0)µG0 +Σj≤nvjp(uj)µGj +Σj>nujp(uj)µGj ]/kn =

= [̺N (v) + ̺M(knyn)]/kn ≥ ‖yn‖ = 1.

Moreover, since

kn = ‖xn‖ ≥ 〈v, xn〉 > Σj≤nvjp(uj)µGj ≥ Σj≤n2
jujp(uj)µGj = n,

we have kn → ∞ as n → ∞.
We complete the proof by showing λ = 2 on conv(yn). Indeed, for any y ∈

conv(yn), there exist λi ≥ 0,Σi≤mλi = 1 such that y = Σi≤mλiyi. Since 〈v, yn〉 = 1,
we have 〈v, y〉 = Σi≤mλi〈v, yn〉 = 1. For any ε > 0, since y ∈ EM , there exists
I > m such that ‖yχF‖ < ε, where F = Ui>IGi. In view of xn(t) ≤ max{vI , u0}
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on G \ F and kn → ∞ as n → ∞, we can find n0 ∈ N such that ‖ynχG\F ‖ < ε for

all n > n0. Define v0 = vχG\F − vχF , then ‖v0‖ = ‖v‖ = 1 and for all n > n0,

2 ≥ ‖y‖+ ‖yn‖ ≥ ‖y − yn‖ ≥ 〈v0, y − yn〉 =

= 〈v0, yχG\F 〉+ 〈v0, yχF 〉 − 〈v0, ynχG\F 〉 − 〈v0, ynχF 〉 =

= 〈v, yχG\F 〉 − 〈v, yχF 〉 − 〈v, ynχG\F 〉+ 〈v, ynχF 〉 =

= 〈v, y〉 − 2〈v, yχF 〉 − 2〈v, ynχG\F 〉+ 〈v, yn〉 >

> 1− 2‖yχF‖ − 2‖ynχG\F ‖+ 1 > 2− 4ε,

which shows that λ(y) = 2. �

Theorem 3. LM has isonormal structure.

Proof: If M is strictly convex, then the condition (iii) in Theorem 2 holds for all
u 6= 0 and all C 6= 1. Therefore, LM has normal structure in this case. By [1], for
any Orlicz function M and any ε > 0, we can construct a strictly convex Orlicz
function H such that

‖x‖M ≤ ‖x‖H ≤ (1 + ε)‖x‖M

for all x ∈ LM , which shows that LM is isomorphic to LH , i.e. LM has isonormal
structure. �
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