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Abstract. A new semi-orthogonal relation for the Laguerre polynomials is given with 
an elementary weight function. 
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1. Introduction 

The Laguerre polynomials are orthogonal polynomials [1, p. 183, (16) and (17)] 
over the interval (0, oo) with respect to the weight function e~ x x a , if Rea > — 1. 

In this paper, we present a new semi-orthogonal relation for the Laguerre poly
nomials over the interval (0, oo) with respect to the weight function e-

xxn~~mJra~~l, 
if Rea > m—n. With the help of our semi-orthogonal relation, we obtain a Fourier-
Laguerre expansion for an elementary function. 

The Laguerre polynomials are defined by the relation [1, p.325, 6(a)]: 

La

n(x) = Ц C r " 2 F 0 í-n, -n-a; -; - - ) 
n! \ xj 

(ì.i) 

2. The Semi-Orthogonal Relation 

The semi-orthogonal relation to be established is 

/ e - * x — » + - 1 ^ ( x ) L « ( x ) d x (2.1) 
J0 

= 0, if m<n (2.1a) 

(2.16) 

n! 

where Rea > m — n. 

n! 

_ 2 r ( a - l ) ( q + 2)n : - „ , _ „ . i 
__ . ^ i! m = n + 1 

(2.1c) 
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PROOF: In view of (1.1), the integral (2.1) can be written as 

t _ i ) m + n f°° / \ \ 
V j / e-xx

2n+a-1
 2F0 - m , - m - a; - ; - " 
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' e~xx' !n+o - 1 - r - "dx (2.2) 
J0 

Evaluating the last integral in (2.2) with the help of the definition of the gamma-
function [1, p.335, (1)], then using the relation [1, p.275, (8)], viz. 

T(a + 1 - n) = ( - ^ ( a - n ) a n d s i m p l i f y i n g ) t h e r i g h t hand side of (2.2) be-

(-1)™" n A ( - m ) r ( - a - m ) r u r r ( 0 n _ L n v „ f-n, ~n-o; 1] (t) ^ 
r n » n ! Z-, r l ( - 1 ) T(2n + a - r ) 2 F , [^ 2 n _ a + r j (2.3) 

r-=0 

Now applying Vandermode's theorem [1, p.283, 19(a)], viz. 

F ( - n , a; c, 1) = ^ = 7 ^ , n = 0, 1, 2, . . . (2.4) 

to (2.3) and using the relation (1 — n + r ) n = ( — l ) n ( — r ) n , we have 

( - l ) m + n y > ( - m ) r ( - r ) n ( - q - m ) r r ( 2 n + q - r ) r + n 

m!n! ^ r ! ( l - 2 n - a + r ) n

 V ' V " ' 

If r < n, the numerator of (2.5) vanishes, and since r runs from 0 to m, it 
follows that (2.5) also vanishes, when m < n. Now, it is clear that for m < n all 
terms of (2.5) vanish, which proves (2.1a). 

When m = n} using the standard result 

f izlTli i f n < n < r 

1 0 , if n > r 

and simplifying, we have 

' e - V 1 {Ln (x)} 2 do; = r ( a ) ( a + 1 ) " ; Rea > 0, (2.7) / 
J0 
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which proves (2.1b). 
In (2.5), putting m = n + 1, using (2.6) and adding the resulting two terms 

(r = n, n + 1), and simplifying, we obtain 

J0 

_ 2 Г ( a - l ) ( a + 2)„ 
Rea > 1 (2.8) 

which proves (2Ac). • 

Note- On continuing as above we can find the values of the integral (2.1) for 
m = n + 2, n + 3, n + 4, 

3. Fourier-Laguerre Expansion 

Based on the relations (2.1a) and (2.1b), we can generate a theory concerning 
the expansion of arbitrary polynomials, or functions in general, in a finite series 
expansion of the Laguerre polynomials. Specially if f(x) is a suitable function 
defined for all a:, we consider for expansions of the general form 

n 

/ ( . - ) = ] _ _ Cmx~mLm (x), 0 < x < oo, m<n (3.1) 
m=0 

where the Fourier coefficients Cm are given by 

C w — mî 

г(в)(в + i ) m л 
Г <Гxxm+a-xf(x)La

m(x)àx (3.2) 

4. Fourier-Laguerre Expansion For x n 

The Fourier-Laguerre expansion to be obtained is 

V / w = = 0 V /m 

where Rea > n — m. 
PROOF: On using the following modified form of the integral [2, p.292, (1)]: 

where Re6 > 0. 
and (3.1) and (3.2) with f(x) given in (4A), the Fourier-Laguerre expansion 

(4.1) is obtained. D 
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